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In Brief
Interactome studies are neces-
sary to understand cellular pro-
cesses and co-elution methods
are well suited for the simultane-
ous and global exploration of the
interactome, as well as the as-
sessment of biological perturba-
tions of the network. These
methods rely on the fundamental
idea that proteins from the same
complex migrate together during
fractionation. We review the dif-
ferent separation techniques
along with the quantification and
bioinformatic approaches used
for co-elution methods and pro-
vide design considerations to
choose between them.
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Next-generation Interactomics: Considerations
for the Use of Co-elution to Measure Protein
Interaction Networks*
Daniela Salas‡§, R. Greg Stacey‡, Mopelola Akinlaja‡, and Leonard J. Foster‡¶

Understanding how proteins interact is crucial to under-
standing cellular processes. Among the available interac-
tome mapping methods, co-elution stands out as a
method that is simultaneous in nature and capable of
identifying interactions between all the proteins detected
in a sample. The general workflow in co-elution methods
involves the mild extraction of protein complexes and
their separation into several fractions, across which pro-
teins bound together in the same complex will show sim-
ilar co-elution profiles when analyzed appropriately. In
this review we discuss the different separation, quantifi-
cation and bioinformatic strategies used in co-elution
studies, and the important considerations in designing
these studies. The benefits of co-elution versus other
methods makes it a valuable starting point when ask-
ing questions that involve the perturbation of the
interactome. Molecular & Cellular Proteomics 19: 1–10,
2020. DOI: 10.1074/mcp.R119.001803.

Cellular functions and responses are coordinated by pro-
teins working in concert through networks of protein-protein
interactions (PPIs)1, often involving higher-order complexes.
Understanding the architecture of this interactome from a
dynamic, topological and quantitative perspective is key to
discerning biological processes and their involvement in dis-
ease (1–4).

There are numerous techniques available for studying PPIs
(5–12). These have evolved from the classic yeast two-hybrid
(Y2H) method to mass spectrometry (MS) approaches based
on the co-purification of interacting proteins. Currently, the
most widely used technique is affinity purification (AP-MS),
thanks to its simplicity and improvements made in quantifi-
cation and data analysis (13, 14). BioID is a novel strategy (15)
that has rapidly found a niche with important applications,
despite the method still evolving (16). For a systems-level
analysis, the ideal interactome mapping method should be
high-throughput, quantitative, simple, physiologically relevant
and give information about stoichiometry, topology and dy-
namics. However, current techniques show limitations in at

least a few of these characteristics so the key is to use
complementary methods to corroborate results. One ap-
proach particularly useful for exploratory studies are co-elu-
tion methods.

Co-elution or co-fractionation methods are collectively a
global approach used to simultaneously study the whole in-
teractome (as opposed to piece-by-piece, as in AP-MS) and
will be the focus of this review. Co-elution methods all rely on
separation of protein complexes under native conditions, with
the fundamental idea being that proteins belonging to the
same complex co-elute or migrate together during separation,
showing the same migration profile (Fig. 1A). Co-elution strat-
egies were originally introduced to assign proteins to the
same subcellular localization if these displayed similar profiles
across a density gradient (17–19). More recently, this method
has been adapted to detect protein interactions, using chro-
matography (20, 21) or blue-native polyacrylamide gel elec-
trophoresis (22) (BN-PAGE) to generate high-resolution elu-
tion profiles for thousands of proteins. The analysis of co-elution
data involves plotting the MS1 intensities of proteins across
many fractions, matching and scoring those profiles to detect
binary protein interactions and provide an interactome map
from those interactions (Fig. 1B). Current advances in the anal-
ysis of co-elution data include the development of a bioinfor-
matics pipeline (PrInCE) (23) and the software toolkit EPIC (24),
both freely available. In this review we discuss the comparable
advantages of co-elution, the different separation strategies
used and design considerations with an emphasis on the sep-
aration method, quantification and data analysis.

