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Abstract

Harnessing the process of natural selection to obtain and understand new microbial phenotypes 

has become increasingly possible due to advances in culturing techniques, DNA sequencing, 

bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) 

experiments represent a powerful approach to both investigate the evolutionary forces influencing 

strain phenotypes, performance, and stability, and to acquire production strains that contain 

beneficial mutations. In this review, we summarize and categorize the applications of ALE to 

various aspects of microbial physiology pertinent to industrial bioproduction by collecting case 

studies that highlight the multitude of ways in which evolution can facilitate the strain construction 

process. Further, we discuss principles that inform experimental design, complementary 

approaches such as computational modeling that help maximize utility, and the future of ALE as 

an efficient strain design and build tool driven by growing adoption and improvements in 

automation.

1. Introduction

Adaptive Laboratory Evolution, or ALE, experiments are an increasingly popular technique 

for both improving microbial phenotypes and investigating biological phenomena. ALE 

experiments can be traced back to reports of controlled evolution studies in the earliest parts 

of the last century (Atwood et al., 1951; Bennett and Hughes, 2009; Novick and Szilard, 

1950) and are methodologically straightforward. In their simplest form, experiments consist 

of prolonged culturing of cells in a chosen environment to naturally select for those which 

acquire beneficial mutations. Given the speed with which beneficial mutations can arise and 

fix, it is safe to say that many biologists have ‘adaptively evolved’ their lab microbe of 

choice simply via the unavoidable cycles of growth/plating/freezing involved in cell 

culturing. ALE works robustly in microbes due to the ease with which large populations 

(108 - 1010 cells) of rapidly dividing (20 min - <10 hour generation time) cells can be 

maintained; typical mutation rates and genome sizes ensure extensive sampling of the 

adaptive space, providing ample genetic diversity from which beneficial mutants will be 
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naturally enriched (Gresham and Dunham, 2014). Furthermore, the rising use of ALE has 

been driven by the increasing availability of low cost, high throughput DNA sequencing 

(Shendure et al., 2017), which, when paired with appropriate bioinformatics tools, facilitates 

the increasingly critical mutation-identification step in the ALE process. Similarly, genome 

engineering is a key complementary technology (R. Liu et al., 2015), enabling the 

introduction of desired mutations into strains of interest for causal determination or 

phenotypic alteration.

Evolution’s reliance on natural selection to enrich for mutants with increased fitness allows 

strain optimization to be performed without requiring a priori knowledge of the genetic 

alterations necessary to effect such changes (Fig. 1). With perfect information on an 

organism’s genotype-to-phenotype mapping, desired traits could simply be engineered in 

rather than evolved, but the incredible complexity of biological systems renders our current 

knowledgebase insufficient to inform such rational design. ALE thus serves as a powerful 

technique for strain construction, complementing or even replacing rational design 

approaches which frequently induce stressed cellular states that negatively impact 

phenotype. It is important to note that, despite some interchangeable use of the terms, ALE 

is distinct from the field of ‘directed evolution’ (Packer and Liu, 2015; Arnold, 2018) – ALE 

finds whatever genome-wide mutations aid in the fitness of actively growing cultures, while 

directed evolution typically targets a particular gene for mutagenesis and then screens 

resultant variants for a phenotype of interest, often independent of fitness effects. However, 

both approaches fall under the category of ‘evolutionary engineering’ (Sauer, 2001; Shepelin 

et al., 2018) given that they generate new phenotypes via random mutation followed by 

selection or screening.

Key to the success of ALE experiments is the fitness advantage bestowed by adaptive 

mutations, allowing the mutant strains to outcompete their ancestor and dominate the 

population. However, it is important to note that “fitness” is not a well-defined term, but 

rather depends on the growth environment employed in the ALE experiment. For example, if 

batch cultures are kept propagating in constant exponential-phase and with excess nutrients, 

then fitness is essentially equivalent to growth rate (Sandberg et al., 2014). If, instead, 

exponential-phase growth is not constantly maintained, then fitness expands to include 

factors other than just growth rate, such as survival in stationary phase or decreased lag 

phase (Wiser and Lenski, 2015). This sensitive environmental dependence of fitness thus 

allows different traits to be selected for based on the specifics of the ALE procedure. In 

addition to batch culturing, the most popular alternative growth method is continuous culture 

(e.g, chemostats or turbidostats) (Gresham and Dunham, 2014). Other ALE culturing 

methods have also been implemented for specific purposes, but have yet to see widespread 

use (See Section 4).

