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Functional MRI (fMRI) studies reported disruption of resting-state

networks (RSNs) in several neuropsychiatric disorders. PET with
18F-FDG captures neuronal activity that is in steady state at a longer

time span and is less dependent on neurovascular coupling.

Methods: In the present study, we aimed to identify RSNs in
18F-FDG PET data and compare their spatial pattern with those
obtained from simultaneously acquired resting-state fMRI data in

22 middle-aged healthy subjects. Results: Thirteen and 17 meaningful

RSNs could be identified in PET and fMRI data, respectively. Spatial

overlap was fair to moderate for the default mode, left central executive,
primary and secondary visual, sensorimotor, cerebellar, and auditory

networks. Despite recording different aspects of neural activity, similar

RSNs were detected by both imaging modalities. Conclusion: The
results argue for the common neural substrate of RSNs and encourage
testing of the clinical utility of resting-state connectivity in PET data.

Key Words: brain connectivity; positron emission tomography;
independent component analysis; multimodal imaging; glucose

metabolism

J Nucl Med 2017; 58:1314–1317
DOI: 10.2967/jnumed.116.185835

Functional MRI (fMRI) studies posit the presence of resting-
state networks (RSNs), coherent blood-oxygen-level-dependent
(BOLD) signal fluctuations at rest in several neuroanatomic sys-
tems. These networks can be roughly subdivided into those sup-
porting higher order cognitive and lower order sensory and motor
functions. The former group includes the medial prefrontal-medial
parietal default mode network (DMN), frontoparietal central ex-
ecutive network (CEN), and cingulo-opercular salience network.
Such so-called neurocognitive RSNs (1) were repeatedly shown to

be altered in several neuropsychiatric disorders (2). Still, these find-
ings have found only limited applicability in clinical settings so far.
Among the main reasons discussed are a low signal-to-noise ratio
and reproducibility of findings at a single subject level (3).

18F-FDG PET has been widely used in clinical routine in the
field of dementing and movement disorders (4,5). Neurometabolic
coupling, the linkage of synaptic activity with glucose consumption
(6), is a key physiologic concept of brain function and the rational
basis of 18F-FDG PET (7). As compared with fMRI, 18F-FDG PET
captures neural activity that is in steady state at a longer time span
(minutes to hours) and is less dependent on neurovascular coupling.
These factors may contribute to the overall robustness of 18F-FDG
PET findings at a single subject level.
Although metabolic covariance patterns have been a relevant

research topic for a long time (8–10), RSNs could be identified in
18F-FDG PET data only recently (11,12). Yet, these studies either
focused on a single network (12) or were limited to PET modality,
whereas fMRI was performed in a different group of subjects (11).
Given a dynamic character of RSNs with their dependence on, for
example, the current cognitive state and mood of the person (13,14),
fMRI and PET-based RSNs may show a limited comparability if
acquired at different time points.
The aim of this study was to identify RSNs in 18F-FDG PET data

and to compare their spatial pattern with those obtained from simul-
taneously acquired fMRI data in the same group of healthy subjects.

MATERIALS AND METHODS

Details about subjects and data acquisition can be found elsewhere
(15). In brief, 22 healthy, right-handed subjects (15 men, 7 women;

mean age 6 SD, 54.5 6 10.0 y) were included in this study. The

participants gave written informed consent to undergo procedures

approved by the ethics review board of the Klinikum Rechts der

Isar, Technische Universität München. All subjects had no history

of psychiatric or neurologic conditions or use of psychoactive medi-

cations, and had no pregnancy or renal failure.

