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Abstract

Few studies have examined systemic mitochondrial function in conjunction with brain imaging in human im-
munodeficiency virus (HIV) disease. Oxidative phosphorylation enzyme protein levels of peripheral blood
mononuclear cells were measured in association with neuroimaging indices in 28 HIV+ individuals. T1-weighted
magnetic resonance imaging yielded volumes of seven brain regions of interest; diffusion tensor imaging de-
termined fractional anisotropy (FA) and mean diffusivity (MD) in the corpus callosum (CC). Higher nicotinamide
adenine dinucleotide dehydrogenase levels correlated with lower volumes of thalamus ( p = .005) and cerebral
white matter ( p = .049) and, in the CC, with lower FA ( p = .011, body; p = .005, genu; p = .009, total CC) and
higher MD ( p = .023, body; p = .035, genu; p = .019, splenium; p = .014, total CC). Greater cytochrome c oxidase
levels correlated with lower thalamic ( p = .034) and cerebellar gray matter ( p = .021) volumes. The results
indicate that systemic mitochondrial cellular bioenergetics are associated with brain health in HIV.
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Introduction

Approximately 40 million people worldwide are in-
fected with the human immunodeficiency virus (HIV).1

Many HIV+ individuals demonstrate evidence of abnormal
brain morphometry on magnetic resonance imaging (MRI),
including thinning of the cerebral cortex and decreased vol-
umes of cortical and subcortical gray matter regions.2–7

Diffuse microstructural changes in white matter have been
revealed by diffusion tensor imaging (DTI).8–13 Suppressive
combination antiretroviral therapy (cART) does not reverse
these brain structural alterations,14–16 even when initiated
during primary infection (<12 months after exposure).17 To
devise strategies for patient care, research is needed to de-
lineate the key mechanisms underlying the evolution of brain
abnormalities in HIV.

Converging data implicate the impairment of brain mito-
chondrial dynamics in HIV neuropathogenesis. HIV proteins

alter the physiology of mitochondria.18 For example, neuronal
damage, dysfunction, and atrophy can be induced in vitro19,20 by
the HIV-1 transactivator of transcription protein (Tat): Tat
exposure perturbs mitochondrial oxidative phosphorylation
(OXPHOS) enzyme activities,21,22 changes the morphology of
cortical mitochondria,23 and contributes to altered neuronal
synaptic transmission.22,24 OXPHOS is essential for mitochon-
drial respiration.25 Dysfunction of OXPHOS enzymes increases
oxidative stress and generation of reactive oxygen species
(ROS), activating the intrinsic apoptotic mitochondrial path-
way.26–29 Failure to inhibit this cycle has been linked to neuro-
degenerative diseases29,30 and HIV-associated dementia.31

However, the possible role of mitochondrial OXPHOS in HIV-
associated brain structural pathology has not been investigated.

The present study examined regional brain volumes and
white matter microstructural integrity (assessed by multi-
modal neuroimaging) in relation to systemic mitochondrial
parameters, that is, protein levels of mitochondrial OXPHOS
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complex I (nicotinamide adenine dinucleotide: ubiquinone
oxidoreductase, CI) and complex IV (cytochrome c oxidase,
CIV) in peripheral blood mononuclear cells (PBMCs). Brain
volumetric analyses focused on regions of interest (ROIs)
identified in prior studies as vulnerable to HIV and/or oxi-
dative stress (i.e., pallidum, thalamus, caudate, hippocampus,
cerebral white matter, cerebral subcortical gray matter, and
cerebellar gray matter4,5,32–34). DTI was used to assess mi-
crostructural properties of the largest commissural pathway,
the corpus callosum (CC), which has previously shown dif-
fusion abnormalities associated with HIV infection.13,35,36 CI
and CIV represent the initial and terminal aspects of the
electron transport chain (ETC).37 HIV-infected individuals
who are cART-naı̈ve exhibit increased oxidative damage,
mitochondrial DNA (mtDNA) depletion, and decreased ac-
tivities of CI-CIV in PBMCs.38 We hypothesized that altered
PBMC mitochondrial CI and CIV levels would be associated
with lower brain volumes on MRI and with abnormal, DTI-
based, white matter microstructural indices.

