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Abstract

Higher order tasks in development for brain-computer interfacing applications require the 

invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response 

contributes to the decline of detectable neural signal. The major components of the 

neuroinflammatory response to microelectrodes have been well-documented with histological 

imaging, leading to the identification of broad pathways of interest for its inhibition such as 

oxidative stress and innate immunity. To understand how to mitigate the neuroinflammatory 

response, a more precise understanding is required. Advancements in genotyping have led the 

development of new tools for developing temporal gene expression profiles. Therefore, we have 

meticulously characterized the gene expression profiles of the neuroinflammatory response to 

mice implanted with non-functional intracortical probes. A time course of differential acute 

expression of genes of the innate immune response were compared to naïve sham mice, 

identifying significant changes following implantation. Differential gene expression analysis 

revealed 22 genes that could inform future therapeutic targets. Particular emphasis is placed on the 
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largest changes in gene expression occurring 24 h post-implantation, and in genes that are involved 

in multiple innate immune sets including Itgam, Cd14, and Irak4.
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1. Introduction

Intracortical microelectrodes have been explored as the interface with the brain for brain 

computer interfacing (BCI) since the 1990’s. Neural signals captured using intracortical 

microelectrodes can be used to inform systems that can restore movement and function to 

patients with sensorimotor disabilities and or other neurological disease. To do so, 

intracortical microelectrodes acquire single unit neuronal signals that are sent to a computer 

which decodes neural activity into a patient’s intent to move. Algorithms translate desire to 

move to a signal instructing a cursor, prosthetic, or a patient’s own limb to move accordingly 

[1–3].

Due to the level of invasiveness of the implanted BCI technology, the benefits need to 

outweigh the risks. Specifically, intracortical microelectrodes need to be able to sustain 

reliable and consistent recorded signals throughout the duration of device implantation [4]. 

Currently, fluctuations and steady declines in the quality of detected neural signals over time 

limit the utility for long-term human use [5–7]. Multimodal failure mechanisms contribute to 

the stability [8], one of the most significant challenges being the self-destructive 

inflammatory response [9–11]. Upon implantation, the immune system quickly responds 

resulting in an immediate and imminent neuronal death at the probe interface, ultimately 

yielding poor neural signal acquisition. The immediate portion of the neuroinflammatory 

response is facilitated by the innate immune response. The innate immune response is part of 

the body’s first line of defense against foreign invaders such as pathogens or foreign bodies.

The innate immune response senses and processes external and internal danger signals, 

initiates a response to clear the danger, and prompts other aspects of the immune system to 

respond further if necessary [12]. The main components of the innate immune response 

include physical barriers (i.e. epithelial surfaces), the complement system, effector cells, and 

subsequent cytokine and chemokine response. Broadly, effector cells such as astrocytes, 

microglia, and blood-derived macrophages have been implicated in neuronal death at the 

tissue-probe interface resulting in poor electrode performance [13, 14]. Effector cells have 

pattern recognition receptors (PRRs), which are used to detect damage and initiate 

intracellular signaling cascades that coordinate the inflammatory response through cytokine 

and chemokine production.

There is increasing emphasis in further understanding the intricacies of the biological 

response at the tissue-probe interface to better inform more targeted therapeutic approaches 

to decrease neuroinflammation [15]. To accomplish this, one can elucidate the expression of 

genes involved in the inflammatory response. A temporal delineation of a gene expression 
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profile can detail the activity of a large number of relevant genes providing benefit over 

traditional means of assessing the inflammatory response, such as immunohistochemistry. 

High information content can advance the identification of key mechanisms to target the 

reduction of neuroinflammation leading to improvements of intracortical microelectrode 

performance.

We have established that two specific pathways are critical to the connection between 

microelectrode-induced neuroinflammation and microelectrode performance: oxidative 

stress and innate immunity [16–22]. Oxidative stress is a result of the intense or prolonged 

inflammatory response associated with microelectrode implantation [21, 22]. We, and 

others, have previously looked at genes involved in oxidative stress [13, 22–25]. Since 

oxidative stress is downstream from the initiation of the innate immune response, a profile of 

the specific innate immune system-related genes could provide a more robust approach to 

attenuation of microelectrode-induced neuroinflammation. Therefore, here we investigated 

molecular changes of different subsets of the acute innate immune response driven by 

damage resulting from the intracortical probe implantation. Using gene expression profiling, 

changes in innate immune gene expression was measured over time and compared to no-

surgery shams. Understanding how gene expression profiles change immediately following 

probe implantation provides valuable insights into inflammatory mechanisms at the tissue-

probe interface. By looking at key players within each subset of the innate immune response 

and determining if there are any commonalities, we can find key targets to decrease the 

neuroinflammatory response.

2. Material and methods

2.1. Probes

“Dummy”, non-recording, single shank, uncoated, Michigan-style silicon probes (2 mm × 

15 μm × 123 μm) were used as intracortical probes as previously described [26]. Probes 

were washed in 95% ethanol, three times for five minutes each wash, and sterilized via a 

cold ethylene oxide gas cycle as previously described in Ravikumar et al. (2014) [27].