The participants were imaged at rest in a dimmed environment on a
hybrid PET/MR Siemens Biograph mMR scanner. PET data for the

present analyses were acquired in list-mode for 10 min 30 min after

injection with the following parameters: 128 slices (gap, 0.5 mm);

matrix size, 192 · 192; and voxel size, 3.7 · 2.3 · 2.7 mm3. Although

the PET data are typically acquired half an hour after injection, the
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image represents the state of cerebral glucose consumption at the time

of and immediately after the tracer injection. Accordingly, fMRI
data acquisition started together with a bolus injection of 175 6
12 MBq of 18F-FDG (15). Echoplanar imaging data were acquired
using the following parameters: repetition time, 2,000 ms; echo time,

30 ms; angle, 90�; 35 slices (gap, 0.6 mm); matrix size, 64 · 64; voxel
size, 3.0 · 3.0 · 3.0 mm3. Each measurement consisted of 300 acquisi-

tions in interleaved mode with a scan time of 10 min and 8 s.
The fMRI data have been preprocessed as in detail described

elsewhere (15,16) using the DPARSF toolbox (17). PET images were

spatially normalized to a study-specific 18F-FDG PET template (in the

Montreal Neurological Institute space) based on PET images of all study

subjects (18). As part of the normalization, PET images were resampled to

the voxel size of the echoplanar images of 3.0 · 3.0 · 3.0 mm3. Both

echoplanar and PET images were smoothed with a gaussian kernel of

12 mm in full width at half maximum. Independent component analyses

(ICA) were performed using the GIFT toolbox (19). Hereby, a series of

individual (n 5 22) PET images was analyzed together to identify com-

ponents that showed common subject covariation (12,20,21). As is appro-

priate for fMRI data, echoplanar images were subjected to group ICA (22).
Twenty components were extracted from both fMRI and 18F-FDG

PET data using the same brain mask. Because the PET dataset consisted

of 22 images (subjects), the maximal number of possible components

was 21. Spatial correlation maps were calculated and thresholded

with a z score of 2.0. The rating of components as meaningful or

noise was based on a visual reading. Meaningful components were

considered spatial maps with major clusters located in gray matter.

The overlap between binarized maps was quantified using the Dice

similarity coefficient. This well-established metric (23,24) measures

volume overlap between 2 regions divided by their mean volume. It is

interpreted as follows: ,0.2, poor; 0.2–0.4, fair; 0.4–0.6, moderate;

0.6–0.8, good; and .0.8, excellent agreement.
As part of a dedicated imaging protocol (15), 11 subjects were exam-

ined with eyes open, another 11 with eyes closed. To examine whether this

different condition influenced the results, ICA was in addition performed

within each subgroup separately (supplemental materials [available at

http://jnm.snmjournals.org]). Except for the lower number of indepen-

dent components (n 5 10) due to the smaller subject group, this analysis

was performed in a manner identical to the main analysis above.

RESULTS

Among 20 independent components, 13 were rated as meaningful
RSNs in PET data. In fMRI data, 17 meaningful networks were
identified. Ten similar RSNs could be found in both modalities, with
the right and left CENs being captured as one independent component
by PET (Fig. 1). Spatial overlap was moderate for primary visual,
sensorimotor, and DMN. A fair spatial overlap was found for second-
ary visual, cerebellar, left CEN, and auditory networks. Executive
control and right CEN overlapped in fMRI and PET data only poorly.
Seven RSNs were found exclusively in fMRI, whereas 4 were

found exclusively in PET data (Fig. 2). The former networks included
salience, spatial attention, (additional) primary visual, anterior DMN,
anterior insular, temporopolar, and lateral motor networks. PET-
based–only networks included a subcortical network covering the
putamen, thalamus, and brain stem and a network with clusters in
the ventral striatum. Further PET-based–only RSNs were (addi-
tional) secondary visual network and a network covering the me-
sial parietal and prefrontal cortex (Fig. 2). Noise components were
less common in fMRI (n 5 3) than in PET (n 5 7) data (Fig. 2).
In the separate analysis of subjects with eyes open and eyes

closed, the spatial similarity of the visual networks was overall
higher in the former subgroup (supplemental materials).