Methods

Study sample

Protein levels of OXPHOS CI and CIV were obtained at
entry in a subset of participants from the Hawaii Aging with
HIV Cohort–Cardiovascular Disease (HAHC-CVD) study,39

a longitudinal study of subclinical cerebro-CVD in HIV-
infected individuals on cART. Regional brain volumes were
obtained once, cross-sectionally, to correspond to an annual
visit of this study: MRI was performed at entry for 19 par-
ticipants, while scans for the remaining nine were acquired in
association with annual visits conducted 1 or 2 years later.
Recruitment was conducted through referrals from the Ha-
waii Center for AIDS, community physicians, community
advisory board members, and AIDS service organizations.
Inclusion criteria included (1) ‡ 40 years old; (2) documented
history of HIV infection; (3) on stable cART ‡3 months; (4)
English as their primary language; and (5) able to understand
and provide informed consent. Exclusion criteria included (1)
uncontrolled major affective disorder; (2) active psychosis;
(3) recorded loss of consciousness >5 min; (4) pregnancy or
breastfeeding; (5) factors precluding MRI (e.g., claustro-
phobia); and (6) any past or present condition [e.g., central
nervous system (CNS) infection, traumatic brain injury,
stroke, or substance abuse] that was determined by the
evaluating physician to present confounding variables. All
study participants underwent a general and focused HIV/
neurological history and physical examination. Each partic-
ipant provided written informed consent. The study was
approved by the Institutional Review Board in the Office of
Compliance at the University of Hawaii.

PBMC isolation

Blood was collected in EDTA vacutainer tubes. PBMCs
were isolated over a Ficoll-Paque gradient and washed three
times with phosphate-buffered saline (PBS). An aliquot of cells
was counted using trypan blue and a hemocytometer. Cells
were then viably cryopreserved at a concentration of 10 mil-
lion/1 mL freezing media (10% fresh dimethyl sulfoxide/90%
heated fetal bovine serum) in 0.5-mL aliquots (5 million cells
each) in 1.5–2-mL O-RINGED screw-capped cryovials.

OXPHOS enzymes

CI and CIV protein levels were determined in duplicate by
immunoassays, as described elsewhere.40 Vials of PBMCs
were thawed and washed in 0.5 mL of PBS twice before
addition of 0.5 mL of ice-cold extraction buffer [1.5% lauryl
maltoside, 25 mM HEPES (pH 7.4), 100 mM NaCl, plus
protease inhibitors (P-8340; Sigma)]. Samples were mixed
gently, kept on ice for 20 min, and microcentrifuged at
16,400 rpm for 20 min at 4�C. Samples were loaded on the
immunoassays with equal amounts of total cell protein fol-
lowing established guidelines.40 CI and CIV levels were
quantified using densitometric scanning with a Hamamatsu
ICA-1000 reader. Protein level was measured as optical
density (OD)/lg of protein · 103.

Neuroimaging

MRI was performed on a 3.0 Tesla Philips Medical Sys-
tems Achieva scanner using an eight-channel head coil
(InVision Imaging, Honolulu). High-resolution, MRI ana-
tomical data were obtained for each subject using a sagittal,
3D, turbo field echo T1-weighted (3D TFE T1W) sequence
[echo time (TE)/repetition time (TR) = 3.2 ms/6.9 ms; flip
angle 8�; slice thickness 1.2 mm with no gaps between slices;
in-plane resolution 1.0 mm2; field of view (FOV) 256 ·
256 mm2]. Diffusion-weighted MRI scans were acquired
using a single-shot, echo planar imaging (EPI) sequence:
24 cm FOV, TR/TE = 7,859 ms/80 ms, flip angle 90�, 3.0-
mm-thick slices, 0-mm gap, SENSE factor = 3.1, maximum
slew rate 120mT/m/ms, gradient amplitude 40 mT/m, 96 · 95
acquisition matrix, 2.5 · 2.5 mm2 in-plane resolution, and a
variable number of slices determined by head size. One im-
age without diffusion sensitization was obtained (i.e., a T2-
weighted b0 image). Diffusion weighting was applied along 15
noncollinear directions evenly distributed over a sphere with a
b-factor of 1,000 s/mm2 and four signal averages to increase the
signal-to-noise ratio (SNR). Scan time was 8.6 min.