Existing Co-elution Strategies Are Well-suited for Global
Exploratory PPI Studies When Compared with Other Meth-
ods—The main comparative benefit of co-elution strategies
(Table I) is that hundreds to thousands of protein complexes
can be simultaneously and rapidly analyzed in a single exper-
iment (25). Because the primary measurement in these exper-
iments is the abundances of thousands of proteins across the
elution gradient, rather than a focus on bait proteins, co-
elution studies scale much more easily than Y2H or AP-MS
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(26). Thus, co-elution can identify all the interactors for many
proteins simultaneously, as well as to identify when a single
protein participates in multiple complexes (6), which is more
difficult to determine by AP-MS. A similar and recently devel-
oped complementary approach to co-elution is thermal pro-
teome profiling (TPP), which can provide the proteome-wide
detection of protein complexes and their rearrangements (27,
28) but is based on comparing protein melting curves instead
of co-elution profiles.

An added attraction of co-elution studies is that the gener-
ated interactome should be more physiologically relevant than
results from studies involving protein tagging because modi-
fying proteins can perturb endogenous interactions by the
presence of the tag or overexpression of the bait (5, 10). In

this sense, co-elution is similar to immunoprecipitation-type
AP-MS studies, where proteins are purified with an antibody
against the bait itself, rather than an added epitope, but
co-elution is not dependent on the existence of a specific and
high affinity antibody (8, 10). In AP-MS, the bait is fused to an
affinity tag allowing the purification of this bait and its inter-
acting partners without the need for a specific antibody, but it
still relies on the fusion step.

Co-elution studies take considerably less time and re-
sources than an equivalently scaled AP-MS study, so repli-
cates can be conducted more easily. This also means that
biological perturbations of the network can be measured. This
has so far only been done globally using SILAC (20, 29), but in
principle could also be accomplished using label-free quan-
titation. Improved quantitation in AP-MS has allowed the
comparison of proteins that co-purify with a bait protein under
normal and perturbed conditions in a quantitative manner
(13), but not nearly at the scale enabled by co-elution.

The various interactome methods provide fundamentally
different types of information. Co-elution, at its heart, identi-
fies binary interactions, but these interactions do not neces-
sarily represent direct physical connections, and can include
proteins that co-elute because they are members of the same
complex but not in direct physical contact (Table I, “Indirect”
interactions). AP-MS targets only the complexes co-purified
with a specific protein. The BioID method is similar in that it
focuses on the potential interactors of a specific protein.

1 The abbreviations used are: PPIs, protein–protein interactions;
Y2H, yeast two-hybrid; MS, mass spectrometry; AP, affinity purifica-
tion; BioID, proximity-dependent biotin identification; BN-PAGE,
blue-native polyacrylamide gel electrophoresis; PrInCE, prediction of
interactomes from co-elution; EPIC, elution profile-based inference of
complexes; SEC, size-exclusion chromatography; IEX, ion-exchange
chromatography; HIC, hydrophobic interaction chromatography;
SAX, strong anion exchange; WAX, weak anion exchange; WCX,
weak cation exchange; iTRAQ, isobaric tagging for relative and ab-
solute quantitation; TOF, time of flight; MS/MS, tandem mass spec-
trometry; SILAC, stable isotope labeling by/with amino acids in cell
culture; SWATH-MS, sequential windowed acquisition of all theoret-
ical fragment ion mass spectra; SILAM, stable isotope labeling of
mammals; CORUM, comprehensive resource of mammalian protein
complexes; TPP, thermal proteome profiling; TMT, tandem mass tag.

FIG. 1. Schematic of the steps commonly involved in co-elution methods. A, General workflow of a co-elution experiment. The lysed
sample containing protein complexes under native conditions is separated in a set number of fractions. Proteins from the same complex show
the same co-elution profile after a bioinformatic analysis to extract an interactome map. B, Co-elution data representative from an experiment
where lysed HeLa cells were fractionated by size exclusion chromatography (SEC), quantified by MS/MS, and finally used to construct an
interactome network through data analysis.
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However, the candidates identified can be direct or indirect
interactors, and/or vicinal proteins that do not physically in-
teract with the fusion protein (15).