2.2. Animals

Prior to surgery, mice were housed in groups of 3–5 with food and water provided ad 
libitium, while maintained on a 12-hour light/dark cycle. At the time of surgery, all mice 

were 8 to 10 weeks of age (Male C57/BL6, strain #000,664, Jackson Laboratories). After 

surgery, mice were individually housed to avoid injury to the implant site. All animal 

handling was performed in a class II sterile hood using microisolator techniques. There were 

a total of 15 animals utilized in this study, designated as three animals used per time point (6 

h, 24 h, 72 h, and 2 weeks) and three animals used as sham controls. Sham animals are 

defined as naïve non-surgery controls. Sham animals were all male, age matched, and did 

not have any pre-, post- or surgical procedures. All procedures and animal care practices 

were performed in accordance with a protocol approved by the Case Western Reserve 

University Institutional Animal Care and Use Committee.
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2.3. Surgical implantation of probes

Animals were prepped for surgery using established methods [17]. Briefly, after mice 

reached surgical plane using isoflurane (3% in 1.0 L/min O2), mice were mounted onto a 

stereotaxic frame for the remainder of the surgical preparations and the surgery itself. A 

single dose of 0.2 ml of 0.25% Marcaine was administered subcutaneously (SQ) around the 

surgical site as a topical anesthetic, and Meloxicam (2 mg/kg) and Buprenorphine (0.05 

mg/kg) were administered subcutaneously as analgesics. The surgical site was shaved and 

sterilized with alternating wipes of betadine and isopropanol. Following which, a midline 

incision was used to expose the skull and four craniotomies were made over the motor and 

sensorimotor cortex in each brain hemisphere (1.5 mm lateral and 1 mm anterior and 

posterior to bregma respectively) [28] were created using a high-speed dental drill with a 

0.45 mm size bit. Adequate breaks in the drilling were taken to prevent thermal damage 

[29]. In order to ensure repeatability, the same surgeon manually inserted one dummy probe 

per craniotomy by hand, for a total of four probes implanted per animal. Insertion speed has 

been shown to be a contributor to electrode recording quality, likely due to surgical trauma 

during electrode insertion [30]. Therefore, our method of implantation is a potential 

limitation to the study. However, the same-trained surgeon, limiting variability, performed all 

implantations. Nonetheless, precautions were made to ensure repeatable implantations with 

minimal surgical trauma. Probes were held at the wide tab segment using fine tip forceps 

and slowly implanted into the cortex at a rate of ~2–3 mm/s until the 2 cm long shank was 

implanted. The wide tab ensured that the same depth of probe shank was implanted per 

craniotomy/animal, because it is too wide to be implanted and always remained above the 

cortical tissue. Following which, the probe was tethered to the skull with silicone elastomer 

and dental acrylic. Lastly, the incision site was sutured closed using 5–0 monofilment 

polypropylene suture. Post-operative care and monitoring was provided the week following 

surgery, with administration of Meloxicam (2 mg/kg) analgesia for three days following 

surgery.

2.4. Tissue processing

Sham and implanted animals were euthanized via cardiac perfusions in order to prepare 

tissue extracts for analysis. Briefly, deeply anesthetized animals, were transcardially 

perfused with cold 1X phosphate-buffered saline (PBS) followed by 30% (w/v) sucrose. 

Brains were immediately extracted and probes (if implanted) were explanted. Perfusion and 

explantation was done quickly to prevent excessive degradation of RNA. Brain tissue was 

flash frozen in optimal cutting temperature compound (OCT) on dry ice. Using a cryostat, 

the cortical brain tissue surrounding the neural probes was sectioned at 150 μm thick frozen 

slices and collected onto glass microscope slides. A biopsy punch (1 mm deep and 500 μm 

diameter) centered directly over the implant site of the collected tissue on the glass slide, 

was used to immediately excise the tissue of the frozen tissue slices, resulting in tissue 

samples each 150 μm thick and with 250 μm radii from the implant site. This step was 

repeated for a total of 6–7 tissue slices, resulting in a collection of 900 – 1050 μm total 

thickness of cortical tissue down the electrode shaft. Tissue collection started at ~150 μm 

depth, continuing down the length of the device, spanning most of the cortex. Tissue was 

collected from all four implant sites per animal, but only two implant sites per animal were 
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utilized for further downstream RNA isolation and gene expression analysis to account for 

technical replicates within each biological animal replicate.

2.5. RNA isolation

Excised brain tissue samples were directly placed in microcentrifuge tubes containing 

Qiazol (RNA extraction lysate). Extracted tissue was homogenized in Qiazol using 1.5 mm 

zirconium beads using the Bead Bug Homogenizer at high speed. RNA was immediately 

extracted and purified using the RNeasy Plus Universal Mini Kit in accordance with 

manufacturer’s protocol. RNA was stored at −80 °C until further processing. RNA purity 

and concentrations were determined using Qubit Flourometer. Samples were shipped on dry 

ice to the Nanostring processing facility (Seattle, WA) for further quality control and 

quantification.

2.6. RNA quantification

For each sample, 50 ng of total RNA was hybridized to 777 capture probes provided by 

Nanostring at 96 °C overnight with the nCounter® Mouse Neuroinflammation Plus panel. 

The nCounter® Mouse Neuroinflammation Plus panel (with custom add-ins genes of 

interest) interrogated 777 neuro-immune-related mouse genes, associated controls, and 13 

housekeeping genes. Hybridized samples were digitally analyzed for frequency of each gene 

using the nCounter® MAX Analyzer.

2.7. Statistical analysis

Raw mRNA abundance frequency data were imported into nSolver® software Version 4.0. 

Default quality control checks were run to assess technical assay performance. Raw counts 

were normalized to internal controls and housekeeping genes to remove any technical 

variance. Internal controls include positive and negative controls to assess success of 

hybridization. Background noise was filtered out using thresholding which utilized the mean 

count of negative controls to substitute all raw counts at or below estimated background to 

the threshold value. The geometric mean of the positive controls was used to compute the 

positive control normalization factor. After 2 housekeeping genes were removed due to low 

average counts, the geometric mean of the housekeeping genes was used to calculate the 

CodeSet Content Normalization. Low count genes were removed by setting the Threshold 

Count Value to 25. Observation frequency of the Threshold Count Value was also set to 0.9. 

