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digm, which will provide pro-
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Jérôme D. Duquette§, Ian Mongrain�**, Eric W. Deutsch‡‡, Bjoern Peters§§,
Alessandro Sette§§, Isabelle Sirois§, and Etienne Caron§¶¶��

The science that investigates the ensembles of all peptides
associated to human leukocyte antigen (HLA) molecules is
termed “immunopeptidomics” and is typically driven by
mass spectrometry (MS) technologies. Recent advances in
MS technologies, neoantigen discovery and cancer immu-
notherapy have catalyzed the launch of the Human Immu-
nopeptidome Project (HIPP) with the goal of providing a
complete map of the human immunopeptidome and mak-
ing the technology so robust that it will be available in every
clinic. Here, we provide a long-term perspective of the field
and we use this framework to explore how we think the
completion of the HIPP will truly impact the society in the
future. In this context, we introduce the concept of immu-
nopeptidome-wide association studies (IWAS). We highlight
the importance of large cohort studies for the future and
how applying quantitative immunopeptidomics at popula-
tion scale may provide a new look at individual predisposi-
tion to common immune diseases as well as responsive-
ness to vaccines and immunotherapies. Through this vision,
we aim to provide a fresh view of the field to stimulate new
discussions within the community, and present what we
see as the key challenges for the future for unlocking the full
potential of immunopeptidomics in this era of precision
medicine. Molecular & Cellular Proteomics 19: 31–49,
2020. DOI: 10.1074/mcp.R119.001743.

“Treatment without prevention is simply unsustainable.”
Bill Gates

A RATIONALE FOR THE IWAS PARADIGM

The Human Genome Project was a major milestone in the
life sciences (1, 2). First-completed twenty years ago, this
mind-shifting project has changed and will continue to
change the way we practice medicine. Historically, physicians

have largely focused on treating disease already in progress,
but modern medicine is now progressively shifting from dis-
ease treatment to disease prevention based on an individual’s
risk (3). The past two decades have seen an enormous suc-
cess of wide-scale studies in identifying genetic variants that
predict an individual’s predisposition to common diseases (4).
In fact, robust, rapid and inexpensive identification of func-
tional genetic variants in individuals is now enabling predic-
tive, preventive and personalized medicine approaches (5–7).
Since the first report of single-nucleotide polymorphisms
(SNPs)1 analyzed for association with myocardial infarction by
genome-wide association studies (GWAS) in 2002 (8), the
GWAS Catalogue resource has now grown to contain tens of
thousands of SNPs associated with hundreds of common
diseases (9). In this post-GWAS era, the HLA has been es-
tablished as the region of the genome that is associated with
the greatest number of human diseases (10). In fact, popula-
tion studies of diverse ancestries have identified hundreds of
susceptibility loci within the HLA region that predispose indi-
viduals to immune diseases (11–18). Most HLA disease asso-
ciations that were reported over the last 50 years are related
to the immune system, but the exact mechanisms driving the
associations remain largely elusive.

The HLA is divided into two main subclasses: class I, which
include the classical HLA-A, HLA-B and HLA-C molecules, as
well as the nonclassical HLA-E, HLA-F and HLA-G molecules;
and class II, which includes HLA-DPA1, HLA-DPB1, HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, and HLA-DRB5
molecules (Fig. 1A) (19). To date, more than 23,000 different
classical HLA alleles have been identified (https://www.ebi.
ac.uk/ipd/imgt/hla/stats.html) and this number may keep
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climbing up to nearly 8–9 million HLA variants (Fig. 1B) (20).
The role of HLA molecules is to present a repertoire of pep-
tides at the cell surface for T-cell recognition. The non-ran-
dom amino acid composition of those peptides is restricted
by length, generally between 8 and 12 (can be up to 15) amino
acids for class I and between 13 and 25 amino acids for class
II, and by the presence of allele-specific binding motifs (21).
Therefore, the nature of those peptides and the extreme di-
versity of HLA alleles at the population level greatly enhances
the complexity of the peptide repertoires, which are collec-
tively termed as the human immunopeptidome (22, 23).

T cells scan the HLA immunopeptidome and seek for “ab-
normal” peptides that originate from metabolic perturbations,
pathogenic sources or neoplastic transformations (24–28).
Those abnormal cells are then eradicated once engaged by T
cells. The extreme diversity of the human immunopeptidome
maximizes the probability that at least some individuals within
the world population can mount a T-cell attack against an
emerging infection and survive (29). This is exemplified by the
HIV epidemic and evidences that HLA-B57 individuals are
more likely protected against HIV (30, 31). However, such

evolutionary advantage comes with the price of disease sus-
ceptibility. In fact, individuals expressing specific HLA alleles
are more susceptible to suffer from specific auto-inflamma-
tory and autoimmune diseases. For instance, birdshot chori-
oretinopathy was shown to be associated with HLA-A29,
ankylosing spondylitis with HLA-B27, Behçet’s disease with
HLA-B51 and psoriasis with HLA-C06. Combinations of en-
doplasmic reticulum aminopeptidases (ERAP) 1 haplotypes,
involved in trimming HLA-associated peptides, are also risk
factors for these diseases in people that have specific HLAs
(e.g. HLA-B27*05) (32–35). Moreover, an increasing number of
GWAS results indicate that amino acid polymorphisms asso-
ciated with immune diseases are likely affecting binding af-
finities of peptides within the groove of HLA proteins, and
thus, affecting the repertoire of peptides presented to T cells
that are capable of triggering or perpetuating human diseases
(10, 12, 19, 36–45). Interestingly, those evidences obtained
from GWAS, meta-analysis and HLA region fine-mapping
studies point toward a fundamental role of the immunopep-
tidome in driving human diseases. We highlight below four
cases of such studies: (1) in allergic rhinitis, the most common
clinical presentation of allergy affecting 400 million people
worldwide, a recent meta-analysis including 59,762 cases
and 152,358 controls from European ancestry, confirmed in a
replication phase of 60,720 cases and 618,527 controls, indi-

1 The abbreviations used are: SNP, single-nucleotide polymor-
phisms; GWAS, genome-wide association studies; eQTL, genome-
wide transcript quantitative trait loci; IWAS, immunopeptidome-wide
association studies; DDA, data-dependent acquisition.