Regional brain volumes were obtained by processing T1-
weighted MRI data with FreeSurfer (version 5.0, https://
surfer.nmr.mgh.harvard.edu).41–44 The process includes skull
stripping,45 intensity normalization,46 Talairach transforma-
tion, subcortical white matter and deep gray matter seg-
mentation,42,43 and cortical gray/white matter boundary and
pial surface reconstruction.41 Intracranial volume (ICV) was
used to correct for differences in head size.47 Following vi-
sual quality control of the surfaces and segmentations, vol-
umetric data were determined from the left and right
hemispheres for seven ROIs known to be affected by HIV:
pallidum, hippocampus, thalamus, caudate, cerebral subcor-
tical gray matter, cerebellar gray matter, and cerebral white
matter.4,13,34,48–52 Total regional volumes were computed by
summing over the left and right brain hemispheres.

Diffusion data were processed using DTI protocols, as
previously described.53 In brief, the FSL eddy_correct tool
was used to correct for motion- and eddy current-induced
distortions. To correct for EPI-induced susceptibility artifacts,
each subject’s b0 image was nonlinearly warped to the cor-
responding anatomical T1-weighted image. The dtifit com-
mand in FSL was used to estimate diffusion tensors from the
preprocessed images and to obtain maps of the DTI scalar
metrics, fractional anisotropy (FA) and mean diffusivity
(MD). The FA image corresponding to the Johns Hopkins
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University ( JHU) Eve atlas was registered to each individual
FA scan. The warps were applied to the white matter labels
that defined the ROIs in the CC. FA and MD were derived for
the genu, body, and splenium of the CC. Each subregion and
the total CC were included in the DTI analyses.

Statistical analyses

Descriptive statistics were computed for patient demo-
graphics, clinical parameters, PBMC CI and CIV protein
levels, regional brain volumes, and DTI indices. Multiple
linear regression examined associations between neuroima-
ging indices and CI and CIV levels (separately). Analyses of
DTI metrics focused on FA and MD of the genu, body,
splenium, and total CC.

Sensitivity analyses were conducted for both brain volume
and DTI models to evaluate potential contributions from
additional variables, including age, sex, ICV, CD4 nadir,
years since HIV diagnosis, years on cART, substance use,
and use of any of the three nucleoside reverse transcriptase
inhibitors (NRTIs): azidothymidine (AZT), stavudine (d4T),
or didanosine (ddI). Age was the only covariate retained in
the final regression models that examined DTI metrics. ICV
was utilized as a covariate in analyses of regional brain
volumes. Significance was defined by p < .05, with 0.05 £
p < .1 considered indicative of a trend. Volumes and DTI
measurements were assessed for normality through visual
inspection of histograms and the Shapiro–Wilk test. Re-
gression diagnostics for all models were examined for vio-
lations. SPSS 22 and SAS, v9.4 (SAS Institute, Inc., Cary,
NC), were used for statistical analyses.

Results

PBMC CI and CIV levels and neuroimaging data were
available for 28 HIV+ individuals who were all on stable
cART and between the ages of 40 and 70 [mean age 52 – 7
years; predominantly male (86%); mean duration of HIV
infection = 20.5 – 7.0 years; mean duration of cART = 18.1 –
5.9 years]. Plasma HIV RNA was undetectable (<50 cop-
ies/mL) in 23 (82%) of the study participants and the re-
maining five subjects had a median HIV RNA count of 180
copies/mL (range: 53–6,280). CI values ranged from 15 to 56
OD/lg · 103, while the range of CIV was narrower (11–35
OD/lg · 103). The median (interquartile range) time from the
blood draw to MRI was 2 (1–24) months. Demographic and
clinical data are summarized in Table 1 and regional brain
volumes and DTI measures (FA and MD) presented in Table 2.
CI and CIV levels were not associated with substance use
variables or with history of treatment with AZT, d4T, or ddI.

PBMC OXPHOS CI and CIV protein levels
and regional brain volumes

After controlling for ICV, we found associations ( p < .05)
between higher CI protein levels and smaller thalamic and
cerebral white matter volumes (Table 3). Only the former
relationship was significant after Bonferroni correction for
multiple comparisons ( p < .007 = .05/7). Volumes of cerebral
subcortical gray matter, cerebellar gray matter, pallidum, and
hippocampus showed trend-level inverse associations with
CI protein levels ( p < .10). Significant associations were
observed between higher CIV levels and lower cerebellar

gray matter and thalamic volumes independently of ICV,
although neither survived multiple comparison correction.

When regression analyses were restricted to the 23 partici-
pants with undetectable plasma HIV RNA, the CI associations
with regional volumes became stronger and more significant
(b = -0.51, p = .002 for thalamus; b = -0.32, p = .039 for ce-
rebral white matter). Similarly, CIV was associated with tha-
lamic volume (b = -0.39, p = .025), and the relationship
between CIV and cerebellar gray matter was strong enough to
survive Bonferroni correction (b = -0.55, p = .001).