Once a desired growth environment has been carefully selected, an ALE experiment enables 

the generation of a whole lineage of mutant strains with improved fitness relative to the 

ancestral (i.e., starting) strain (Fig. 1B) and sequencing enables causal mutation 

determination (Fig. 1C). Selective sweeps often occur as the result of single beneficial 

mutations overtaking the population, but cultures contain significant amounts of genetic 

diversity from which intrapopulation competition can lead to clonal interference 
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(Maddamsetti et al., 2015). It is common practice to save frozen stocks of cells periodically 

over the course of an ALE experiment, allowing for characterization of both endpoint strains 

and evolutionary intermediates. Although midpoints are perforce less fit than endpoints (and, 

in turn, might have less of a tradeoff for alternate phenotypic properties), including them in 

characterizations can greatly aid in understanding the adaptive steps taken by the evolving 

ancestor to eventually arrive at an endpoint. Furthermore, by virtue of their smaller number 

of genetic alterations, midpoints can allow for easier discrimination of the minimum 

mutational set necessary to enable a bioprocess-relevant beneficial phenotype. In concert 

with phenotypic characterization (or screening), which establishes the fitness improvements 

realized over the course of the ALE, genetic characterization allows determination of the 

causal mutations that enable improved fitness in the ALE environment. To aid in causal 

mutation identification, independent replicates starting from the same ancestral strain are 

often evolved simultaneously – genes or genetic regions found to mutate multiple times 

across the independent replicates are almost surely adaptive (Bailey et al., 2015). Such 

causal mutations can thus be distinguished from neutral or even deleterious hitchhiker 

mutations that might otherwise require categorization via site-directed mutagenesis and 

growth profiling of the resultant mutants. Causal establishment of ALE mutations via 

reintroduction to a starting strain was possible and demonstrated in the mid 2000s (Herring 

et al., 2006), and this process is now more efficient with high-throughput genome 

engineering (R. Liu et al., 2015).

This review will focus on the use of ALE in industrial biotechnology and related fields by 

compiling a comprehensive collection of relevant studies, analyzing their collective 

contributions, and highlighting several case studies of importance. An analysis of the most 

common methods used for ALE and the strains utilized will be included. The review will 

also touch on the emergence of automation and bioinformatics in the field and the impact 

this has had. Previous reviews relating to ALE have addressed the underlying genetic and 

metabolic basis for adaptive evolution experiments (Conrad et al., 2011; Gresham and 

Dunham, 2014; Long et al., 2015; Long and Antoniewicz, 2018; Remigi et al., 2019), the 

role of systems biology and in silico evolution (Hansen et al., 2017; Hindré et al., 2012; 

Papp et al., 2011), overall strategies to improve metabolic performance (Rabbers et al., 2015; 

Shepelin et al., 2018; Williams et al., 2016) and tolerance (Peabody et al., 2014), as well as 

other industrially relevant strain properties (Bachmann et al., 2015; Dragosits and 

Mattanovich, 2013; Portnoy et al., 2011/8; Stella et al., 2019; Winkler and Kao, 2014; 

Fernández-Cabezón et al., 2019). This work provides an updated review and categorization 

of studies useful for metabolic engineering, as well as other selected foundational studies 

using laboratory evolution that are relevant to industrial biotechnology. As such, studies 

focused on the use of ALE in understanding antimicrobial resistance and other fundamental 

principles of evolutionary biology will not be covered here, as they have been reviewed 

elsewhere (Hughes and Andersson, 2015; Kawecki et al., 2012; Palmer and Kishony, 2013; 

Remigi et al., 2019).

2. Applications of ALE

ALE has become a valuable tool in metabolic engineering for strain development and 

optimization by reliably facilitating microbial fitness improvements, via both predictable and 
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non-intuitive mechanisms. However, specific mutations themselves are rarely predictable 

given current knowledge, and the adaptive strategies employed are often strain-specific. 

Supplemental Table 1 outlines a collection of ALE-based manuscripts that will serve as case 

studies and a source of content for this review. The different uses of ALE can be roughly 

categorized into five general application areas (Figure 2): 1) growth rate optimization, 2) 

increasing tolerance, 3) substrate utilization, 4) increasing product yield/titer, and 5) general 

discovery. Although these categories and applications are not mutually exclusive and ALE 

experiments often improve multiple strain properties simultaneously, it serves as a useful 

heuristic.