FIG. 1. Number of HLA Class I and
Class II alleles from the IPD-IMGT/
HLA Database. The IPD-IMGT/HLA is a
database for sequences of the human
major histocompatibility complex (MHC)
and is part of the international ImMuno-
GeneTics project (IMGT). A, Number of
named alleles for each HLA gene. B, His-
tory of the database growth, from the
first version (1.0) in 1998 to the latest
version (3.37) in 2019. The number in-
cludes other non-HLA alleles and confi-
dential alleles. Data were extracted from
the database on 2019/08/20. Updated
numbers can be found online at https://
www.ebi.ac.uk/ipd/imgt/hla/stats.html.
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cated that the strongest associated amino acid variants in
HLA-DQB1 and HLA-B were both located in the peptide-
binding groove (36); (2) in lung cancer, analysis of HLA genetic
variation among 26,044 lung cancer patients and 20,836 con-
trols revealed amino acid variants in the HLA-B*08:01 pep-
tide-binding groove (37); (3) in alopecia areata, one of the
most prevalent autoimmune diseases, a meta-analysis includ-
ing 3253 cases and 7543 controls highlighted HLA-DR as the
primary risk factor of the disease with amino acid variants
located in the peptide-binding groove (39); and (4) in common
infections, a meta-analysis including over 200,000 individuals
of European ancestry suggested important roles of specific
amino acid polymorphisms in the peptide-binding groove, for
eight common infectious diseases, in particular: i.e. chicken
pox, shingles, cold sores, tuberculosis, scarlet fever, tonsil-
lectomy, pneumonia and plantar warts (38). GWAS studies
have also shown the association of Parkinson’s disease with
HLA-DRB5*01 and DRB1*15:01, which are present in �15%
of the general population (46). In this study, the authors
showed that a defined set of peptides that are derived from
alpha-synuclein, a protein aggregated in Parkinson’s disease,
act as antigenic epitopes displayed by the alleles and drive
helper and cytotoxic T-cell response in patients with Parkin-
son’s disease (47). Thus, if further tested and validated for
other diseases, cohort studies may ultimately suggest a uni-
versal role of the immunopeptidome in disease susceptibility.

In addition to qualitative changes in the peptide repertoire,
the level of expression and stability of HLA molecules at the
cell surface have been found to be associated with diseases
(11, 12, 19). For instance, a high level of expression of HLA-C
increases the risk of Crohn’s disease but also promotes the
control of HIV infection (13, 14); instability of HLA-DQ2 and
HLA-DQ8 could increase the risk of type 1 diabetes whereas
stability of HLA-DQ6 may confer protection (15–17). In cancer,
a recent analysis of more than 1500 melanoma patients
treated by immune checkpoint inhibitors (ICIs) showed that
HLA-B44 alleles were associated with an improved survival
rate whereas HLA-B62 alleles were associated with a de-
creased effectiveness of ICIs (48, 49). These data suggest that
HLA-B44 immunopeptidomes may favor presentation of a
broader, and perhaps more stable repertoire of tumor-specific
antigens to trigger the function of cytotoxic T cells in response
to ICIs. This is consistent with the recent observation that
specific HLA genotypes are associated with the appearance
of specific oncogenic mutations (50, 51).

GWAS can identify genetic variants at the gene level and
can be complemented with genome-wide transcript quantita-
tive trait loci (eQTL) and genome-wide protein quantitative
trait loci (pQTL) to better understand genotype-phenotype
associations (52–55). However, attempts to understand HLA
disease associations by only measuring expression levels of
intracellular genes and proteins is unlikely to work very accu-
rately for immune diseases in which HLA-peptide—T-cell in-
teractions play a critical role. In contrast, measuring HLA-

bound peptides is highly relevant because those peptides are
directly “seen” by T cells and are involved in disease progres-
sion (56). Therefore, technologies capable of robust and com-
prehensive measurements of immunopeptidomes at popula-
tion-scale (from tens of thousands of samples) would be
extremely powerful as they would provide direct physical
evidences about the identity and quantity of the peptides that
are directly “seen” and engaged by T cells. Such technologies
could provide key information to better understand associa-
tions between HLA alleles and human diseases, or between
HLA alleles and responsiveness to treatment. Thinking for-
ward in this context, we anticipate that further development of
“immunopeptidomics” (57) technologies will ultimately lead to
the immunopeptidome-wide association study (IWAS) para-
digm and will provide a new layer of information about disease
susceptibility. Emulating the path of transcriptome-, pro-
teome- and metabolome-wide association studies (TWAS,
PWAS and MWAS, respectively) (55, 58–61), the road toward
IWAS is technically very challenging, but conceptually
straightforward: quantify the immunopeptidome of large hu-
man population cohorts and statistically link immunopeptido-
mic variations to different clinical outcomes (Fig. 2A). IWAS
coming from very large immunopeptidomic sample cohorts
could be of great value to treat patients but may also provide
highly precise information about the predisposition of an in-
dividual to get specific immune diseases, hence representing
a new look at human disease risk factors.