DISCUSSION

In the present study, a number of known RSNs could be identi-
fied in 18F-FDG PET data. Among them are the primary and second-
ary visual, sensorimotor, auditory, cerebellar, DMN, and CEN.
Spatial similarity of these RSNs with those extracted from fMRI
data in the same healthy subjects appeared to be overall modest.
However, given that the 2 imaging modalities record different aspects
of neural activity, the results do argue for the common neural substrate
of RSNs.
Overall, the RSNs as known from fMRI were less accurately

identified in PET data. That is, most networks consisted of clusters
that were smaller, worse separated from each other or contained
additional clusters. This observation is in line with previous
studies in both humans (11) and animals (25). Further, roughly each
third independent component (7/20) in the PET data appeared to be
noise or could not be classified. Although in a few of these compo-
nents (e.g., top and bottom in Fig. 2, Noise) major clusters were
located in the brain, they were too discrete to enable assignment to
a particular network. In contrast, only 3 noise components were found

FIGURE 1. Matched RSNs in fMRI and PET data with corresponding

Dice coefficients: primary visual posterior (A), DMN (B), primary visual

(posterior) (C), sensorimotor (D), secondary visual (E), cerebellar (F),

central executive right (G), auditory (H), executive control (I), central

executive left (J). Because right and left CENs were captured as 1 inde-

pendent component in PET data, G and J for PET are the same.
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in fMRI data. Correspondingly, a higher number of meaningful RSNs
could be extracted from fMRI than from PET data. As for the spatial
similarity between the matched networks, it was at best moderate.
The less accurate identification of RSNs in PET data as well as its

modest overlap with the fMRI-based network are not unexpected.
First, 18F-FDG PET and BOLD fMRI capture partly different aspects
of neural activity. While 18F-FDG PET directly measures activity-
dependent glucose consumption, BOLD signal stems from interplay
among cerebral blood flow, volume, and cerebral metabolic rate of
oxygen (26). Second, ICA on fMRI data assigns voxels to the same
component when they share similar temporal dynamics (i.e., covari-
ance of BOLD-signal fluctuations), whereas ICA on PET data assigns
voxels to the same component when they share similar energy levels

(i.e., normalized 18F-FDG uptake) across subjects. Hence, it is far from
obvious that similar RSNs can be detected by both imaging modalities.
As compared with fMRI, routinely acquired 18F-FDG PET data

represent an averaged snapshot of tracer uptake over a certain time
frame, typically 10–20 min, making a within-subject analysis of
(static) PET images such as those in a BOLD time series impos-
sible. ICA on such PET data thus identifies sources of intersubject
covariance, making the results noisier and stronger dependent
on the sample size. This is well in line with a previous study on
a comparison between first- and second-level ICA on fMRI data
(27). Specifically, the authors could extract the known RSNs from
the intersubject covariation among highly distilled features such as
amplitude maps. The results were noisier than those from the first-
level ICA, still yielding strikingly similar patterns of intrinsic
brain connectivity. It must be noted, however, that like fMRI
18F-FDG PET data can be acquired and analyzed dynamically
(28). Spatial similarity of RSNs extracted from such data—when
starting acquisition simultaneously with injection of 18F-FDG—
may be higher because of the contribution of a blood flow signal.
This interesting issue should be addressed by future studies.
The first attempt to extract RSNs from 18F-FDG PET data was

performed by Di and Biswal (11). In contrast to our study, they
quantified the networks from different groups of subjects and com-
pared them only visually. Still, they found many of the known RSNs
in the PET data. Interestingly, Di and Biswal had troubles identify-
ing neurocognitive networks with anterior–posterior connectivity,
for example, the left CEN (frontoparietal) and DMN. Our study
in part supports this observation. That is, the CEN could be identi-
fied in our PET data as a single map, with fair to poor spatial overlap
with the analogous fMRI-based networks. Although the DMN map
consisted of rather small clusters, the pattern was anatomically clear,
and the spatial correspondence with the fMRI-derived map was rel-
atively high. The less accurate identification of these RSNs in Di and
Biswal (11) may well be related to the fact that the image data under
their study were part of a multicenter project with 3 different acqui-
sition protocols (ADNI, http://www.adni-info.org). Besides, subjects
in the study by Di and Biswal (11) were substantially older (mean age,
77.2 vs. 54.5 y in our study). Previously, we could readily identify the
DMN in a group of young (mean age, 27.1 y) healthy subjects (12).
Apart from the dually detected RSNs, some networks were