False positive interactions are a problem for all PPI tech-
nologies, to a greater or lesser degree. In co-elution strate-
gies, functionally unrelated complexes can co-elute, leading
the user to conclude that all the component proteins interact
and thus manifesting as false positives. Therefore, co-elution
results should be regarded with caution. Potential novel com-
plexes provide a good seed for follow-up analyses to obtain
more detailed and high confidence biochemical information.
These types of false positives can be mitigated by using as
high resolution separation conditions as possible. The use of
multiple orthogonal separation strategies can also decrease
the effect of co-elution by chance. Targeted complex quanti-
fication should also be helpful for follow-up experiments. In
addition, rigorous bioinformatic analyses lower the chances of
predicting false positive interactions.

The chromatograms or electropherograms generated in co-
elution studies can also be used to quantify the relative dis-
tribution of a protein into multiple different protein complexes.
That is, if one protein participates in more than one complex,
the relative amounts of those different complexes can be
derived. This can yield information about the dynamics of
PPIs as substoichiometric interactors will, e.g., more likely be
dynamic partners in the complex (5, 30).

When compared with other methods, co-elution stands out
as a global approach capable of producing vast information of
the interactome. It is therefore particularly suited for explora-
tory studies that can later be validated with complementary
approaches.

Separation Strategies Used for Co-elution—In co-elution
studies, tissues or cells are lysed to extract protein complexes
that are subsequently fractionated under conditions that are
designed to preserve the PPIs within the complexes. Different
separation techniques have been used for fractionation, in-
cluding size-exclusion chromatography (SEC), ion-exchange
(IEX) and hydrophobic interaction chromatography (HIC), and
BN-PAGE (Table II) (7). Protein complexes can also be sepa-

rated according to their sedimentation rate or isoelectric point
by fractionating in sucrose gradients (31) or native capillary
isoelectric focusing (IEF) (32). However, considering that su-
crose gradients have low resolution and IEF is mostly coupled
to native MS and can be challenging for whole lysates, we
recommend the use of these for orthogonal separations or
complementary experiments.

An early proof-of-principle study (32) demonstrated how
E. coli polypeptides from protein complexes had the same
elution profile through multiple orthogonal chromatographic
steps (including IEX, HIC and SEC) performed successively. A
simpler approach using only SEC (33) provided a biologically
relevant map of soluble chloroplast-localized complexes of
Arabidopsis thaliana, showing the potential of the approach
for interactome study. The use of SEC in global monitoring of
protein complexes was limited until the introduction of the first
co-elution study using SILAC and SEC (20). The same year,
Havugimana et al. (21) used multiple orthogonal separations
including weak-anion exchange and mixed-bed ion ex-
change, sucrose gradient centrifugation and IEF. This strategy
was later used to examine complexes among diverse meta-
zoan models, studying eight different organisms in total (34).

Current co-elution studies are mostly based on the two
previously mentioned approaches using SILAC-SEC (20) or
label-free-IEX (21), with some variations but keeping the basis
of co-elution (35–38). E.g., some SEC studies have used
label-free quantification approaches instead of SILAC (38),
including SWATH-MS (37). Recently, both SEC and IEX were
used in parallel to separate the same samples and obtain an
overlapping data set to hopefully reduce the confounding
effect of chance co-elution (39). A recent study was based on
the IEX approach but using SILAC instead of label-free quan-
tification to monitor interactome changes following perturba-
tion assays (40) using a single mixed-bed exchange column
rather than two columns in series as originally.