The road toward IWAS is probably very long and it is
actually very likely that the feasibility of conducting IWAS from
large human population cohorts will face a great deal of
skepticism within the immunopeptidomics community as many
technical issues can be considered at this point of time. In
fact, the immunopeptidome is very different from one tissue to
the other of every person and obvious questions will arise. For
instance, (1) which tissues and cell types should be used?; (2)
which disease should be prioritized while considering sample
accessibility?; (3) what is the minimum number of samples
(disease and control) that would be required?; and (4) which
HLA alleles would be included and would they need to be
shared across all samples to enable proper analysis of the
IWAS data set? Addressing these questions would require the
expertise of biostatisticians and are difficult to answer now.
To our knowledge, the largest immunopeptidomic cohort
study so far was conducted by the group of Arie Admon
through the Glioma Actively Personalized Vaccine Consortium
(GAPVAC). In this study, the authors have isolated HLA-as-
sociated peptides from 142 plasma samples collected from
glioblastoma patients (62). Although impressive, 142 samples
are not enough to conduct an IWAS. Akin to other association
studies, it is likely that over 10,000 samples sharing specific
HLA alleles (e.g. HLA-A02) would be required to enable IWAS.
Accessibility to such cohorts of samples would probably need
to be done through large multi-institutional networks and
biobanking efforts, which may include both academia and
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industrial partners. Such an endeavor may be viewed as over-
optimistic by some experts in the field. Here, our intent is
neither to answer all potential questions to make IWAS a
reality, nor to provide a detailed roadmap to achieve this goal.
Instead, we aim to emphasize the most pressing technical
issues to move faster toward this long-term goal, and most
importantly, stimulate a mind-shift within the community to
move the field to a higher orbit. If the community acknowl-
edges the impact of moving the field from small to large
immunopeptidomic cohort studies, we predict that immuno-
peptidomics will emerge in the future as a central science of
immunology to predict, diagnose, monitor and treat immune

diseases, and will therefore profoundly impact medicine
(Fig. 2).

The Human Immunopeptidome Project—Development of
mass spectrometry (MS) technology platforms may pave the
way toward the IWAS paradigm. In fact, MS technologies
have recently attracted a high level of interest for providing
direct measurements of immunopeptidomes given the ongo-
ing revolution in immuno-oncology and the intense interest
in identifying therapeutically relevant antigenic peptides that
are actionable in the clinic for vaccine development (63–73).
More specifically, advances in genomics and MS techniques
have enabled the development of proteogenomic methods for

FIG. 2. Next-generation immunopeptidomics to predict, diagnose, monitor and treat immune diseases. A, Further advances in MS
technologies will ultimately enable IWAS in which robust, quantitative and comprehensive analysis of HLA class I and class II immunopeptidomes
will be performed from thousands for patients. Such analysis will add a new layer of biological information and will enable the deciphering of
immunopeptidome quantitative trait loci to predict disease and responsiveness to vaccines and immunotherapies. Human diseases listed in the
boxes were shown to be associated with particular HLA alleles, with amino acid variants affecting either the peptide-binding groove of the HLA or
its level of expression. The literature reference showing evidences for the HLA disease association is indicated in parenthesis. B, Integration of
immunopeptidomics into a multi-omic biomarker discovery platform for cancer immunotherapy. Patients are treated by checkpoint blockade
immunotherapy. In this example, cohort samples will be collected longitudinally and analyzed using an integrative multi-omic approach. HLA-bound
peptides will be identified and quantified before, during and after treatment in a robust and comprehensive fashion using advanced immunopep-
tidomics technologies. Data will be analyzed and correlated with clinical outcomes. Molecular signatures of tumor rejection will be identified, in the
immunopeptidome of checkpoint blockade high responders. Signatures (or epitope biomarkers) observed from such cohort studies will then be
used prospectively to stratify patients and to treat those that will best respond to checkpoint therapy.
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the direct detection of immunogenic tumor-specific mutated
and non-mutated peptides that originate from both coding
and non-coding regions of the genome (74–77). Those stud-
ies have provided an important proof-of-concept that MS is
an effective approach that can be deployed for direct identi-
fication of immunogenic tumor-specific antigens. If further
developed and routinely applied in cohort studies, such ana-
lytical method would be of great value for biomarker discovery
in cancer immunotherapy to provide molecular signatures or
epitope biomarkers of tumor rejection to discriminate patients
who best respond to ICIs (Fig. 2B) (78). For the time being,
imprecise predictions of HLA-associated peptides from genes
and mRNA is still preferred over direct HLA-peptide measure-
ments by MS (26, 79). This choice can be explained by the
state and accessibility of the respective measurement tech-
niques: whereas essentially complete genome and transcrip-
tome analysis is readily available to immunologists through
core facilities, MS-based analysis of immunopeptidomes is
most effectively performed by expert labs and cannot easily
reach the throughput, sensitivity and reproducibility of ge-
nome and transcriptome analysis. To solve this issue, the
MS-based immunopeptidomics Human Immunopeptidome
Project (HIPP) was launched under the umbrella of the Human
Proteome Organization (HUPO) with the long-term goal of 1)
mapping the entire composition of the human immunopep-
tidome and 2) making data and the robust experimental and
computational techniques of immunopeptidomics accessible
to any researcher and clinical investigators (22, 23). Ulti-
mately, absolute quantification of immunopeptidomes should
become as cheap, fast, sensitive and reproducible as it is
nowadays for genome and transcriptome analysis. Only then,
immunopeptidomics will become widely accessible to the
broader immunology community to enable very large immu-
nopeptidomic cohort studies, the development of epitope
biomarker discovery platforms, and ultimately, IWAS.

Historical Milestones in MS-based Immunopeptidomics—
Over the last five years, many excellent reviews have been
published regarding the analysis of immunopeptidomes using
MS technologies (71, 73, 80–93). To avoid redundancies with
those reviews, we focus below on key historical milestones
within three different timeframes, which we view as important
toward the IWAS paradigm: (1) the groundbreaking work of
Rammensee and Hunt/Engelhard, (2) the capability of MS
technologies for large-scale sequencing of MHC-associated
peptides, and (3) the renaissance of cancer immunotherapy
(Fig. 3A).