PBMC OXPHOS CI and CIV protein levels
and DTI metrics

After adjustment for age, higher CI protein levels were
significantly associated with lower FA in the total CC, genu,

Table 1. Study Sample: Demographics, Clinical

Variables, and Peripheral Blood Mononuclear

Cell Oxidative Phosphorylation Protein Levels

Characteristics

N 28
Age (years) 52.5 – 7.2
Sex (male) 24 (85.7%)
Race/ethnicity (Caucasian) 13 (46.4%)
Years since HIV diagnosis 20.5 – 7.0
Years on cART 18.1 – 5.9
CD4 count (cells/mm3) 501 – 203
Nadir CD4 count (cells/mm3) 176 – 144
Undetectable plasma HIV RNA

(<50 copies/mL)
23 (82.1%)

PBMC OXPHOS Complex 1 protein level
(OD/lg · 103)

33.8 – 9.4

PBMC OXPHOS Complex 4 protein level
(OD/lg · 103)

27.6 – 5.6

Ever used AZT, d4T, or ddI 18 (64.3%)
Ever used any druga 25 (89.3%)
Marijuana use (lifetime frequency)b

Never 0 (0%)
1–10 times 7 (28%)
>10 times 18 (72%)

Methamphetamine use (lifetime frequency)b

Never 15 (60%)
1–10 times 3 (12%)
>10 times 7 (28%)

Use of stimulants (lifetime frequency)b

Never 20 (80%)
1–10 times 2 (8%)
>10 times 3 (12%)

Alcohol usec

Never 11 (42.3%)
Sometimes (£4 times/month) 11 (42.3%)
Frequently (>2 times/week) 4 (15.4%)

Data are given as mean – SD for continuous variables and n (%)
for categorical variables.

aDrugs include marijuana, cocaine, crack, stimulants, phencyclidine,
methamphetamine, heroin, lysergic acid diethylamide, ecstasy, nitrates,
glue, ketamine, methadone, barbiturates, painkillers, and sedatives.

bn = 25.
cn = 26.
AZT, azidothymidine; cART, combination antiretroviral therapy;

d4T, stavudine; ddI, didanosine; OD, optical density; OXPHOS,
oxidative phosphorylation; PBMCs, peripheral blood mononuclear
cells; SD, standard deviation.
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and body after Bonferroni correction ( p < .013 = .05/4).
A trend was observed between increased CI and decreased
FA in the splenium ( p < .10) (Table 4). Similarly, we found a
trend-level association between higher CIV protein levels
and lower FA in the splenium. The CIV level was not asso-
ciated with FA in other callosal regions (Table 5).

Higher levels of CI were linked to increased MD in the
genu, body, splenium, and total CC (Table 4), although the
associations were not significant when Bonferroni corrected.
CIV levels did not relate to MD in the genu, body, or total CC.
A trend toward a positive correlation between CIV and MD
was noted in the splenium (Table 5).

CI and CIV associations with DTI metrics increased in
strength and significance when only the participants with
undetectable plasma HIV RNA were considered. CI was
significantly related to FA in the total CC (b = -0.70,
p < .001) and all subregions (e.g., b = -0.63, p = .002, for
splenium) after correction for multiple comparisons. No-
tably, all associations between CI and MD survived Bon-
ferroni correction (e.g., b = 0.62, p < .001, for total CC). CIV
showed a trend relationship to FA in the genu (b = -0.38,
p = .074) and was linked to MD in the splenium (b = 0.44,
p = .021) and total CC (b = 0.34, p = .068).

Discussion

Results from this study provide the first examination of
systemic OXPHOS CI and CIV levels and neuroimaging
metrics in HIV+ individuals. A higher PBMC CI level was