One downside of previous co-elution methods is that they
only target soluble complexes and do not focus on membrane
complexes (29, 41, 42), as lysis is done under mild, complex-
preserving conditions. To allow the study of soluble and mem-

TABLE I
Comparison between co-elution approaches and other commonly used strategies to detect protein-protein interactions

Co-elution Y2H-based AP-MS IP-MS BioID

“All-to-all” interactome � � � � �
High-throughput � � � � �
Protein tagging � � � � �
Study different biological contexts � � � � �
Type of interactions

Direct � � � � �
Indirect � � � � �
Proximal � � � � �

Selectivity � � � � �
Same protein in multiple complexes � � � � �
In vivo � � � � �
Suited for weak/transient interactions � � � � �

Co-elution for interactomics
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brane-bound complexes of entire mitochondria, Heide et al.
(22) used BN-PAGE and large-pore BN-PAGE after digitonin
solubilization. With this approach, they also resolved large
complexes (up to a molecular mass of 30 MDa) that cannot be
resolved by SEC. More recently, Scott et al. (29) also used the
BN-PAGE approach for fractionation instead of SEC, as an
adaptation of the SILAC-SEC method (20). Other methods
have used fractionation after detergent solubilization, includ-
ing SEC or IEX (43–45). Detergent-free solubilization strate-
gies have been recently introduced to improve the study of
membrane proteins, where amphipathic scaffold proteins (46)
or bi-helical peptides (41) wrap around the hydrophobic parts
of the target membrane protein and shield them from the
aqueous solution.

Design Considerations

Choice of Separation Method—Perhaps the first question to
ask when designing a co-elution protocol is which type of
proteins are the focus of study: soluble or membrane proteins.
The mild, detergent-free lysis conditions at neutral pH and
physiological salt concentration used to preserve protein
complexes are not suitable to solubilize membrane com-
plexes because of their hydrophobicity (47). Beside the solu-
ble cytosolic protein complexes, these conditions extract sol-
uble intra-organellar protein complexes such as nuclear,
mitochondrial and lysosomal ones. Thus, for initial and explor-
atory investigations, the soluble interactome provides a large
map of the biological processes of an organism (20, 21).
However, membrane proteins are involved in important cell
processes and they can be the focus of study. Some studies
have used mild and non-denaturing detergents to solubilize

membrane complexes, which are then separated by SEC or
BN-PAGE (22, 45). However, the use of detergent in SEC or
IEX deteriorates separation because detergent micelles can
bound proteins (29, 48) or interfere with solvent access to
charged proteins. Instead, BN-PAGE has the advantage of
being an established method for membrane protein separa-
tions and has proved to be well suited for co-elution interac-
tome studies (29). A recent co-elution method used in vivo
formaldehyde protein crosslinking with denaturing SEC sep-
aration which identified membrane and membrane-associ-
ated protein complexes compared with the only-soluble-
complexes approach (49). No current method allows the
simultaneous study of native soluble and membrane proteins
as mild detergents can disrupt soluble PPIs. However, new
detergent-free technologies to solubilize membrane proteins
might lead to a global method (41). Potentially, the use of
crosslinking could also help overcome the limitation of co-
elution (shared with other lysis-based methods) of possibly
missing important transient and weak interactions. However,
this adds a layer of complexity to the bioinformatics analysis
involving the identification of crosslinked peptides.

In theory, soluble proteins can be effectively separated in
any type of chromatography that allows separations in aque-
ous conditions with proper column dimensions to accommo-
date protein complexes. Traditional reversed-phase or hydro-
philic interaction LC require the use of organic solvents that
denature proteins and disrupt PPIs. The biggest advantage of
SEC is precisely that separations can be performed under
aqueous and isocratic conditions, as separation only depends
on the hydrodynamic volume of the complexes (SEC columns
have pores of different sizes where small hydrodynamic vol-

TABLE II
Comparison between co-elution separation strategies: SEC, IEX, HIC, BN-PAGE

Separation
technique

Stationary
phase

Separation
principle

Mobile
phasea

Benefits/
Drawbacks

Applications

SEC Material with
different pore sizes
(silica, polymeric or
cross-linked agarose)