In the early 1990s, the teams of Hans-Georg Rammensee,
Victor Engelhard and Donald Hunt provided truly ground-
breaking work (Fig. 3A). They isolated MHC/HLA class I-as-
sociated peptides by immunoaffinity purification and applied
liquid chromatography (LC)-MS methods to provide the first
physical evidence about the nature of MHC class I-bound
peptides (94, 95). Specifically, in 1990, Rammensee’s group
applied LC-MS to analyze naturally processed viral peptides

recognized by cytotoxic T cells (95). In 1991, his group re-
ported pooled sequencing of peptides eluted from several
MHC class I molecules, with identification of allele-specific
peptide binding motifs (21). The year after, the findings by
Hunt et al. were consistent with the Rammensee motif (94). In
fact, Hunt/Engelhard’s group quantified �200 peptide spe-
cies by LC-MS and partially sequenced �19 of them, validat-
ing the motif concept and providing the first estimate that the
total number of different peptides presented by HLA-A2 could
easily exceed 1000, with most of the peptides present in 100
or fewer copies per cell, hence suggesting for the first time the
existence of a large and complex immunopeptidome (94,
96–101). In 1992, Hunt/Engelhard provided physical evi-
dences for non-canonical long peptides presented by HLA
class I molecules (102), and in 1997, sequenced the very first
mutated MHC class I peptides (Fig. 3A) (103), largely referred
nowadays as tumor-specific neoantigens (26). Further, in
2006, Hunt/Engelhard’s group showed evidences for phos-
phopeptides as potential targets for cancer immunotherapy
(104, 105). Since then, MS-based discovery of mutated (75,
76, 80, 106–108), non-canonical (86, 87, 109–111) and post-
translationally modified HLA-associated peptides [phospho-
rylation (112–115), methylation (116), citrullination (117),
deamidation (118–121), kynurenine (122), glycosylation (123–
125), peptide splicing (126–130)] continues to be a topic of
much interest in the field.

A key technical milestone that greatly impacted the immu-
nopeptidomics field was the commercialization of the Or-
bitrap technology in 2005 (131). In fact, the launch of this
instrument has enabled researchers to routinely perform
large-scale sequencing of MHC-associated peptides, going
from dozens to hundreds, to lately thousands of MHC-asso-
ciated peptides identified in single experiments (87, 132).
Computational algorithms were created and improved (91–93,
133–136) and different MS techniques developed by the pro-
teomics community were used for the analysis of MHC pep-
tides: data-dependent acquisition (DDA) for the discovery of
new antigenic peptides, selected/multiple/parallel reaction
monitoring (S/M/PRM) for targeted analysis of pre-defined
sets of peptides with a high level of sensitivity, reproducibility
and quantitative accuracy, and more recently, sequential win-
dow acquisition of all theoretical fragment ion spectra/data-
independent acquisition (SWATH/DIA). SWATH/DIA makes
use of high resolution qTOF instruments (SWATH) or Orbitrap
instruments for high-throughput targeted analysis of large
fractions of immunopeptidomes and is reviewed in (71). For
three decades, a very small community of experts have de-
ployed these MS techniques to generate MS data—generally
shared nowadays through MS public data repositories such
as PRIDE and MassIVE—in most cases through collabora-
tions with immunologists and clinical investigators (Fig. 3B).
Until now, more than 500 original publications related to MS-
based sequencing of MHC-associated peptides were re-
ported (supplemental Table S1; see filtered PubMed search

Next-generation Immunopeptidomics

Molecular & Cellular Proteomics 19.1 35

http://www.mcponline.org/cgi/content/full/R119.001743/DC1


FIG. 3. Historical perspective from a systematic review of the literature. A, Technical and cultural milestones in MS-based immuno-
peptidomics. The dotted arrow to the right indicates a hypothetical future point in time at which the first IWAS will have been successfully
conducted. B, Global distribution of research groups that have shown productivity in the field of MS-based immunopeptidomics. (Left panel)
A systematic PubMed search (2019/06/24) resulted in a total number of � 500 publications from 381 corresponding authors distributed across
180 cities and 36 countries, since the first peptide was sequenced in 1990. (Right panel) A systematic PRIDE and MassIVE (ProteomeXchange
resources) search (2019/07/24) resulted in 94 publicly available MS immunopeptidomic datasets coming from 46 laboratory heads, distributed
across 32 cities and 14 countries, since the first dataset was deposited in 2013. The circles indicate the location of the corresponding
authors/laboratory heads. The size of the circles is proportional to the number of publications/datasets reported by the corresponding
author/laboratory head. C, The pie charts show the proportion of publications from the systematic PubMed search. (Left) The pie chart shows
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result). Overall, only �10% were about the development of
new methodologies and �90% were about the application of
the available technology to better understand the basic mech-
anisms of antigen presentation (46%), followed by application
in the fields of cancer (21%), autoimmunity or inflammation
(12%), and infectious diseases (21%) (Fig. 3C).

A clear milestone in immunopeptidomics also became ap-
parent in 2013 following the recognition of cancer immuno-
therapy as breakthrough of the year by the magazine Science
(Fig. 3A) (137). In fact, the renaissance of cancer immunother-
apy over the last recent years, thanks to the astonishing
clinical success of checkpoint blockade inhibitors (138), has
significantly increased the level of interest of researchers and
clinical oncologists for applying MS-based immunopeptidomics
in the quest of tumor-specific antigen discovery (62, 73, 139–
141). In 2014, Gubin et al. demonstrated that tumor-specific
mutated peptides were targeted by T cells in response to
checkpoint blockade therapy (106), thereby providing ground-
breaking mechanistic insights about how checkpoint blockade
works to eradicate cancer in patients (142–144). In the following
years, the capability of MS techniques to directly identify tumor-
specific mutated antigens as physical molecules was further
demonstrated, collectively providing an important proof-of-con-
cept about the potential utility of MS technologies in the clinic
(65, 138, 145, 146). This enthusiasm has created new business
opportunities and has resulted in an increasing number of bio-
tech and pharma companies interested in applying MS-based
immunopeptidomics in the space of antigen discovery (Table I)
(147). Advances in MS technologies and the increasing clinical

relevance of the immune system to treat cancer has greatly
impacted the culture of the immunopeptidomics field, progres-
sively leading it into a new and exciting era, as highlighted by the
recent “Immunopeptidomics” special issue in the journal Pro-
teomics (148).