The Threshold Count Value was chosen to achieve balance between false positives and false 

negatives in the data.

Normalized data was Log transformed by base 2 before analysis to achieve a normal 

distribution of the data. From here on in, log2-fold changes will just be referred to as “fold 

change” for simplicity. Fold-change in gene expression levels was calculated by dividing 

individual expression values (normalized reads) for each time point by the mean of values 

from shams. Each gene was tested for differential expression in response to ‘time’ 

(covariate). For each gene, a negative binomial regression without dispersion was fit using 

‘time’ to predict expression.
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Functional analyses were performed using Advanced Analysis nSolver® software Version 

2.0.115. Gene sets were curated by NanoString and informed by KEGG analysis pathways. 

Gene Set Analysis Scores were output by the software. Gene Set Analysis Scores summarize 

differential expression testing at the gene set level. Gene Set Analysis Scores are calculated 

as the square root of the mean squared t-statistic for the genes in a gene set (Eq. (1)), with t-

statistics coming from the linear regression underlying the differential expression analysis. A 

correction for multiple comparisons due to the multiplicity given by the many genes was 

included in the nSolver software analysis. Statistical significance was performed in R 3.6 

using the MASS package. The average fold change from the technical replicates within each 

animal was first calculated and then used in a generalized linear model (GLM) with a 

Poisson distribution (n = 3). For the GLM, each time point was evaluated as a categorical 

variable. Genes regulated differentially by more than 1 Log 2 fold from sham condition with 

a p < 0.05 were considered significant.

Gene Set Analysis Score =  1
p ∑

i = 1

p
t1
2

1/2

Eq. (1). Calculation of Gene Set Analysis Scores for each gene set. ti: t-statistic from ith 

pathway gene

3. Results

The investigation of gene expression profiles from mice implanted with neural probes (n = 3 

animals with a technical duplicate per animals) at various acute time points was compared to 

sham controls (n = 3 animals with a technical duplicate per animal), resulting in 6 samples 

tested for each time point. One sham sample was removed due to high technical variance, 

resulting in 5 sham samples from 3 different animals. Gene expression profiles were 

assessed using a digital molecular multiplex barcoding array to allow for 777 genes to be 

analyzed from each sample. Out of the 777 genes of the panel, 590 genes met the Threshold 

Count requirements and were used for analysis. The present study only examined the genes 

related to gene sets curated by NanoString involving the innate immune system (101 genes) 

(Table 1). All genes examined exhibited an up-regulation compared to sham at least one time 

point due to intracortical probe implantation. None of the genes demonstrated significant 

down-regulation compared to sham (data not shown).

3.1. Cellular response to implanted microelectrode

We have previously shown that the inhibition of specific innate immunity pathways reduces 

the glial scar and neuronal death and the probe/tissue interface, and improves recording 

quality [16–18]. To connect our previous studies that utilized traditional 

immunohistochemistry to the gene expression profiles measured here, we first looked at the 

genes commonly used to code for proteins with immunohistochemistry: astrocytes (Gfap), 
infiltrating leukocytes (Cd45), and activated microglia/macrophages (Cd68) [13, 31, 32]. It 

was found that all three genes were significantly upregulated at all time points examined (6 

h, 24 h, 72 h, and 2 w post-implantation) compared to sham controls (Fig. 1, Table 2). 
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Furthermore, all three cellular genes were also significantly upregulated at 24 h, 72 h, 2 w 

compared to 6 h post-implantation, suggesting that transcriptional changes due to the 

implantation of the probe are not maximized until at least after 6 h post-implantation (Fig. 1, 

Table 2).

3.2. The complement cascade

The complement system is a component of the innate immune system comprised of plasma 

proteins which can opsonize foreign substances for clearance and destruction by phagocytes, 

such as microglia and macrophages, and induce inflammation. As with any injury, the 

complement system is activated when an intracortical probe is implanted. There has been 

minimal research investigating the role of the complement system in the response to 

implanted probes, thus leaving a gap of knowledge that is necessary to be addressed.

A heatmap depicting the genes expressed in the complement cascade is shown in Fig. 2A. 

The Complement Cascade Gene Set Differential Expression Score (Eq. (1)), a summary 

score that describes the collective expression of complement associated genes compared to 

sham, fluctuates throughout the time course of the study (Fig. 2A, B). At 6 h, there is a 

collective upregulation in complement factors, followed by a further increase at 24 h post-

implantation. By 72 h post-implantation, the extent of upregulation slightly subsides 

compared to 24 h post-implantation, remaining fairly consistent through the 2 w time point 

(Fig. 2A, B).

It was found that the genes that had the highest differential expression within the 

complement cascade included: C3ar1, C3, C5ar1, and Itgam (Fig. 2A, C). There was a 

significant fold increase for C3ar1 at all time points assessed compared to sham (Fig. 2C, 

Table 3). Additionally, there was a significant increase of Itgam upregulation from 6 h to 24 

h post-implantation which decreased by 2 weeks (Fig. 2C, Table 3). C3 gene expression was 

significantly upregulated at 2 weeks compared to sham 6, 24 and 72 hrs. (Fig. 2C, Table 3). 