Hydrodynamic
size

Millimolar
salt buffers
at neutral pH

Less buffer requirements,
isocratic/Modest
resolution

Soluble
complexes

IEX Material with ionic
groups (silica-based
or polymeric) with
SAX, WAX, WCX or
mixed-bed (WAX &
WCX) properties

Salt gradient Increasing
molar salt
gradient (NaCl) at
neutral pH

Higher resolution,
more chemistries
available/Higher salt
concentrations required

Soluble
complexes

HIC Hydrophobic Salt gradient Decreasing
molar salt
gradient (e.g.
(NH4)2SO4)
at neutral pH

Higher salt
concentrations
required

Multiple
orthogonal
separations

BN-PAGE Polyacrylamide
gel

Electrophoretic
mobility

Coomassie
blue G, salt
buffers

Not limited to
soluble complexes/
Less reproducible

Membrane
protein complexes

aSalts commonly used for buffers: NaCl, HEPES, KCl, MgCl2, Tris, PBS, NaCH3COO, NaN3, (NH4)2SO4. May contain additives like proteases
inhibitors, dithiothreitol or glycerol.

Co-elution for interactomics

4 Molecular & Cellular Proteomics 19.1



umes equilibrate more often than large ones and therefore
smaller complexes elute later (48)). The mobile phase can be
the same buffer used for lysis at neutral pH and physiological
salt concentration. One downside of SEC is that it has modest
resolution and is thus prone to co-elution by chance. One way
to increase resolution in SEC separations (applicable to any
LC) is to use two long columns (300 mm) in series.

IEX separation is based on the charge attraction between
column and protein, which carries surface charges depending
on their isoelectric point and buffer pH. Salt concentration is
controlled to drive the actual separation by ion displacement
of immobilized proteins by mobile phase ions. Compared with
SEC, IEX might show enhanced retention and therefore more
characteristic profiles. There are also more columns available
with different chemistries. However, the increased salt con-
centration required for separation might disrupt some PPIs.
To minimize this, shallow salt gradients are used to not per-
turb nonionic protein associations and maintain non-denatur-
ing conditions. In HIC, separation is also driven by salt con-
centration, where high concentrations reduce solvation of
proteins, promoting interaction of the protein’s hydrophobic
parts with the hydrophobic stationary phase. HIC requires
higher salt concentrations to promote retention, which is why
HIC is less used than other chromatographies (50, 51).

As mentioned before, several studies have combined sev-
eral of the above techniques in sequence or in parallel to
obtain multiple orthogonal fractionation (21, 32, 34, 39). The
main advantage of these approaches is that complexes that
might be lost by one strategy can be rescued by another one
(e.g. salt in IEX may disrupt some complexes that can be
rescued by SEC). Multiple separations also further separate
protein complexes that might be poorly resolved by a
single separation. These methods are however time-consum-
ing, and they still require validation experiments by comple-
mentary approaches.

LC stationary phases require a suitable column (typically
high resolution, analytical-grade), particle and pore dimen-
sions to separate protein complexes with high efficiency.
Large biomolecules require large pore sizes to allow unre-
stricted diffusion inside the pores and larger columns with
smaller particles (e.g. 500Å, 300 mm, �5 �m) give narrower
peaks, with limits imposed by separation time, column back-
pressure and material synthesis (52, 53). Material technology
for chromatography is constantly introducing advances,
which are applied to biomolecules, such as mixed-mode ma-
terials or superficially porous particles, and co-elution meth-
ods could benefit from them to achieve faster and more
efficient separations (54, 55). To achieve faster separations,
temperature is also controlled, often set at room or higher
temperatures. However, for protein complexes keeping the
temperature during separation (and sample handling) lower
(e.g. work on ice, LC separations �10 °C) is critical for com-
plex stability. The use of low temperatures also prevents
protein aggregation when the sample is concentrated to a

suitable volume for LC injection. The absence of large mac-
romolecules eluting at void-volume in SEC are evidence of
absence of protein aggregation. Column dimensions and sep-
aration conditions will determine overall separation resolution
and, in turn, this determines the optimum number of fractions
that should be collected to obtain adequate co-elution data.
Narrow peaks are desired because it gives characteristic elu-
tion profiles that can be more effectively compared for co-
migration data. However, narrow peaks can also go unde-
tected if they are only spread across one or two fractions. The
solution to this could be to collect a larger number of frac-
tions, but this comes at the cost of more sample preparation
and increased MS analysis time.