Sample Preparation Is The Achilles’ Heel For Large Immu-
nopeptidomic Cohort Studies—Next-generation sequencing
and MS technologies are revolutionizing the life sciences by
enabling robust quantitative analysis of genomes, transcrip-
tomes and proteomes in many laboratories, making multi-
omic cohort studies a reality (149). In contrast, the field of
immunopeptidomics is lagging behind even though its poten-
tial impact in the clinic is well recognized. In immunopeptido-
mics, the isolation of MHC-associated peptides is currently in
our view the “Achilles’ heel” of the whole workflow. Below, we
argue that the development of new protocols, reagents and
consumables will need to be prioritized over the next five
years to accelerate the explosion of large-scale cohort studies
in immunopeptidomics.

As of today, the field of immunopeptidomics heavily relies
on the use of antibodies for the specific isolation of MHC-
associated peptides by immunoaffinity purification (see (72)
for a list of HLA-specific antibodies). Notably, for the isolation
of HLA-ABC-associated peptides, researchers have generally
used the exact same antibody (W6/32) over the last 30 years.
The method has been refined by a handful of experts but
remains fundamentally like the methods used by Donald Hunt
and Hans-Georg Rammensee in the early 1990s (72, 150–
153). In addition, relatively large quantities of antibodies are

the proportion of publications that have answered an immunology question and/or that have tackled a technological limitation. (Right) The pie
chart shows the proportion of studies that have applied the available technology to answer an immunology question in the context of basic
research (antigen processing and presentation) or applied research (cancer, infectious diseases and autoimmunity/inflammation). See
supplemental Table S1 for details about the PubMed and PRIDE/MassIVE searches.

TABLE I
Inclusive list of biotech and pharmaceutical companies applying MS-based immunopeptidomics. Note that the list may not be exhaustive.

Biotech or Pharma company Headquarters Founded (year) Website

Adaptimmune Abingdon, Oxfordshire, UK 2007 https://www.adaptimmune.com/
Adicet Bio Haifa, Israel 2014 https://www.adicetbio.com/
Agenus Cambridge, UK 1994 https://agenusbio.com/
Bristo-Myers Squibb New York, NY 1887 https://www.bms.com/
Caprion Montreal, Canada 2000 http://www.caprion.com/
Ervaxx Oxford, UK 2018 https://www.ervaxx.com/
Evotec A.G. Hamburg, Germany 1993 https://www.evotec.com/
Genentech San Francisco, CA 1976 https://www.gene.com/
Gritstone Oncology Emeryville, CA 2015 https://gritstoneoncology.com/
Immatics Tuebingen, Germany 2000 http://immatics.com/
Immunocore Abingdon, Oxfordshire, UK 2008 https://www.immunocore.com/
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required to perform this procedure (i.e. �1 mg of antibody on
average per sample). As of today, any laboratory aiming at
conducting large-scale immunopeptidomic studies must gen-
erally produce and purify antibodies from hybridoma cell lines,
which is relatively costly and time consuming, and therefore
represents a considerable limitation for scaling up the proce-
dure and for rapidly implementing immunopeptidomics work-
flows into new laboratories. Moreover, very little is known
about the yield of the immunoaffinity purification procedure.
Until now, the use of isotopically labeled peptide-MHC mono-
mers represents the best strategy for the accurate quantifica-
tion of stepwise yields of the procedure (154). In this regard,
the group of Peter van Veelen has recently synthesized 24
different isotopically peptide-HLA monomers and showed
that the yield was sequence-dependant. Specifically, the yield
ranged between 2.1 and 15%, and was below 10% for 70%
of the peptides tested (17 out of 24), indicating important
losses and/or biases during sample preparation (155). Along
these lines, other separation techniques were reported to
create a bias in the detectable immunopeptidome, which can
be explained by the enormous biochemical diversity of those
peptides (156). For instance, highly hydrophilic peptides may
not be captured by conventional reversed-phase C18 material
whereas highly hydrophobic peptides may be preferentially
lost during the procedure simply because they stick to plastic
materials during the multiple handling steps.

To address the issues mentioned above, exploration of new
approaches in digital microfluidics for immunoprecipitation
may help increase the sample throughput (157); further de-
velopment of acoustic technologies for contactless handling
may accelerate unbiased analysis of immunopeptidomes
(158, 159); and low-cost distribution of antibodies may accel-
erate the testing of new sample preparation protocols, which
may ideally enable all sample processing steps to be carried
out in a single tube, thereby enhancing sensitivity, throughput
and scalability of immunopeptidomic analyses (160, 161). As
a first step, HUPO-HIPP recently proposed to design a multi-
laboratory study in which a large library of isotopically labeled
peptide-HLA monomers would be distributed across different
research groups for the accurate quantification of stepwise
yields of the established immunoaffinity purification proce-
dure (22). This type of work has been underappreciated over
the years but is nevertheless invaluable to define the physic-
ochemical properties of peptides that are preferentially de-
tected or lost during the isolation procedure. Inspired by
landmark studies from other -omic disciplines (162–167), con-
ducting the proposed multi-laboratory study will clarify the
uncertainty about the yield of the peptide isolation proce-
dure, will determine the robustness of the methodology
used by different groups and will possibly indicate the need
to prioritize the development of innovative sample prepara-
tion protocols.

In summary, the field has greatly benefited from the tradi-
tional immunoaffinity purification method to make ground-

breaking discoveries. The method will likely continue to be
used for small-scale studies and relatively larger cohort stud-
ies in expert laboratories soon (62, 141). However, the devel-
opment of new sample preparation protocols will become
critical to scale up and bring the field to the next level. Isola-
tion of MHC-associated peptides in a cheap, fast, unbiased,
reproducible and high-throughput fashion has the potential to
transform the field and increase the impact of immunopep-
tidomics in biomedical research through robust clinical appli-
cations, and ultimately, population-scale immunopeptidomic
studies.