Of note, by 2 weeks post-implantation, there was a significantly less up-regulation of C3ar1, 
C5ar1, and Itgam compared to 24 h post-implantation detected (Fig. 2C, Table 3). Thus, the 

complement cascade is a subset of the innate immune response that warrants further 

investigation at early time points.

3.3. Cytokine response

Cells involved in the innate immune response, post intracortical probe implantation, release 

proinflammatory mediators such as cytokines and chemokines. Cytokines are pleiotropic 

polypeptides (8–26 kDa) that are chemical messengers of the innate immune response. 

Cytokines orchestrate cellular events and are the key players in the dynamic cross-talk 

among all the cell types involved in the innate immune response to intracortical probe 

implantation [33]. Chemokines are discussed in the following section. The Gene Set 

Analysis scores summarize differential expression testing compared to sham at the gene set 

level. At acute time points, the genes associated with cytokine expression were at their 

highest upregulated levels at 24 h post-implantation (Fig. 3A, B). Interestingly, there was a 

decline in the collective cytokine response gene expression from 24 h to 72 hr, which was 

followed by an increase at 2 w post-implantation (Fig. 3A, B).
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Notably, the genes that had the highest differential expression within the cytokine response 

pathway, compared to sham, included: Il1β, Il2rγ, Irak4, Osmr, Psmb8, Ptpn6, and Tnfrsf1a 
(Fig. 3A, C). There was a significant –fold increase of Irak4, Osmr, and Tnfrsf1a at all time 

points assessed, compared to sham (Fig. 3C, Table 4). Moreover, there was a significant 

upregulation of Il2rγ, Irak4, and Psmb8 at 24 h, 72 h, and 2 w post-implantation compared 

to 6 h post-implantation (Fig. 3C, Table 4). Inversely, it was observed that Il1β was at the 

highest upregulation at 6 h post-implantation (Fig. 3C, Table 4). Furthermore, Ptpn6 was 

significantly upregulated at 24 h, 72 h, 2 w post-implantation compared to sham (Fig. 3C, 

Table 4). By 2 weeks post-implantation, there was significantly less up-regulation of Osmr, 
Ptpn6, and Tnfrsf1a compared to 24 h post-implantation (Fig. 3C, Table 4). Many signaling 

molecules involved in the cytokine response are strongly upregulated early in the 

neuroinflammatory response to probes, suggesting that targeting strategies need to be 

present near or before the time of implantation.

3.4. Chemokine response

Chemokines are a class of cytokines which specifically mediate immune cell activation and 

migration to and from injured tissue. There are three main groups of chemokines based on 

the location of cysteine (C) residues: the CXC, CC, and CX3C [34]. The Gene Set Analysis 

scores summarize the expression compared to sham at the gene set level. As a set, the genes 

involved in the chemokine signaling are at their highest upregulation at 24 h post-

implantation (Fig. 4A, B). Similar to the cytokine response gene expression trends, we 

observed a continual decline in the extent of up-regulation of the collective chemokine 

response genes from 24 h to 72 h and from 72 h to 2 w post-implantation (Fig. 4A, B).

The top differentially expressed chemokine response genes compared to sham were: Ccl2 
and Dock2. There was a significant fold increase of Ccl2 at all time points assessed 

compared to sham (Fig. 4C, Table 5). Dock2 was significantly upregulated at 24 h, 72 h, and 

2 weeks compared to sham (Fig. 4C, Table 5). Compared to the 6 h time point, Ccl2 was 

significantly less up-regulated at 24 h, 72 h, and 2 weeks (Fig. 4C, Table 5). Conversely, 

Dock2 had a significant fold increase at 24 h, 72 h, and 2 weeks compared to 6 h (Fig. 4C, 

Table 5). Similar to the cytokine response, chemokines were strongly upregulated within a 

day post implantation indicating chemokine targeting strategies need to be present at the site 

of implantation immediately following implantation.

3.5. Toll-like receptor (TLR) signaling cascade

TLRs are some of the most well characterized among PRRs that detect damage due to 

injury, such as that occurring during intracortical probe implantation. This class of receptors 

recognize molecular patterns on exogenous or endogenous damaged moieties. Ligand 

binding to TLRs result in necrosis factor κB (NF-κB) activation leading to inflammatory 

mechanisms [35]. When activated, the TLR signaling cascade leads to the secretion of 

proinflammatory cytokines and chemokines such as TNF, IL1β, IL1R, IL6, IL8, IL10, IL23, 

MIP-1 α/1β, and IFNβ [36, 37]. After probe implantation, some of these cytokines and 

chemokines have been implicated in the facilitation of the entry of blood-derived 

inflammatory cells to the brain, increases of blood brain barrier (BBB) permeability, and 

activation of glial cells [33]. Gene Set Analysis scores in Fig. 5A are a summary score that 
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describes the collective expression of TLR-associated genes compared to sham. The TLR-

associated gene set was elevated at all time point examined, and collectively at their highest 

expression at 24 h post-implantation (Fig. 5A, B). The collective expression of genes 

involved in the TLR signaling cascade was less up-regulated at 72 h than at 24 h, followed 

by a slight increase in up-regulation at 2 w, from the 72 h time point (Fig. 5A, B).