Several features are revealed through a categorization of ALE studies relevant to industrial 

biotechnology. First, the predominant use of ALE in this collection involves increasing an 

organism’s ability to tolerate stresses (55 out of 159 included studies, 35%). Tolerance 

evolutionary engineering has significant industrial implications due to the toxicity that many 

biorenewables have on microorganisms’ overall production capacity and viability (Lee and 

Kim, 2015; Qi et al., 2019; S. Wang et al., 2018). Most starting strains and production 

chassis have never had to deal with high amounts of desired product chemicals in their 

native environments, thus improved tolerance mechanisms are almost always beneficial for a 

successful strain design. Second, there is significant focus on metabolite production as well 

as nutrient uptake, with 15% and 20% of the studies, respectively. In metabolic engineering 

the two concepts are frequently linked, given that sufficient nutrient uptake is a prerequisite 

for any metabolite biosynthesis, but there are distinct cases where microorganisms are 

designed and/or evolved to either utilize poorly accessible substrates or produce non-native 

metabolites. Nutrient uptake is particularly relevant in industrial settings where poor uptake 

of desired feedstocks can lead to inefficient conversion and inhibition of metabolic pathways 

(Görke and Stülke, 2008; Ingram and Doran, 1995). Lastly, the general discovery category 

contains studies covering an array of topics that are relevant to industrial biotechnology and 

can be investigated with ALE, including systems biology, evolutionary modeling, and 

genome dynamics (Barrick and Lenski, 2013). This general category could be significantly 

expanded via inclusion of purely computational or theoretical rather than empirical evolution 

studies, but that is beyond the scope of this review.

Each category will be individually addressed in the following sections to outline a general 

summary of their applications, highlight case studies useful for demonstration, and 

summarize the lessons learned from each collection of studies.

2.1 Growth Rate Optimization

While “fitness” is often a complex trait with many contributing factors, growth rate (ln(2)/

doubling time) is generally the most important fitness determinant in ALE experiments (Vasi 

et al., 1994). Indeed, although the other ALE use categories are more specialized, the 

enrichment for adaptive mutants would not be possible without a growth advantage relative 

to the starting strain, regardless of the specifics of the environment. A key reason for the use 

of microbes in biotech and research is their short generation time, and ALE allows for rapid 

improvement of this desirable trait. ALE has been applied to optimize the growth rate of 

various industrially relevant microbial species (Hong et al., 2011; LaCroix et al., 2014; 
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Pfeifer et al., 2017; Yu et al., 2013), to ameliorate growth defects in engineered strains 

(Aguilar et al., 2018; Carroll and Marx, 2013; Radek et al., 2017; Thyer et al., 2018; Zelle et 

al., 2011), or to study how and why growth rate changes over the course of evolution 

(Barrick et al., 2009; Ferea et al., 1999; Lenski et al., 2015, 1998, 1991; Lenski and 

Travisano, 1994; Weikert et al., 1997; Wong and Liao, 2009).

ALE can significantly increase a strain’s growth rate, even in frequently used culturing 

environments for which one might expect growth to already be close to optimal. For 

example, a simple ~1 month ALE experiment in glucose minimal medium resulted in 

growth rate improvements of up to 60% for the commonly used lab strain and engineering 

chassis E. coli K-12 MG1655 (LaCroix et al., 2014). This rapid growth phenotype was 

achieved predominantly through mutations to only three genetic regions, suggesting their 

easy use as allelic knock-ins to improve growth on glucose of production strains derived 

from MG1655, as has been demonstrated in the case of an RNA polymerase mutation 

(Rugbjerg et al., 2018). Such causal mutations can even have cross-phylum fitness 

implications – evolution on glucose minimal media led to mutations in pyruvate kinase and 

the CorA magnesium transporter in both C. glutamicum (Pfeifer et al., 2017) and MG1655. 

Moreover, the metabolic flux state of the MG1655 evolved strains was found to be 

remarkably unperturbed - rather than changing relative pathway usage, faster growth was 

enabled by proportional increases to all intracellular rates of central carbon metabolism 

(Long et al., 2017). ALE has been used to successfully improve growth capabilities of a 

variety of non-bacterial species (Supplemental Figure 1), most notably yeast, where a similar 

volume of ALE work has been performed (Mans et al., 2018). As with E. coli, improved 

growth rates in different organisms frequently come along with other beneficial traits, such 

as evolved yeast strains outperforming rationally designed ones in several phenotypic 

metrics (Hong et al., 2011), and evolved microalgae achieving improved lipid productivity 

(Yu et al., 2013).