Disruptive Technologies for Large-Scale Immunopeptidom-
ics—IWAS and population-scale studies will undoubtedly re-
quire immunopeptidomic technologies to be widely accessi-
ble and commercially well-supported. In genomics, high
throughput generation of complete genomic maps became
widely accessible only with the development and commer-
cialization of technologies and methods that enabled the se-
quencing of millions of nucleic acid segments in parallel (168).
Reaching this state in the field of immunopeptidomics for high
throughput generation of complete digital immunopeptidomic
maps is possible but embracing public-private partnerships
will need to be prioritized in the coming years to accelerate
commercialization of new immunopeptidomics technologies/
methods and their wide-spread distribution. It is conceivable
that MS technologies, such as SWATH/DIA-MS, will continue
to improve toward this goal. However, it is also possible that
disruptive new approaches will be developed for massively
parallel peptide sequencing, making MS technologies po-
tentially obsolete in the future. In this regard, Swaminathan
et al. have recently introduced a groundbreaking peptide
fluorosequencing technology which may accelerate the
process toward the IWAS paradigm. Akin to massively par-
allel measurements of DNA using fluorescence as readout
they demonstrated that parallel fluorescence sequencing is
also achievable for peptides (169). Their method is promis-
ing because it paves the way toward single-molecule pep-
tide sequencing at very high throughput from minute
amounts of samples (http://www.erisyon.com/) (170).

Their method builds on three well-characterized methods:
Edman chemistry, massively parallel DNA sequencing and
MS-based computational strategies for sequence database
searching (171). Briefly, isolated peptides are first labeled with
fluorophores for each amino acid residues; second, labeled
peptides are immobilized on a glass surface and imaged by
total internal reflection microscopy to monitor decreases in
each molecule’s fluorescence after consecutive rounds of
Edman degradation; third, the pattern of drops in fluores-
cence intensity is interpreted to provide a sequencing anno-
tation for each peptide, which is matched and scored against
a peptide sequence database to infer the most likely set of
peptides present in the sample (169, 170, 172). In our opinion,
this approach is very promising for proteins soon, but further
development of the technology will be essential for sequenc-
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ing HLA-associated peptides because it is currently impossi-
ble to label most of the amino acids with fluorophore. Al-
though this proof of concept approach has limitations at this
stage (e.g. dyes used, sample complexity, sequencing yield),
it capitalizes on three established techniques that may accel-
erate maturation from proof of concept to routine application
and wide adoption by the community.

If further developed, highly parallel single-molecule peptide
sequencing may offer an improvement of more than one million-
fold in sensitivity over conventional MS technologies and may
allow for millions of distinct peptides to be sequenced in paral-
lel, identified and digitally quantified (169, 171). Given the qual-
itative and quantitative complexity of the human immuno-
peptidome, this technology may radically transform the
immunopeptidomics field. However, one has to keep in mind
that the performance of this approach will always rely on the
quality of upstream peptide isolation procedures. Hence, the
shortcomings mentioned above related to the isolate of MHC-
associated peptides by immunoaffinity purification will need to
be overcome for a generally accessible, reliable and truly uni-
versal immunopeptidomic technology.

Data Analysis Challenges—The main approaches used cur-
rently for the analysis of immunopeptidomics experiments
were developed originally for the analysis of MS proteomics
datasets. Database searches are the main analysis method of
choice for data dependent acquisition workflows. Here, the
acquired spectra are compared with generated (theoretical)
ones coming from peptide sequences drawn from a given
protein sequence database. Several limitations of this type of
analyses can apply to immunopeptidomics. First of all, the
size of the search database (and the related search space)
can become extremely large. For instance, proteasome-gen-
erated spliced peptides have been detected by MS in recent
studies (126, 129, 173, 174), so the inclusion of spliced vari-
ants in the search database could be required (129). However,
this strategy has sparked intense discussions in the field over
the last two years and remains actively debated (130, 175,
176). Additionally, in most proteomics experiments, trypsin is
used as the digestion enzyme. Because “no enzyme speci-
ficity” must be used in immunopeptidome searches, the
search space grows exponentially. As a result of these two
related issues, the time required for performing the searches
can increase enormously and even more, if variable post-
translational modifications such as phosphorylation have to
be considered in the search. More importantly, when making
use of the decoy-target approach, it becomes very challeng-
ing for search engines to differentiate between true and false
matches, considering the huge search space. Consequently,
a compromise is often needed, and the accepted PSM false
discovery rate can become 5% instead of the standard 1%
used in standard MS proteomics experiments.

In parallel, the average percentage of identified spectra can
be significantly lower in immunopeptidomics experiments,
because of different factors (e.g. shortness of MHC class I

peptides, lack of basic amino acid residues, low amount of
samples, acquisition parameters, etc), as described previ-
ously (71). To address this issue, several approaches have
been proposed, like the sequential use of different search
engines or the use of Percolator. This tool performs machine
learning on high-confidence matches to rescore database
search results for lower-confidence peptides (177). Other ap-
proaches for performing rescoring have also been success-
fully used recently in the field (133).

Moreover, alternative analysis approaches to standard da-
tabase searches can be also used, either alone or in combi-
nation. One example is the use of de novo search methods,
where the spectra can be sequenced directly, without the
need of a protein sequence database (178). The use of de
novo algorithms has recently been recommended in immuno-
peptidomics protocols (72). Spectral searches approaches
can also be employed (179). Here, the experimental spectra
are compared with existing collections of spectra in the public
domain called spectral libraries. However, this approach, al-
though increasingly popular, has had a limited uptake so far.
One of the reasons is that the generation of high-quality
spectral libraries is not straightforward, and some researchers
are reluctant to use publicly available spectral libraries gen-
erated by others.