The top differentially expressed genes from the TLR-associated gene set were: Casp8, Cd14, 
Irak4, Irf7, and Itgam. Itgam and Irak4 were previously discussed in Sections 3.2 and 3.3, 

respectively. There was a significant fold increase of Cd14 at all time points assessed 

compared to sham (Fig. 5C, Table 6). Whereas Irf7 was significantly up-regulated at 72 h 

and 2 weeks compared to sham (Fig. 5C, Table 6). Upregulation of Cd14 was significantly 

higher at 6 h and 24 h compared to 72 h and 2 w post-implantation (Fig. 5C, Table 6). There 

was a significant fold increase of Casp8 at 24 h, 72 h, and 2 weeks compared to 6 h (Fig. 5C, 

Table 6). By 2 w post-implantation, Cd14 was significantly less up-regulated, and Irf7 was 

significantly up-regulated, compared to 24 h post-implantation (Fig. 5C, Table 6). Overall, 

the TLR pathway is upregulated immediately following probe implantation suggesting that 

TLR associated genes need to be further explored for potential therapeutic targeting 

immediately after implantation.

3.6. Pattern recognition receptors

Pattern recognition receptors (PRRs) are the molecular links between tissue damage and 

innate immunity. When certain molecular patterns or structures, including both PAMPs and 

DAMPs from serum proteins or damaged cells resulting from implantation of the probe, 

bind to PRRs, signaling of inflammatory processes ensues. Thus, the gene expression of 

PRRs was of particular interest to investigate in this study. Of specific interest were the 

PRRs residing on the cell surface, as they are released after probe implantation. Because of 

the role of receptor binding in cell phenotype, it is hypothesized that PRRs will be feasible 

future therapeutic target which can be used to block downstream cellular processes.

Fig. 6 A provides Gene Set Analysis scores, a score summarizing the collective expression 

of PRRs compared to sham. Genes associated with PRRs are upregulated at all time points 

included in this study. Collectively, the PRRs gene expression was at the highest 

upregulation at 24 h post-implantation, and return to approximately the same level of up-

regulation at both 72 h and 2 w, as to that detected at 6 h post-implantation (Fig. 6 A, B).

Aim2, Cd14, and Itgam were the top differentially expressed genes compared to sham. 

Because of the biological redundancies in pathways, Itgam and Cd14 were previously 

discussed in Sections 3.2 and 3.5, respectively. There was a significant fold increase of Aim2 
at 24 h, 72 h, and 2 w post-implantation compared to sham (Fig. 6 C, Table 7). Moreover, 

Aim2 expression levels were significantly higher at 72 h and 2 weeks compared to 6 h (Fig. 

6 C, Table 7). Since PRRs were upregulated post intracortical probe implantation and remain 

to be upregulated up for 2 weeks, methods to reduce PRR signaling should continue to be 

explored to reduce inflammation.
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4. Discussion

There has been widespread interest investigating the neuroinflammatory response after 

intracortical probe implantation [10, 31, 38, 39] Recent progress has utilized gene 

expression analysis to evaluate the molecular pathways following implantation [22, 40, 41]. 

However, a comprehensive assessment of the molecular sequelae directed at the acute innate 

immune response post probe implantation, was yet to be performed. Therefore, this study 

quantitatively analyzed gene expression profiles from implanted mice at four time points 

during the acute inflammatory response and compared them to a non-surgical sham control. 

In order to have a comprehensive molecular analysis of the acute innate immune response, 

genes involved in the inflammatory cellular markers, the complement response, the cytokine 

response and the chemokine response were investigated. Since our lab has previously found 

targeting the TLR/CD14 pathway yields promising results in both improving intracortical 

microelectrode recording and neuronal density [16, 17], it was critical to continue 

investigation of this pathway. Furthermore, we explored PRRs that could also be potential 

therapeutic targets, as we have previously shown CD14 to be [18].

There were 101 different genes examined from the innate immune response. As expected, 

our findings indicate that genes associated with the innate immune response are significantly 

upregulated in the neuroinflammatory response following probe implantation. This is 

consistent with previous studies demonstrating the inflammatory response to intracortical 

probe implantation [31, 42, 43]. Within the subsets of the innate immune response, we 

identified 22 genes that were significantly upregulated during the first two weeks post 

intracortical probe implantation. The Gene Set Analysis score for all the gene within those 

five pathways demonstrated a robust upregulation of genes involved in the innate immune 

response 24 h post-implantation (Figs. 2B, 3B, 4B, 5B, 6B), suggesting that the innate 

immune response should be targeted at this time point.

Some highly upregulated genes of this study were involved in multiple subsets of the innate 

immune response. Itgam, Cd14, and Irak4 genes had the highest upregulation compared to 

sham, and are involved in multiple innate immunity pathways. Itgam is involved in the 

complement cascade, TLR signaling, and is a PRR (Figs. 2, 5, 6). Cd14 is involved in TLR 

signaling and functions as a PRR (Figs. 5 and 6). Irak4 is involved with both cytokine and 

TLR signaling (Figs. 3 and 5).

ITGAM [44], CD14 [45], and IRAK4 [46] are all involved in NF-κB signaling. ITGAM 

(CD11b) is a subunit for the Mac-1 (complement receptor 3 (CR3)) integrin. ITGAM is 

expressed on both blood-derived cells and microglia, playing a role in neutrophil and 

macrophage adhesion, activation, and fusion [44, 47, 48]. Activated by TLR pathway [49], 

ITGAM is also involved in the phagocytosis of complement coated particles [50]. The 

integrin is a fibrinogen [51], fibronectin [52], and collagen [53] receptor which mediates cell 

adhesion to these proteins, all of which can adsorb onto the probe surface [54]. Notably, 

Davalos et al. demonstrated that targeting ITGAM can decrease neuroinflammation. They 

demonstrated that blocking the fibrinogen binding motif recognized by ITGAM decreases 

microglial response and axonal damage in experimental autoimmune encephalomyelitis 
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(EAE) [55]. Monoclonal antibodies to ITGAM have been developed and future studies could 

test the ability of this antibody to reduce intracortical probe induced inflammation [56].