Once protein complexes are fractionated their stability as
complexes is not important and the goal is to digest the
proteins adequately for peptide LC-MS/MS analysis. The
sample handling considerations for this step are the same as
for any MS-based proteomics procedure. Nevertheless, it is
important to mention here that digestion procedures free of
detergents, salts and contaminants produce clean samples
that are key to maximize protein identification.

Quantitative Approaches—Some form of quantitation is re-
quired to generate chromatograms or electropherograms
from co-elution data and, thus, the choice of the quantitation
method is important. The main approaches used to quantify
co-elution data are SILAC and label-free methods, both fre-
quently used in normal MS-based proteomic workflows.
Much has been written about the comparative advantages of
both quantification strategies (56–58) and those apply to co-
elution workflows. SILAC provides accuracy and consistency
across different samples as the metabolic labels are intro-
duced during cell culture, allowing normalization to be done at
an early stage in the sample handling. SILAC also saves a
significant amount of sample preparation time as different
conditions can be pooled into one sample for simultaneous
analysis (58). For co-elution, these benefits are key, as high
accuracy across fractions is achieved and the introduction of
a third channel allows the study of interactome rearrange-
ments on perturbation.

A common misconception about SILAC is that it is expen-
sive. Although it is true that SILAC reagents add cost to an
experiment, the increased accuracy in quantitation means
that fewer fractions or samples are required to get equivalent
data, and thus much less instrument time (which also has a
cost) is needed. One caveat to using SILAC is that there are
certain biological systems that cannot be easily labeled met-
abolically, such as primary cells, clinical samples or most
whole organisms. The applications of SILAC are still vast,
being compatible with numerous cell lines and, though costly,
whole organisms (stable isotope labeling of mammals, SILAM
(59)) so long as they are not large or unrealistic.

Global interactome studies have been conducted involving
heterologous expression of genetically manipulated cell lines
which raises the question of how physiologically relevant the
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results obtained are. Skinnider et al. recently produced a
SILAM mouse for tissue interactome study (60) of seven
mouse tissues to map tissue-specific mammalian interac-
tomes. Despite being experimentally challenging, these types
of studies yield interactome maps that are more relevant.

SILAC limitations have also been addressed by producing a
SILAC-labeled spike-in standard (61), where a SILAC sample
is prepared separately in a compatible material and is added
as a reference to each of the experimental samples. This
method allows a SILAC-like quantification for SILAC incom-
patible samples and is an alternative to whole-organism la-
beling. Spike-in SILAC could be applied to co-elution, but the
same as with label-free approaches, different physiological
conditions cannot be pooled for simultaneous MS analysis.

In theory, other labeling approaches like isobaric labeling
(i.e. iTRAQ or tandem mass tag, TMT) could be used in
co-elution approaches to minimize MS analysis time. This
could be particularly useful for multiple separation ap-
proaches (32). However, pooling samples is the only advan-
tage facing several disadvantages, including that normaliza-
tion is done at a late stage (after protein digestion), sample
handling is increased and data analysis becomes more chal-
lenging.