Additionally, the increasing popularity of open modification
searches makes them a promising approach. The new tools
developed in the last few years (e.g. MSFragger, ANN-SoLo,
TagGraph, among others (180–182) have solved the high
computational cost of these methods. Additionally, in our
opinion, a promising approach for targeting interesting spec-
tra would be the use of clustering of MS/MS spectra (183–
185). This approach can be used to select those spectra that
remain unidentified and that are commonly found across MS
runs in different samples. The hypothesis is that the corre-
sponding peptides are potentially interesting and biologically
relevant, because they are abundant. The resulting represen-
tatives of these clusters of unidentified spectra could then be
subjected to those alternative analysis methods explained
above. It is certainly a possibility that a significant fraction of
unidentified spectra from such clusters includes contaminat-
ing peptides that show up in many samples. They could
indeed be actual contaminants usually found in proteomics
experiments (e.g. keratins), or not biologically relevant pep-
tides as artifacts derived from the experimental protocol. If the
latter case applies, information from such clusters could be
used to feed a database of contaminating peptides that are
constantly observed in immunopeptidomics. Such database
does not exist yet but would be useful for the growing immu-
nopeptidomics community and would be conceptually like the
CRAPome, which serves as a repository of protein contami-
nants in protein-protein interaction studies (186).

Further, artificial intelligence approaches have the potential
to improve the analysis dramatically. In MS-based proteom-
ics, deep-learning techniques have been recently deployed
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using millions of high quality MS2 spectra generated from
hundreds of thousands of synthetic tryptic peptides, to build
new algorithms to predict fragmentation patterns of peptides,
thereby enabling successful generation of in-silico peptide
spectral libraries for high throughput targeted analysis of DIA
data (187–189). These developments should also greatly ben-
efit the further improvement of de novo search algorithms.
Deep-learning was also recently applied for de novo identifi-
cation of HLA-associated peptides using DIA-MS (190, 191).

Finally, it is worth highlighting that a significant number of
challenges would need to be considered in addition with
regards to the quantification of immunopeptidomes. This
quantitative aspect is much less mature at present. Analogous
challenges in quantitative MS proteomics approaches have
been described before (192).

The SysteMHC Atlas Project—Open and comprehensive
reference atlas in life sciences are increasingly beneficial for

the scientific community (193–198). Similarly, the creation of a
comprehensive atlas of the immunopeptidome in human,
mouse, and other species would be of great value for both
understanding health and diagnosing, monitoring and treating
immune diseases (22, 23, 69). In this context, participants of
the HIPP initiative recognized the need for an open immuno-
peptidomics atlas/repository in which output files of mass
spectrometric measurements of immunopeptidome samples
would be annotated, stored and shared without restriction. In
response to this need, the SysteMHC Atlas project was cre-
ated—a project fully dedicated to the public dissemination
and analysis of immunopeptidomic data generated by MS
(https://systemhcatlas.org) (Fig. 4) (199). The SysteMHC Atlas
uploads raw immunopeptidomics MS data originally depos-
ited into public proteomics databases (mainly the PRIDE da-
tabase (200), which is the leading ProteomeXchange reposi-
tory (201, 202)) along with the metadata associated with the

FIG. 4. The vision of the SysteMHC Atlas project. The SysteMHC Atlas project was launched in 2018 with the main goal of collecting,
harmonizing and sharing immunopeptidomic data generated by the community. Over the next years, we anticipate that the growing MS
community working on various immunopeptidomic-related research topics (e.g. cancer, autoimmunity, infectious diseases) will contribute to
the expansion of the SysteMHC Atlas by uploading data into existing repositories of the ProteomeXchange consortium (mainly PRIDE and
MassIVE; the others shown are PeptideAtlas, Panorama, iProX and jPOST). Those data will be reprocessed and harmonized using a uniform
and open source computational pipeline developed under the SysteMHC Atlas project. We envision that ProteomeXchange resources will be
integrated better with the SysteMHC Atlas in the near future, thereby facilitating the application of deep-learning approaches from quality-
controlled immunopeptidomic “Big Data” to improve software tools for MHC peptide identification and quantification by DDA- and DIA-MS
techniques.
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experiment (203). Raw MS data are then processed through
the uniform and open-source Trans-Proteomic Pipeline (TPP)-
based computational pipeline for HLA peptide identification,
annotation (204–206) and statistical validation (205, 206).
Lists of HLA peptides as well as allele-specific peptide spec-
tral libraries (207) are generated and presented in the Atlas.

The SysteMHC Atlas project is still at an early-stage of
development. The current version is composed of 23 immu-
nopeptidomic datasets (https://systemhcatlas.org/datasets).
In the short-term, we plan to enhance the capabilities of the
SysteMHC Atlas project by integrating emerging computa-
tional MS workflows (e.g. proteogenomics approaches, ultra-
fast search engines, identification of post-translationally mod-
ified peptides) and expand its content through a closer
partnership with the ProteomeXchange consortium (Fig. 4).
High-quality harmonized immunopeptidomic data stored in
the SysteMHC Atlas will find use over the next years to build
and improve software algorithms for the identification and
quantification of HLA peptides by DDA- and DIA-MS (Fig. 4).
Hence, one can anticipate that the increasing number of high
quality MS2 spectra in the SysteMHC Atlas will be of great
value for computational scientists to tailor next-generation
software for the analysis of immunopeptidomic data. New
computational tools will also be used to re-process and
re-score data in the Atlas and keep improving the quality of
the data. By doing so, the ever-increasing number of HLA
peptides in the Atlas will be useful to enhance MS identifi-
cation and quantification of canonical and non-canonical
HLA-associated peptides, including neoantigens that are
unpredictable from genomic information as well as those
that originate from foreign organisms and the microbiome
(208). Moreover, it is our intention to create, in longer-term,
the SysteMHC Atlas Data Analysis Center, which will
support robust measurements of large immunopeptidomic
sample cohorts by SWATH/DIA-MS. In fact, an important
utility of the SysteMHC Atlas project is to access reference
HLA allele-specific peptide spectral libraries for reproducible,
quantitative and comprehensive analysis of immunopep-
tidomes by SWATH/DIA-MS (71, 209–212). Hence, we envi-
sion that the SysteMHC Atlas project is the beginning of an
enterprise that will accelerate the design of large-scale immu-
nopeptidomic studies at population scale, and therefore, rep-
resents a potential strategy toward the IWAS concept.