Another of the strongly upregulated genes common to multiple gene sets in this study is 

Cd14. CD14 is a PRR involved in the recognition of TLR2 and TLR4 by its ligands. The 

CD14/TLR4 complex recognize DAMPs originating from cells or the extracellular matrix 

[37] and CD14 is mandatory for microglial reactions to DAMPs [57]. Some DAMPs CD14 

is a co-receptor for include hsp70, a common DAMP released by necrotic cells, and 

S100A9, another DAMP released by neutrophils (blood derived cells present in the few days 

post-implantation) during inflammation [58, 59]. We have previously demonstrated that 

mice lacking Cd14 had decreases in both neuronal death and astroglial scar around the probe 

interface [17]. We have also shown that targeting CD14 can improve intracortical 

microelectrode performance [16, 18]. Since Cd14 is at its highest upregulation at 6 h and 24 

h post-implantation, the best therapeutic window to target CD14 is suggested prior to 24 h 

post-implantation (Figs. 5C, 6C). Future studies should evaluate this recommended dosing 

regimen to avoid unnecessary treatment.

Irak4 is also highly upregulated at acute time points post intracortical probe implantation 

(Figs. 3C and 5C). Irak4 is involved in intracellular signaling cascades downstream of ligand 

binding to TLRs [60]. This molecule transduces pro-inflammatory downstream signals 

through both physical protein-protein interaction and kinase activity [61]. There are several 

IRAK4 inhibitors currently being developed through small-molecule screening of the 

IRAK4 kinase which were reviewed by Wang et al. [62]. Additionally, Nyrada is developing 

an IRAK4 inhibitor which is able to cross the BBB which may show promise to mitigate 

intracortical probe induced inflammation [63].

The following sections highlight in detail the specific genes within each innate immunity 

pathway that were significantly upregulated.

4.1. The complement system

The complement system is integral to the innate immune system and has not been explored 

with regards to intracortical probe implantation. Complement induces phagosome mediated 

loss of neurons in the substatnia nigra as well as microglial associated synapse loss, 

suggesting that the complement cascade could lead to these same results in the cortex post 

intracortical probe implantation [64]. The complement system can have deleterious effects 

[65]; however, there are studies which demonstrate that the complement system can be 

neuroprotective through its clearance of damage [66]. Conversely, even though the 

complement pathway can promote the inflammatory response, there is support for its 

beneficial role in promoting the health of neurons

To enhance the understanding of the complement system, genes involved with this system 

were investigated temporally (Fig. 2). Interestingly, the complement cascade had a slightly 

different time course than the other four pathways evaluated in this study. Although the 

genes involved in the complement cascade were similarly at the highest upregulation at 24 h, 

the complement cascade experienced a much slower decrease in the extent of up-regulation 

from 24 h to 2 w post-implantation compared to the other four pathways analyzed (Figs. 2B, 
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3B, 4B, 5B, 6B). Moreover, C3 and C3ar1 had the highest upregulation compared to the 

other genes involved in the complement response (Fig. 2A, C). C3 is a downstream effector 

of NF-κB, found primarily in astrocytes [67] and involved in phagocytosis [68], especially 

of the elimination of unwanted synapses [69]. Upregulation of C3 around the implant site 

suggests that further experiments are needed to determine whether synapses are being 

removed around the probe via C3 opsonization. C3 can also mediate macrophage adhesion 

to different implanted surfaces, suggesting that C3 is a protein which adsorbs onto the 

implanted probe, inducing a cellular response through detection by its receptor, C3ar [70]. 

C3 could potentially be involved with the initial stages of the innate immune response 

around the probe to clean up cellular debris resulting from implantation. The chemotactic 

receptor, C3ar, has been shown to be upregulated following CNS injury potentially 

promoting the migration of microglia, macrophages, and astrocytes towards the probe [71, 

72].

As can be seen by the roles the upregulated genes from the complement cascade have in 

neuroinflammation, this pathway is a major factor that influences the outcome to 

intracortical probe implantation. Unfortunately, due to controversial reports, it is still unclear 

whether the complement system’s role in neuroinflammation are beneficial or detrimental. 

Therefore, before approaches can be developed to “target” any of the genes identified in this 

grouping, a more mechanistic study must be completed to further elucidate the function in 

response to this “injury” model.

4.2. Cytokine response

There were numerous molecules associated with cytokine signaling significantly upregulated 

post neural probe implantation compared to sham. Specifically, Il1β, Il2rγ, Irak4, Osmr, 
Psmb8, Ptpn6, and Tnfrsf1a (Fig. 3) were all expressed at higher levels in implanted animals 

than in sham. Irak4 was discussed above as it is involved with multiple gene sets examined 

in this study. IL1β is a hallmark cytokine involved in the acute inflammatory response and 

produced by both blood-derived cells and microglia. [73]. IL1β is commonly thought of as a 

first response cytokine [74], correspondingly, it was found that the highest upregulation of 

IL1β in this study was at the 6 h post-implantation (Fig. 3C). In the brain, IL1β activates 

endothelial cells of the BBB, enabling the trafficking of blood-derived cells into the 

parenchyma [11, 75]. We have previously demonstrated that monocyte trafficking into the 

brain following probe implantation dominates the cell population at the probe tissue 

interface [13], ultimately perpetuating the inflammatory response. Similarly, Karumbaiah et 

al. examined the gene response of several cytokines for multiple probe designs 72 h post-

implantation. They found that Il1β was significantly upregulated for all probe designs 

examined, as demonstrated in our study for single-shank 15 μm Michigan style probes (Fig. 