In addition to optimizing industrially or scientifically relevant wild-type strains, ALE has 

been successfully applied to fix fitness defects in strains rationally designed for a specific 

metabolic phenotype. An increased growth rate, in most cases, also makes a strain more 

robust to perturbations resulting from genetic alterations, as mutations can restore microbes 

back to their wild-type physiology and activate flux through alternate energy generation 

pathways (McCloskey et al., 2018). In one study, an engineered M. extorquens strain with a 

foreign metabolic pathway (resulting in abnormal morphology and significantly decreased 

growth rate) was subjected to laboratory evolution (Carroll and Marx, 2013). ALE resulted 

in the isolation of evolved strains with up to 150% growth rate improvements, elimination of 

morphological abnormalities, and insight into the metabolic consequences resulting from 

introduction of the foreign pathway. In another study, ALE was used in concert with strain 

engineering to impart novel metabolic capabilities onto yeast (Zelle et al., 2011). The native 

malic enzyme in S. cerevisiae is unable to function anaplerotically via pyruvate 

carboxylation, nor is heterologous expression of the E. coli malic enzyme sufficient to 

activate this ability, but ALE successfully selected for a mutant enzyme that enabled this 

trait. ALE can also reliably ameliorate fitness defects resulting from ambitious, large-scale 

strain alterations - a genomically recoded E. coli with all 300+ amber stop codons removed 

was evolved to achieve strains with both significantly faster (>40%) growth rates and 
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improved incorporation of nonstandard amino acids, opening the door to novel protein 

production capabilities (Wannier et al., 2018). Similarly, a genome-reduced E. coli with 

more than 1 million basepairs removed from its chromosome grew 3-fold slower than the 

wild-type in glucose minimal media, and yet a <1,000 generation ALE experiment almost 

completely abolished this severe fitness deficit (Choe et al., 2019).

ALE for improvement in growth rate thus serves not only to increase the ease and speed of 

microbial culturing, but also as a technique for targeted selection on specific rate-limiting 

system components. This is especially important when a strain has been engineered and rate-

limiting constraints now significantly impact fitness, which will become an increasingly 

frequent occurrence as genome engineering techniques continue to improve. With proven 

efficacy across a number of species and the frequent occurrence of concomitant desirable 

traits such as increased productivity/yield, growth optimization stands as a key application 

for ALE experiments. Although the following sections delve into more specialized uses, it is 

important to note that growth rate improvements underlie these ALE outcomes as well.

2.2 Increase Tolerance

When exposed to stress, cells respond by activating stress responses, which require a 

reallocation of cellular resources to enact and thus inhibit growth potential. Cellular stress 

can be caused by a complex growth environment that induces some form of metabolic 

misregulation, or by exposure to specific inhibitory chemicals or biomolecules. Common 

stressors of both basic and applied interest introduce a diverse range of challenges for 

growing cells to overcome, and ALE has been established as an efficient tool to surmount 

such challenges. ALE studies have investigated the adaptive responses to many of these 

stressful environments: different levels of pH (Fletcher et al., 2017; Kildegaard et al., 2014; 

Zorraquino-Salvo et al., 2014), osmotic pressure (Dhar et al., 2011; Dragosits et al., 2013; 

Stoebel et al., 2009; Tilloy et al., 2014; Winkler et al., 2014), temperature (Blaby et al., 

2012; Caspeta et al., 2014; Deatherage et al., 2017; Riehle et al., 2003; Rudolph et al., 2010; 

Sandberg et al., 2014; Sleight and Lenski, 2007; Tenaillon et al., 2012), UV irradiation 

(Alcántara-Díaz et al., 2004; González-Ramos et al., 2016), inhibitors (most frequently, 

metabolic byproducts produced during biomass pretreatment) (Adamo et al., 2012; Almario 

et al., 2013; Atsumi et al., 2010; Avrahami-Moyal et al., 2012; Cakar et al., 2005; Goodarzi 

et al., 2010; Haft et al., 2014; Henson et al., 2018; Horinouchi et al., 2010; Jiang et al., 2012; 

Koppram et al., 2012; Linville et al., 2013; Luan et al., 2013; Minty et al., 2011; McCarthy 

et al., 2017; Qin et al., 2016; Reyes et al., 2012; Reyes et al., 2013; Royce et al., 2015; 