CONCLUSION

Cohort studies of the post-GWAS era are increasingly im-
pactful and an important driving force for revolutionizing
healthcare (4). Recent GWAS-based evidences indicate that
generation of digital immunopeptidome maps from thousands
of individuals may unveil a vast array of immunopeptidomic
signatures (or epitope biomarkers) that could eventually be
used in the clinic to predict the susceptibility or resistance of
an individual to immune diseases as well as an individual’s
predisposition to respond to vaccines and immunotherapies.

Inspired by the vision and achievements of pioneers in
genomics (213–216) and proteomics (217, 218), we envision
that the ongoing enthusiasm in MS profiling of the human
immunopeptidome will lead to the development of the IWAS
paradigm, in which absolute quantification of immunopep-
tidomes at population-scale will become a reality. If tested
and validated, we envision that IWAS will radically change the
way we think about immunopeptidomics and will represent a
new milestone in the history of the field. Achieving this goal
will require tremendous technological development and
community efforts; from highly standardized techniques for
high throughput isolation of peptides to advanced knowl-
edge about the baseline and dynamics of the human immu-
nopeptidome, as well as appropriate data and computa-
tional resources to handle the analysis of very large
immunopeptidomic datasets. With the advent of numerous
new “biobank” type of studies, great opportunities will
exist to collect samples for immunopeptidomic analyses—
together with genomic, transcriptomic, proteomic and
metabolomic analyses—that will impact personalised health
care management and public health care policy in the fu-
ture.
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21. Falk, K., Rötzschke, O., Stevanovic, S., Jung, G., and Rammensee, H.-G.
(1991) Allele-specific motifs revealed by sequencing of self-peptides
eluted from MHC molecules. Nature 351, 290–296

22. Caron, E., Aebersold, R., Banaei-Esfahani, A., Chong, C., and Bassani-
Sternberg, M. (2017) A case for a human Immuno-Peptidome Project
Consortium. Immunity 47, 203–208

23. Admon, A., and Bassani-Sternberg, M. (2011) The Human Immunopep-
tidome Project, a suggestion for yet another postgenome next big thing.
Mol. Cell. Proteomics 10, O111.011833

24. Croft, N. P., Smith, S. A., Pickering, J., Sidney, J., Peters, B., Faridi, P.,
Witney, M. J., Sebastian, P., Flesch, I. E., Heading, S. L., Sette, A.,
Gruta, N. L., Purcell, A. W., and Tscharke, D. C. (2019) Most viral
peptides displayed by class I MHC on infected cells are immunogenic.
Proc. Natl. Acad. Sci. U.S.A. 73, 3112–3117

25. Wu, T., Guan, J., Handel, A., Tscharke, D. C., Sidney, J., Sette, A., Wakim,
L. M., Sng, X. Y., Thomas, P. G., Croft, N. P., Purcell, A. W., and Gruta,
N. L. (2019) Quantification of epitope abundance reveals the effect of
direct and cross-presentation on influenza CTL responses. Nat. Com-
mun. 10, 2846

26. Schumacher, T. N., Scheper, W., and Kvistborg, P. (2018) Cancer neoan-
tigens. Annu Rev. Immunol. 37, 173–200

27. Gilchuk, P., Spencer, C. T., Conant, S. B., Hill, T., Gray, J. J., Niu, X.,
Zheng, M., Erickson, J. J., Boyd, K. L., McAfee, J. K., Oseroff, C.,
Hadrup, S. R., Bennink, J. R., Hildebrand, W., Edwards, K. M., Jr., J. E.,
Williams, J. V., Buus, S., Sette, A., humacher, T. N., Link, A. J., and
Joyce, S. (2013) Discovering naturally processed antigenic determi-
nants that confer protective T cell immunity. J. Clin. Invest. 123,
1976–1987

28. Caron, E., Vincent, K., Fortier, M., Laverdure, J., Bramoullé, A., Hardy, M.,
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Rosner, I., López-Larrea, C., Hilf, N., Kuttruff, S., Song, C., Britten, C.,
Castle, J., Kreiter, S., Frenzel, K., Tatagiba, M., Tabatabai, G., Dietrich,
P.-Y., Dutoit, V., Wick, W., Platten, M., Winkler, F., von Deimling, A.,
Kroep, J., Sahuquillo, J., Martinez-Ricarte, F., Rodon, J., Lassen, U.,
Ottensmeier, C., van der Burg, S. H., Straten, P., Poulsen, H., Ponsati,
B., Okada, H., Rammensee, H.-G., Sahin, U., Singh, H., and Admon, A.
(2019) Identification of tumor antigens among the HLA peptidomes of
glioblastoma tumors and plasma. Mol. Cell. Proteomics 18, 1255–1268

63. Purcell, A. W., McCluskey, J., and Rossjohn, J. (2007) More than one
reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug
Discov. 6, nrd2224

64. Romero, P., Banchereau, J., Bhardwaj, N., Cockett, M., Disis, M. L.,
Dranoff, G., Gilboa, E., Hammond, S. A., Hershberg, R., Korman, A. J.,
Kvistborg, P., Melief, C., Mellman, I., Palucka, K. A., Redchenko, I.,
Robins, H., Sallusto, F., Schenkelberg, T., Schoenberger, S., Sosman,
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