significantly associated with lower thalamic volume after
correction for multiple comparisons. CI was also inversely
related to cerebral white matter volume and showed trends
toward similar relationships with volumes of cerebral sub-
cortical gray matter, cerebellar gray matter, hippocampus,
and pallidum. A higher CIV level was associated with lower
volumes of cerebellar gray matter and thalamus. These re-
sults are supported by well-known differences in brain re-
gional sensitivity to oxidative stress. The thalamus is
selectively vulnerable to neurodegeneration induced by im-
paired oxidative metabolism.54,55 Neurons in the cerebellar
granule layer (unlike those in the cerebral cortex) are highly
susceptible to oxidative stress and consequent cell death, as
are hippocampal CA1 neurons.33 In earlier work, we identi-
fied strong associations between increased PBMC levels of
the ROS-induced lesion 8-oxo-2¢-deoxyguanosine (8-oxo-
dG), a marker of mtDNA oxidative damage,56 and reduced
brain volumes in an HIV+ sample that included all partici-
pants of the current study.32 HIV alters mitochondrial mor-
phology,23 physiology,18 and respiratory dynamics.57 Our
study suggests that such mitochondrial changes exert an ad-
verse impact on brain structure.

Mitochondrial dysfunction may underlie multiple aging-
related and neurodegenerative pathologies58 such as Alzhei-
mer’s disease,59 Parkinson’s disease,60 and HIV-associated
neurocognitive disorders (HANDs).61 Examination of frontal
cortex autopsy tissue from patients with HANDs has revealed
significant mitochondrial abnormalities: increased mtDNA
8-oxo-dG damage,62 accumulated mtDNA mutations and
deletions,62 and dysregulated mitochondrial fission and fu-
sion.63 Reduced mitochondrial biogenesis and increased
neuroinflammation were recently identified in frontal cortices
of cART-treated HAND donors.64 ROS-induced oxidative
DNA damage may be crucial in HIV-related neurodegener-
ative processes.62

The etiology of HIV-related mitochondrial dysfunction is
likely to be multifactorial. Prior studies implicate nucleoside
NRTIs65–68; however, no association was observed in the
present study between treatment history with AZT, d4T, or
ddI and mitochondrial complex protein levels. Other work
has focused on deleterious effects of substance use on mi-
tochondrial function in HIV. Methamphetamine is especially
disruptive,69,70 particularly in the setting of HIV infection.71

The lack of correlation between substance use histories and
CI and CIV levels in the current study suggests that mi-
tochondrial function may be more strongly linked to the
HIV disease process. HIV proteins and disease dynamics
disrupt mitochondrial integrity and potentiate the apopto-
tic pathway.72–75

Also identified in our study were relationships between
increased PBMC complex levels and reduced microstructural
integrity of brain white matter. Higher CI levels corre-
sponded to significantly reduced FA and increased MD
within the genu, body, and entire CC and at trend level in the
splenium. Trend associations of higher CIV levels with de-
creased FA and increased MD were noted in the splenium.
Relationships between DTI measures and CIV (unlike CI)
may have failed to reach significance because of the more
restricted range of CIV levels. Progressively diminishing
mitochondrial respiratory chain dysfunction has been re-
ported with the movement of electrons down the ETC: a
study of cART-naı̈ve HIV-infected patients found that the

Table 2. Regional Brain Volumes, Intracranial

Volume, and Diffusion Tensor Imaging-Derived

Fractional Anisotropy and Mean Diffusivity

for the Corpus Callosum

Brain region Volume (mm3)

Pallidum 3,319 – 371
Hippocampus 7,970 – 762
Cerebral subcortical GM 77,316 – 5,986
Cerebellar GM 87,493 – 8,737
Thalamus 12,913 – 1,182
Caudate 7,188 – 731
Cerebral WM 488,178 – 54,007
ICV (in 103 mm3) 1,455.10 – 277.09

Brain region FA

Genu of CC 0.50 – 0.04
Body of CC 0.47 – 0.04
Splenium of CC 0.55 – 0.03
Total CC 0.51 – 0.03

Brain region MD

Genu of CC 9.5 · 10-4 – 9.2 · 10-5

Body of CC 1.1 · 10-3 – 9.0 · 10-5

Splenium of CC 9.9 · 10-4 – 7.2 · 10-5

Total CC 9.9 · 10-4 – 7.6 · 10-5

Mean values – SDs reported for all variables; n = 28.
CC, corpus callosum; FA, fractional anisotropy; GM, gray matter;

ICV, intracranial volume; MD, mean diffusivity; WM, white matter.
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activities of respiratory chain complexes II, III, and IV were
reduced by 41%, 38%, and 19%, respectively, compared with
HIV-negative controls.38

DTI studies of HIV+ adults have reported compromised
microstructural integrity of the CC; for example, FA reductions
in the splenium (relative to HIV-negative controls), which were
associated with diminished neurocognitive functioning.13

Anterior callosal thinning has been detected in HIV+ individuals
and linked to T cell decline.76 Results of the current investiga-
tion are consistent with published HIV research; moreover, this
is the first study to link PBMC CI and CIV protein levels to FA

and MD in the CC. The observed connection between PBMC
complex levels and callosal DTI metrics constitutes evidence
that systemic mitochondrial dysfunction may contribute to re-
duced microstructural brain integrity in HIV.