As previously mentioned, label-free approaches have also
been successfully used to quantify co-elution data sets (21,
34, 35, 37, 38, 62, 63). Both available label-free methods,
spectral counting from MS/MS scans or MS1 precursor ion
intensities, have been used for this purpose, employing ap-
propriate software (e.g. PepQuant (62) and MaxQuant (57)).
Label-free methods are arguably simpler and have no sample
limitations. While SILAC can compare up to two conditions in
perturbation studies, label-free has virtually no limits. This
strategy is therefore quite useful for quantification across
larger comparison sets (�2 and up to 10s of biological con-
ditions). In these cases, data-independent acquisition (DIA or
SWATH-MS) is another alternative that has already been ap-
plied to co-elution studies (37). However, this comes with a
significant increase in sample preparation and MS analysis
time and, in the case of SWATH, additional computational
challenges.

Data Analysis for Co-elution Profiling Studies—A distinct
advantage of co-elution studies over other high-throughput
methods is that they can detect PPIs between all proteins
identified in a sample (“all-to-all”, also known as the matrix
model (64)). Other high-throughput methods are limited to
detecting interactions between two tagged or labeled proteins
(“bait-to-bait”) such as Y2H, or between a tagged protein and
any other (“bait-to-all”, also known as the spoke model) such
as BioID (Fig. 2A). This increased number of potential inter-
actions can result in a combinatorial explosion, however. For
example, a co-elution data set can contain millions of poten-
tial interactions, only thousands of which are likely to be real.
Analyzing co-elution data sets, therefore, often involves sep-

arating true interactors from a background of spurious false
positives through bioinformatic analysis.

Although there are many workflows for analyzing co-elution
data, it is common to use co-elution data to generate a list of
pairwise PPIs (i.e. an interactome), typically done via a ma-
chine learning classifier (21, 23, 26, 34, 42, 65, 66). In this
analysis, the strength of co-elution is measured for every pair
of proteins using a variety of metrics (Fig. 2B). Across pub-
lished studies, we count eleven metrics used to evaluate the
co-elution strength of pairs of proteins (Fig. 2C). These fall into
five general categories: correlational metrics, such as
weighted cross-correlation and Pearson correlation strength
between raw and cleaned elution profiles (23, 34), sometimes
with the addition of Poisson noise (21, 23, 34); co-apex meas-
ures, that attempt to quantify whether two proteins share an
elution peak (21, 23, 34, 67); mutual information (67); the
degree to which proteins are quantified in the same fractions,
measured with the Jaccard index (67); and Euclidean distance
(23, 34). Fig. 2C shows how these metrics perform when
predicting interactomes using a single metric (PrInCE, default
parameters). In general, we find that correlational metrics
such as Pearson R and weighted cross-correlation that use
quantified protein amounts are more informative than meas-
ures that just detect if proteins are quantified in the same
fractions (Jaccard and co_fraction), although each metric dif-
fers between data sets. In practice, multiple metrics are used
to better differentiate between true interactors and spurious
pairs, because truly interacting protein pairs should score
highly in most measures.

Using a gold standard reference of known protein com-
plexes (e.g. CORUM (68)) to label a subset of pairs in a data
set as known PPIs or known non-interactors, it is possible to
estimate the probability that any given protein pair is interact-
ing. That is, combined with a gold standard reference, clas-
sifiers assign an interaction score to all protein pairs, with
high-scoring pairs more closely resembling known PPIs. Fi-
nally, to arrive at an interactome, it is typical to take all protein
pairs whose score is greater than a threshold as predicted
PPIs. This threshold is typically chosen such that the ratio of
true positives to false positives in the interactome, which are
derived from the gold standard, satisfies a given FDR. There-
fore, the task of finding pairwise PPIs in a co-elution data set
can be framed as separating truly interacting protein pairs
from a large background of non-interacting pairs. As an op-
tional step, the resulting interactome can be clustered into
protein complexes using a network-based clustering algo-
rithm (34, 66), such as ClusterONE (69). Although it can be
difficult to assess the quality of clusters, at least in part
because metrics for measuring the similarity between clusters
have biases and display non-intuitive behavior (70), a number
of studies find differences in robustness between algorithms
(71, 72), with MCL performing relatively well (73). Additionally,
Nepusz et al. (69) show that clustering weighted networks can
be more robust than unweighted.
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Free classifier-based bioinformatic tools exist for co-elution
data (23, 24). These tools can be used as both standalone
executable programs, where data is loaded and output files
and figures are generated, and as R packages. Parameters to
take note of when using these tools are the number of quan-
tified proteins in a data set (ideally greater than 500), the
number of missing values in the data set, and, primarily, the
width of elution peaks, because elution profiles with poor
resolution (“wide” peaks) will be poorly distinguishable and
yield more spuriously correlated pairs. For example, we find
that in data sets with 50 fractions, elution peaks should have
a full width at half maximum of no more than 10 fractions.