Sehnem et al., 2013; Shao et al., 2011; Wallace-Salinas and Gorwa-Grauslund, 2013; Wang 

et al., 2018; Xu et al., 2018; Zhu et al., 2015); and nutritional stressors (Bachmann et al., 

2012; Brennan et al., 2015; Cakar et al., 2009; Dhar et al., 2013; Hawkins and Doran-

Peterson, 2011; Jansen et al., 2005; Jung et al., 2017; Lee et al., 2013; Mundhada et al., 

2017; Pereira et al., 2015; Summers et al., 2012). Utilization of ALE to understand stress 

responses and overcome growth inhibition is one of the most popular and historically 

relevant applications (Figure 2), frequently increasing the utility and robustness of 

industrially valuable strains. Moreover, stress tolerance ALEs are particularly efficacious 

due to the complex, global physiological response stresses often induce – tuning a large 

number of gene expression levels to restore robust growth is currently beyond the realm of 
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rational design, but ALE can reliably uncover point mutations in global regulators which 

achieve just that (Sandberg et al., 2014).

Compounds with potential biotechnological value can often not be efficiently metabolized or 

produced in living systems due to toxicity. For example, many carboxylic acids are 

promising biorenewables but induce membrane damage, and attempts to rationally engineer 

greater membrane integrity have failed to improve carboxylic acid production. Royce et al. 
addressed this with an ALE experiment of E. coli onto octanoic acid, wherein strains were 

obtained that had improved tolerance not just to octanoic acid but also several other 

carboxylic acids and butanol isomers, with concomitant 5 fold higher production titer 

(Royce et al., 2015). This highlights how stress mitigation can simultaneously improve 

production properties, and how certain classes of stressors trigger similar physiological 

responses that cause particular mutations to be beneficial across multiple environments. In 

another study, knowledge of S. cerevisiae metabolism led to an ALE experiment designed 

for osmotic stress tolerance - this pushed the yeast metabolic state more towards glycerol 

production and away from ethanol, resulting in evolved strains with improved properties for 

lower-alcohol wine production (Tilloy et al., 2014).

Causal mutations in tolerance-evolved strains are straightforward to identify with DNA 

sequencing, but interpreting the molecular causality underlying a mutation’s phenotypic 

impact is often more challenging. A study by Caspeta et al. stands as a successful example 

of ALE results elucidating the molecular mechanisms of adaptation – yeast was evolved for 

improved thermotolerance, yielding strains that grew >50% faster at 40°C (Caspeta et al., 

2014). Mutational convergence in independently evolved replicates revealed that a gene 

inactivation changed the sterol composition of the cells from ergosterol to fecosterol, 

optimizing membrane fluidity at the elevated growth temperatures. ALE can also be used to 

increase tolerance to multiple stressors at once, as demonstrated by a study in which an 

industrial yeast strain was evolved for improved tolerance to both biomass hydrolysate 

inhibitors and high temperature, creating a robust strain for ethanol production via 

simultaneous saccharification and fermentation (Wallace-Salinas and Gorwa-Grauslund, 

2013). However, it should be noted that tolerance to one stress often comes with tradeoffs in 

a separate growth environment, depending on the particular adaptive mutations acquired – 

while strains evolved to high-temperature typically lose fitness at low-temperature, one 

ALE-identified mutation managed to avoid such a tradeoff (Rodriguez-Verdugo et al., 2014).

A significant effort to overcome the toxicity of a nutrient stressor, specifically L-serine in 

high concentration, was seen in the studies performed by Mundhada et al. L-serine is a 

promising target for commercial bioproduction but induces inhibition of various cellular 

processes such as peptidoglycan synthesis and cell division, and the reactive byproducts 

such as acrylates can hinder cell growth (Zhang and Newman, 2008; Zhang et al., 2010; de 

Lorenzo et al., 2015). An initial study succeeded in achieving L-serine tolerance in E. coli 
by employing random mutagenesis and selection, but it was not able to meet the demand for 

extensive serine production (Mundhada et al., 2016). By implementing ALE, E. coli lacking 

L-serine degradation pathways (which makes cells much more susceptible to toxicity) were 

evolved to increasing concentrations of L-serine that reached 100 g/L, resulting in a titer 

much higher than the mutagenized strain with the same pathway (Mundhada et al., 2017).
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Evolutionary engineering for improved stress tolerance stands as a dominant ALE 

application for metabolic engineering and industrial biotechnology. As previously stated, 

wild-type cells are rarely well-poised to deal with the burdens caused by growth 

environments with high concentrations of an atypical but desired bioproduction chemical. 