It is worth noting that our participants were chronically
infected and on cART for an average of 18 years. PBMC CI
and CIV levels corresponded to neuroimaging measures in-
dependently of cART regimen or age. Interestingly, these
associations were stronger in individuals who were virally
suppressed: long-term damage and oxidative disruption may
be more clearly delineated when not masked by variability

Table 3. Associations Between Regional Brain Volumes and Levels of Peripheral Blood Mononuclear

Cell Complex I and Complex IV by Multiple Regression Controlling for Intracranial Volume

Brain region (volume) Predictor variables b p Adjusted R2

Pallidum CI level -0.32 .091
ICV 0.40 .040

0.14
Hippocampus CI level -0.31 .095

ICV 0.45 .020
0.17

Cerebral subcortical GM CI level -0.30 .054
ICV 0.70 <.001

0.44
Cerebellar GM CI level -0.33 .069

ICV 0.48 .012
0.21

Thalamus CI level -0.46 .005*
ICV 0.62 <.001

0.43
Caudate CI level -0.33 .864

ICV 0.36 .071
0.06

Cerebral WM CI level -0.27 .049
ICV 0.78 <.001

0.55

Brain region (volume) Predictor variables b p Adjusted R2

Pallidum CIV level -0.07 .708
ICV 0.31 .128

0.04
Hippocampus CIV level -0.20 .308

ICV 0.33 .092
0.11

Cerebral subcortical GM CIV level -0.22 .159
ICV 0.58 .001

0.40
Cerebellar GM CIV level -0.42 .021

ICV 0.30 .088
0.27

Thalamus CIV level -0.36 .034
ICV 0.43 .013

0.34
Caudate CIV level 0.004 .984

ICV 0.36 .077
0.06

Cerebral WM CIV level -0.15 .286
ICV 0.68 <0.001

0.50

CI and CIV levels are measured as OD/lg of protein · 103. Volumes are in mm3. p-Values <.05 are shown in bold, and standardized b-
values are presented along with the model’s adjusted R2; n = 28.

*Significant after Bonferroni correction for multiple comparisons.
CI, complex I; CIV, complex IV; ICV, intracranial volume; OD, optical density.
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Table 4. Associations Between Diffusion Tensor Imaging-Derived Metrics for the Corpus Callosum

(Fractional Anisotropy and Mean Diffusivity) and Peripheral Blood Mononuclear Cell Complex I Level

by Multiple Regression, Controlling for Age

Brain region (FA) Predictor variables b p Adjusted R2

Body of CC CI level -0.47 .011*
Age -0.18 .307

0.22
Genu of CC CI level -0.51 .005*

Age -0.15 .383
0.25

Splenium of CC CI level -0.35 .072
Age -0.18 .338

0.10
Total CC CI level -0.48 .009*

Age -2.04 .241
0.24

Brain region (MD) Predictor variables b p Adjusted R2

Body of CC CI level 0.41 .023
Age 0.33 .057

0.26
Genu of CC CI level 0.36 .035

Age 0.46 .008
0.33

Splenium of CC CI level 0.41 .019
Age 0.36 .040

0.28
Total CC CI level 0.42 .014

Age 0.41 .016
0.34

p-Values <.05 are shown in bold, and standardized b-values are presented along with the model’s adjusted R2. CI level is measured as
OD/lg of protein · 103; n = 28.

*Significant after Bonferroni correction for multiple comparisons.