Although classifier-based data analysis is common, there
are many ways to treat co-elution data. For example, it is also
common to cluster co-elution data into groups of similar
profiles, as these groups can represent protein complexes
(22, 47). Clustering like this does not require a gold standard,
although reference complexes can be used to select an op-
timal number of clusters (47) and to validate the plausibility of
the clustered proteins (74). Data analysis methods discussed
so far identify novel and known interactions, often focusing on
PPIs with complex prediction as a downstream analysis. In
contrast, “complex-centric” approaches (37) start with known
protein complexes (e.g. CORUM) and assess whether mem-
bers of a known complex are co-eluting. Although this ap-
proach does not detect novel PPIs, it does detect novel
subunits of complexes and assembly intermediates. CCPro-
filer is a free software for complex-centric data analysis (37).

An important consideration for both classifier-based and
complex-centric methods is the choice of reference com-
plexes (“gold standards”). Gold standards do not exist for all
organisms, and although proteins from non-model organisms
can be mapped to model organism proteins, this can intro-
duce errors because orthologs between organisms do not
necessarily interact with the same partners. Therefore, co-
elution analysis often works best on human data sets, or data
sets from other well-studied organisms. A further issue re-
garding gold standards is that many protein interactions only
occur under certain conditions (75). Therefore, it can be ben-
eficial to tweak gold standards so that they more accurately
reflect individual experiments (76). Another caveat pertains to
including external data as evidence of interaction, such as
including a protein pairs’ tendency to co-express (21, 34, 35,
49). Although this can help filter out spuriously co-elution
proteins, it can also bias results toward highly-studied pro-
teins and away from less-well-studied and/or harder to iden-
tify proteins (77).

CONCLUSIONS

Co-elution can investigate all the existing interactions be-
tween all the proteins quantified in a given sample whereas
other methods focus on a protein’s interactions at a time. In
addition, it does not use protein tagging, gives quantitative
information (including relative amounts of different complexes

with a common protein), and, when combined with SILAC,
provides interactome rearrangement information on perturba-
tion in record time. Depending on whether soluble or mem-
brane complexes are the focus of study, the separation
strategy changes from SEC or IEX to BN-PAGE or mild de-
tergent-based separations, but the introduction of recent
membrane protein solubilization strategies might produce
global approaches. To a large extent, the system under study
defines the quantification strategy to use. SILAC, label-free
and other methods are available depending on the cell line or
tissue and whether the goal is to find new interactions or study
the interactome under different physiological conditions. One
important consideration of co-elution experiments is that they
typically require sophisticated bioinformatic analyses, be-
cause co-elution analyses often compare all pairs of proteins
quantified in a sample, and this number is large (millions) for
modern data sets. Further, classifier-based analyses of co-
elution data require gold standard databases of known pro-
tein complexes, a requirement which is not met for all
organisms. Co-elution is a powerful tool for uncovering interac-
tomes, and it provides many advantages over existing high-
throughput interactome mapping technologies. In the future, we
believe co-elution studies should move toward maximizing
quantitation accuracy, lowering quantification limits and in-
creasing separation resolution. This would allow the study of the
interactome beyond the protein level (e.g. post-translational
modifications) and the use of less sample amount, translating in
lower costs and sustainable methods. Automatization of sample
digestion would also improve the technique greatly, to alleviate
the time-consuming analysis of multiple (�2) conditions.
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