identified exclusively in fMRI or PET data. Among 7 fMRI-only
RSNs, anterior insular and temporopolar do not belong to the
established ones. Three further RSNs, (anterior) primary visual,
lateral motor, and (anterior) DMNs are variants of those detected in
both imaging modalities (Fig. 1). Hence, the salience and spatial
attention networks as established ones could not be detected in the
present PET data. Of note, the salience RSN was described in Di and
Biswal (11). The discrepancy may be explained by a lower number
of subjects or components in the present work. On the other hand,
4 RSNs were identified exclusively in the PET data. Along with an
additional (secondary) visual RSN, there were 2 subcortical networks.
These may have been missed in the fMRI data, because basal ganglia
networks are reliably detected at a higher number of decompositions
(29). Although 3 of the PET-only RSNs above have been described in
the fMRI literature, we are not aware of any fMRI RSN encompass-
ing the mesial parietal and prefrontal cortex as a single cluster. In-
terestingly, a very similar component has been reported previously
(Fig. 1A (11); (30)). The latter study analyzed covariance in regional
gray matter density in a group of healthy subjects. Along with the
network above, the authors described frontal, posterior cingulate/
precuneus, visual, basal ganglia, and cerebellar networks. Thus, the

FIGURE 2. Unmatched (unique to either fMRI or PET data) RSNs and

noise components: salience (A), spatial attention (B), primary visual (anterior)

(C), anterior insular (D), temporopolar (E), lateral motor (F), (anterior) default

mode (G), basal ganglia (H), nucleus accumbens (I), secondary visual (J),

mesial parietal/prefrontal (K).
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number of fMRI-similar RSNs was lower than in our study, despite a
much larger cohort (n 5 603) (30). These observations may indicate

that the metabolic level of brain connectivity extends between struc-

tural and functional levels, expressing features of both. A biologic

significance of the “mesial” network is yet to be established.
This study has several limitations. Because of the limited sam-

ple size, a higher number of components (in PET data) could not

be calculated. For the same reason, we applied a rather liberal

z threshold of 2.0 for visualization and quantification, bearing a

risk of false-positives. Second, as part of the dedicated imaging

protocol subjects were studied under different conditions with

respect to visual perception, that is, with eyes open and closed

(15). That study found that glucose metabolism in the visual cortex

was higher in the eyes-open condition, contributing to a stronger

functional connectivity between the visual and salience networks

(15). Thus, this confound may have influenced the spatial similarity

between the visual networks in the present study. Indeed, our addi-

tional analyses revealed a stronger metabolic connectivity within the

visual network in the eyes-open condition (with no substantial dif-

ference in functional connectivity). Consequently, a higher similarity

between the PET- and fMRI-based visual networks was found in the

eyes-open subgroup. Finally, the Dice coefficient was used for the

quantification of a spatial overlap between PET- and fMRI-based

RSNs. This coefficient is a well-established measure of binary

similarity and the most used metric in evaluating 3-dimensional

medical image segmentation (31). Still, there are other similarity

coefficients in the field available (31), both binary and continuous,

that may have produced different results. Yet, this methodologic

issue lies beyond the scope of our paper.
Besides the neurobiologic significance and a contribution to the

developing field of cometomics (25), the present results may be of

clinical value. Namely, the network information as obtained through

ICA on PET data at the group level can be further used with diag-

nostic purposes at a single-subject level. This has been shown in many

PET studies applying principle component analyses (32) and recently

ICA (20,21). In particular, it is possible to calculate a degree to which

each individual subject/image contributes to a given pattern/network.

This so-called loading coefficient, as extracted from a single RSN or a

combination of networks, can be used for single-subject analyses, for

example, in a differential diagnosis of neurodegenerative disorders.

CONCLUSION

Despite recording different aspects of neural activity, similar
RSNs were detected in fMRI and 18F-FDG data. The results argue
for the common neural substrate of RSNs and encourage testing of
the clinical utility of resting-state connectivity in PET data.
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