3C) [33]. Targeting IL1β immediately after probe implantation might be neuroprotective and 

lead to more robust recordings as targeting IL1B has been found to reduce neural ischemic 

damage [76, 77].

Other notable cytokines that were upregulated include, Il2rγ and Tnfrsf1a, which comprise 

portions of the IL-2 receptor and TNF cell surface receptor, respectively. The IL-2 ligand/

receptor complex is involved in the signaling of other cellular players of the immune 
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response [78]. Both the IL-2 and the TNF complex are known to lead to downstream NF-κB 
activation and are viable targets for as therapeutic methods to reduce intracortical probe 

induced inflammation [79, 80]. Conversely, Osmr and Ptpn6 negatively regulate the 

inflammatory response [81]. OSMR signaling inhibited both recruitment of monocytes and 

NF-κB signaling in a peritoneal model of acute inflammation. Furthermore, the ligand for 

OSMR, oncostatin M, regulates neuronal function and survival [82, 83]. PTPN6 is expressed 

both in astrocytes and neurons. PTPN6 negatively regulates astrocyte proliferation post 

ischemic injury [84] supporting functional recovery after brain injury [85]. Thus, controlled 

modulation of OSMR and PTPN6 signaling could be of therapeutic benefit after probe 

implantation.

4.3. Chemokine signaling

Chemokines mainly attract blood-derived cells and microglia to the area of the probe after 

implantation; however, they orchestrate other cell to cell interactions as well. The top 

differentially expressed genes compared to sham within the chemokine signaling pathway 

include: Ccl2 and Dock2. CCR2/CCL2 is a ligand-receptor pair that mediates macrophage 

infiltration into the brain resulting in neuronal loss [86, 87]. In fact, Hsieh et.al. implicated 

CCR2 in macrophage induced neuronal loss after traumatic brain injury (TBI), which is in 

accordance with other models of CNS injury, including experimental autoimmune 

encephalomyelitis (EAE) and hemorrhagic stroke [88–90]. The main ligand for CCR2 is 

CCL2 which was highly upregulated as early as 6 h post-implantation (Fig. 4C). Since it has 

been shown that the amount of blood-derived cells at the tissue-probe interface temporally 

correlate with neuronal loss [13], targeting the CCL2/CCR2 pathway to mitigate blood-

derived cell infiltration might be a potent therapeutic to reduce neuronal loss following 

probe implantation. Sawyer et al. demonstrated that targeting the CCL2/CCR2 pathway, 

both via a knock-model and CCR2 antagonist, improves the neuroinflammatory response to 

intracortical probes. Targeting the CCL2/CCR2 pathway reduced BBB permeability at 2 

weeks. Furthermore, targeting CCR2 resulted in higher neuronal density within 100 μm of 

the probe [91]. Next steps should include the administration of small-molecule drugs 

available to target the CCR2/CCL2 ligand-receptor pair, to see if effective dosing can be 

determined to improve microelectrode performance.

4.4. TLR cascade

The TLR family detects endogenous tissue damage and elicits innate immune responses 

through NF-κB. The highest upregulated genes involved in this cascade are: Casp8, Cd14, 
Irak4, Irf7, and Itgam. Itgam, CD14, and Irak4 were already discussed above.

Caspase 8 is a protease involved in several cell death mechanisms and in microglial 

activation [92]. Caspase 8 is expressed in neurons [93], macrophages, and microglia [94] 

and has been found to directly regulate IL1β in response to TLR3 and TLR4 activation [95]. 

Caspase 8 can prevent necroptosis [96], regulate cytokine transcription, and is a negative 

regulator of inflammasomes [97]. Furthermore, neuron specific casp8 deletion in mice 

resulted in decreased neurodegneration and neuronal cell death in a TBI model [93]. Thus, 

caspase 8 could be a key mediator of neuron death in intracortical probe induced 

inflammation. Considering that neuronal death by the probe limits the functionality of the 
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device, future studies should explore caspase 8 and other potential neuronal death mediators 

in more detail.

4.5. Pattern recognition receptors

PRRs play an essential role in coordinating the innate immune response to clear damage. 

Given that cell-surface receptors are a popular target for therapeutic agents, we explored the 

families of PRRs (regardless or not if they are cell-surface receptors). The different families 

of PRRs converge with similar signaling cascades which induce the activation of pro-

inflammatory transcription factors such as NF-κB. As mentioned above, the activation of 

NF-κB mediates the production of cytokines and chemokines which promote blood-borne 

cell infiltration and cellular activation.

In addition to Cd14 and Itgam (discussed in detail above), Aim2 was the highest upregulated 

gene of the PRRs analyzed. AIM2 is part of the AIM2 inflammasome, a cytosolic sensor 

which detects mislocalized self-DNA, suggesting a loss of cellular integrity [98]. It is 

unclear what DNA AIM2 is detecting post intracortical probe implantation. However, we 

speculate that cellular damage which occurs due to the implantation trauma could cause 

mislocalized DNA. Hyperactivation of AIM2 has been shown to mediate pyroptosis, a 

mechanism of proinflammatory cell death in neurons [99]. Thus, pyroptosis could be a 

possible neuronal death mechanism at the neural interface that needs explored.