Table 5. Associations Between Diffusion Tensor Imaging-Derived Metrics for the Corpus Callosum

(Fractional Anisotropy and Mean Diffusivity) and Peripheral Blood Mononuclear Cell Complex IV

Level by Multiple Regression, Controlling for Age

Brain region (FA) Predictor variables b p Adjusted R2

Body of CC CIV level -0.17 .402
Age -0.22 .263

0.01
Genu of CC CIV level -0.31 .115

Age -0.18 .348
0.07

Splenium of CC CIV level -0.35 .065
Age -0.18 .332

0.11
Total CC CIV level -0.30 .123

Age -0.23 .226
0.09

Brain region (MD) Predictor variables b p Adjusted R2

Body of CC CIV level 0.17 .351
Age 0.37 .056

0.11
Genu of CC CIV level 0.09 .613

Age 0.49 .009
0.20

Splenium of CC CIV level 0.33 .069
Age 0.37 .041

0.22
Total CC CIV level 0.23 .197

Age 0.44 .018
0.21

Standardized b-values are presented along with the model’s adjusted R2. CIV level is measured as OD/lg of protein · 103; n = 28.
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due to inclusion of viremic participants in the analyses. As
ours was a cross-sectional study, we could not determine
whether disrupted OXPHOS was secondary to mitochondrial
damage during acute HIV infection or represents an ongoing
process that continues despite potent cART. Our PBMC CI
and CIV data are in accordance with decreased PBMC
mtDNA and functional disruption along the ETC observed in
antiretroviral-naı̈ve HIV+ individuals.38

Higher levels of CI and CIV can be expected to lead to
increased generation of ROS and to cellular injury, including
mitochondrial damage. The results presented here are con-
sistent with our previous report that greater mtDNA damage
as measured by PBMC mtDNA 8-oxo-dG is associated with
regional brain atrophy.32 Indeed, in our cohort, we see a
positive correlation between CI levels and mtDNA 8-oxo-dG
levels (Gangcuangco LMA et al., in review).

In the same manuscript under review, we also demonstrate
that CI levels in our HIV-infected participants were lower
(not higher) compared with HIV-negative control partici-
pants of similar age and gender. Lower CD4 count and higher
levels of circulating proinflammatory cytokines are known
risk factors for HIV-related CNS pathology and correlated
with lower CI and CIV protein levels within the HIV+ group.
We hypothesize that these results, which at first glance appear
inconsistent with our present study findings, may be sec-
ondary to the measurement of protein levels and not the
functional capacity of the OXPHOS system. It is possible that
HIV is associated initially with impaired OXPHOS function
before decreases in protein levels can be detected. A com-
pensatory increase in OXPHOS may lead to enhanced ROS
levels, which damage DNA, lipids, proteins, and membrane
permeability within mitochondria.77 CI, in particular, has
been identified as a common site of superoxide genera-
tion.77,78 Increased ROS production can be a consequence of
functional alterations such as stoichiometric mismatches in
the ETC complexes. Such mismatches result in longer resi-
dence time of electrons on sites of complexes that mediate
electron reduction of O2

-, resulting in increased production
of H202 and superoxide.27

Important limitations of the present work merit discussion.
Our study involved cross-sectional examination of PBMC
OXPHOS levels rather than mitochondrial assessments in the
CNS, and the CI/CIV protein level, but not activity, was
measured. It is possible that inclusion of CNS markers or
enzymatic activities would yield additional associations.
CI/CIV protein and activity levels are highly correlated,79

and our results indicate that mitochondrial OXPHOS protein
levels in PBMCs account for considerable variance in
neuroimaging indices. Still, the adjusted R2 values (only
moderately large even for models showing significant asso-
ciations) suggest the influence of unmeasured factors. Ad-
ditional research must elucidate the causal relationship
between systemic mitochondrial PBMC dysfunction and
brain alterations, with consideration given to other possible
mechanisms by which HIV may affect the brain.

While regional brain volumetric decreases and callosal
degradation may promote neurocognitive decline, their im-
pact on functional outcomes was beyond the scope of this
paper. Larger comprehensive studies are required to deter-
mine the relationships between mitochondrial function,
brain structure, and cognitive/behavioral performance in
HIV-infected individuals. The interval between blood col-

lection and MRI varied across our participants, and mito-
chondrial assessments were done in bulk PBMCs and not
specifically within lymphocytes or monocytes and macro-
phages. Given that much of the CNS pathology in HIV in-
fection is believed to be monocyte/macrophage-mediated, it
will be important to conduct separate mitochondrial as-
sessments to determine the contributions of each cell type.
Finally, our sample size was restricted, although the study
was sufficiently powered to identify significant relationships
among variables of interest.

In summary, the present study revealed significant asso-
ciations between PBMC mitochondrial CI and CIV levels and
brain imaging markers in chronically infected HIV+ indi-
viduals, independently of cART regimen or age. Further
research is needed to define the role of mitochondrial dys-
function in development of brain abnormalities in HIV.
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