5. Conclusion

A crucial step to mitigate the inflammatory response is to identify the molecular mediators 

involved. This study comprises an important stride towards understanding temporal changes 

to the biology at the tissue-probe interface. Here, the use of gene expression analysis was 

utilized to better understand the molecular players in the innate immune response to 

intracortical microelectrodes and discover new targets to mitigate neuroinflammation to 

intracortical microelectrodes. Since the innate immune system is fast responding, we first 

focused on acute time points post-implantation. Our findings corroborate studies that 

demonstrate the critical role the innate immune response plays in the neuroinflammatory 

response to intracortical probes. An increased temporal understanding of the innate immune 

response can inform more targeted intervention strategies to mitigate inflammation at the 

tissue-probe interface. This work identified Cd14, Irak4 and Itgam, among others, to be 

promising candidates to reduce the intracortical microelectrode mediated inflammatory 

response, and to potentially improve the function and stability of the device. CD14 has 

already been demonstrated to be a key player in the inflammatory response to intracortical 

microelectrodes, however future studies need to be conducted to confirm of biological 

relevance of IRAK4 and ITGAM.

Upregulated genes could be further explored using knock-out models or RNA interference 

(RNAi) to further validate ITGAM and IRAK4 as viable, potent targets to reduce 

neuroinflammation. Future studies also need to explore the effects of knock out models such 

as Itgam−/−, and Irak4−/− on electrophysiology in order to correlate the gene expressions 

with the decline of detectable neural signals commonly observed in control animals. Further 

analysis deciphering the contribution of specific cell types, including peripheral immune, on 
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the changes of gene expression and protein levels, is a next step towards uncovering the 

neuroinflammatory response to implanted microelectrodes. Additional analysis could also 

warrant the collection of appropriate data for future modeling to fit kinetic or spatial profiles 

of the inflammatory response over time. The findings of this study can inform local delivery 

of immunomodulatory agents, such as dissolvable probe coatings, to reduce inflammation at 

the probe interface. Collectively, this study provides an important resource for future studies 

exploring the role innate immunity plays in intracortical microelectrode failure.
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Statement of Significance

Current understanding of the cellular response contributing to the failure of intracortical 

microelectrodes has been limited to the evaluation of cellular presence around the 

electrode. Minimal research investigating gene expression profiles of these cells has left a 

knowledge gap identifying their phenotype. This manuscript represents the first robust 

investigation of the changes in gene expression levels specific to the innate immune 

response following intracortical microelectrode implantation. To understand the role of 

the complement system in response to implanted probes, we performed gene expression 

profiling over acute time points from implanted subjects and compared them to no-

surgery controls. This manuscript provides valuable insights into inflammatory 

mechanisms at the tissue-probe interface, thus having a high impact on those using 

intracortical microelectrodes to study and treat neurological diseases and injuries.
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Fig. 1. 
Differential expression of genes for commonly used markers of astrocyte and microglial/

macrophage activity compared to sham. A. Gfap, commonly used as anastroglial marker B. 

Cd45, an infiltrating leukocyte marker C. Cd68, commonly used as a marker for microglia/

macrophage activation; Fold change is a log2-fold changecompared to sham for each time 

point post-implantation of dummy probe. * indicates (log2-fold change > 1and p < 0.05).
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Fig. 2. 
Differential expression of gene set involved in complement cascade compared to sham. A. 

Heat map of differential expression of each gene of this set significantly upregulated at least 

one time point (log2-fold change > 1and p < 0.05) compared to sham. B. Gene Set 

Differential Expression Score, a composite score for gene set. C.Top differentially expressed 

genes from this gene set. Fold change is a log2-fold change and compared to sham for each 

time point post-implantation of dummy probe. * indicates (log2-fold change > 1 and p < 

0.05).
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Fig. 3. 
Differential expression of gene set involved in cytokine response compared to sham. A. Heat 

map of differential expression of each gene of this set significantly upregulated at least one 

time (log2-fold change > 1and p < 0.05) compared to sham. B. Gene Set Differential 

Expression Score, a composite score for gene set. C. Top differentially expressed genes from 

this gene set. Fold change is a log2-fold change and compared to sham for each time point 

post-implantation of dummy probe.*indicates (log2-fold change > 1and p < 0.05).
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Fig. 4. 
Differential expression of gene set involved in chemokine response compared to sham. A. 

Heat map of differential expression of each gene of this set significantly upregulated at least 

one time (log2-fold change > 1and p < 0.05) compared to sham. B. Gene Set Differential 

Expression Score, a composite score for gene set. C. Top differentially expressed genes from 

this gene set. Fold change is a log2-fold change and compared to sham for each time point 

post-implantation of dummy probe.* indicates (log2-fold change > 1and p < 0.05).
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Fig. 5. 
Differential expression of gene set involved in TLR cascade compared to sham. A. Heat map 

of differential expression of each gene of this set significantly upregulated at least one time 

(log2-fold change > 1and p < 0.05) compared to sham. B. Gene Set Differential Expression 

Score, a composite score for gene set. C. Top differentially expressed genes from this gene 

set. Fold change is a log2-fold change and compared to sham for each time point post-

implantation of dummy probe. * indicates (log2-fold change > 1and p < 0.05).
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Fig. 6. 
Differential expression of gene set of pattern recognition receptors compared to sham. A. 

Heat map of differential expression of each gene of this set significantly upregulated at least 

one time point (log2-fold change > 1and p < 0.05) compared to sham. B. Gene Set 

Differential Expression Score, a composite score for gene set. C. Top differentially 

expressed genes from this gene set. Fold change is a log2-fold change and compared to sham 

for each time point post-implantation of dummy probe. * indicates (log2-fold change > 1and 

p < 0.05).
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