Where rational engineering approaches can fall short due to a lack of requisite knowledge, 

ALE enables mechanistically naïve but reliable improvements to industrially valuable strain 

properties. Mutational results from ALE experiments can then be used to inform further 

strain design attempts, while also elucidating basic tenants of biological systems. Further, 

attempts to rationally design strains for a specific phenotype often induce fitness defects 

which can be countervailed by evolution. Even if specific tolerance mechanisms can be 

rationally engineered into a strain, necessary gene expression levels can be hard to infer. In 

contrast, in a single experiment, ALE can find both the mechanisms underlying fitness 

defects and the gene expression levels necessary to enable a functional and robust 

phenotype. ALE also enables acclimation to growth environments with complex 

combinations of stressors that rational design cannot currently address given our existing 

biological knowledge base. Importantly, when stress on strains is reduced via ALE, the 

result is typically not only growth rate increases, but also phenotypic improvements in 

industrially relevant properties such as production or degradation capabilities.

2.3 Substrate Utilization

Efficient substrate uptake is necessary to enable satisfactory production of metabolites and 

additional products of interest in most, it not all, industrial applications. There exists a very 

direct link between organism fitness and the ability to efficiently uptake and metabolize rate-

limiting growth nutrients, thus ALE experiments with a properly designed selective 

environment readily uncover mutations conducive to robust growth on substrates of interest. 

Primary motivations for improving substrate utilization of an organism are tied to current 

market surpluses/prices (Ji et al., 2011; Lin and Tanaka, 2006) and harnessing the energy of 

inaccessible or toxic byproducts to improve yield of commodity chemicals (Plácido and 

Capareda, 2016). The most ubiquitous organism studied to improve uptake is the yeast 

Saccharomyces cerevisiae (Cadière et al., 2011; Garcia Sanchez et al., 2010; Guimarães et 

al., 2008; Kim et al., 2012; Smith et al., 2014; Sonderegger and Sauer, 2003; Zha et al., 

2014; Zhang et al., 2018; Zhou et al., 2012), with the CEN.PK strain and its derivatives the 

most common (de Kok et al., 2012; Ho et al., 2017; Jansen et al., 2004; Klimacek et al., 

2014; Kuyper et al., 2005, 2004; Marques et al., 2017; Merico et al., 2011; Novy et al., 

2014; Ochoa-Estopier et al., 2011; Papapetridis et al., 2018; Scalcinati et al., 2012; Strucko 

et al., 2018; van Rossum et al., 2016), mainly due to its widespread use in industry, robust 

fermentative capability, and inherent ethanol tolerance. There has been considerable interest 

in generating microbial strains that can utilize the fermentable sugars in lignocellulosic 

biomass (Clark et al., 2012; Sanderson, 2011); S. cerevisiae has again been the driving force 

in discovery to this end (Klimacek et al., 2014; Marques et al., 2017; Zha et al., 2014), with 

some work done in E. coli strains (Lee and Palsson, 2010; Rajaraman et al., 2016; Sandberg 

et al., 2017, 2016; Utrilla et al., 2012) and other various bacteria and yeast (Cordova et al., 

2016; Latif et al., 2015; Moser et al., 2017).
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Saccharomyces cerevisiae, due to its anaerobic fermentative capabilities and tolerance to low 

pH and phage infection, has been the species of interest for industrial production of specialty 

metabolites (Moysés et al., 2016). Although S. cerevisiae does not natively catabolize xylose 

or other pentose sugars readily available in plant biomass, there has been considerable work 

to engineer strains capable of co-utilizing these compounds (Chu and Lee, 2007; Van Vleet 

and Jeffries, 2009). Adaptive laboratory evolution has been used in tandem with other 

metabolic engineering techniques to further drive substrate utilization. In (Klimacek et al., 

2014), previously constructed S. cerevisiae strains with enhanced expression of heterologous 

genes involved in xylose metabolism were evolved via a two phase process. ALE selection 

for anaerobic xylose fermentation led to a strain with faster growth but undesirable 

metabolic byproducts, and a subsequent ALE on this strain under batch culture conditions 

ameliorated these phenotypic defects. The final strain grew more than 500% faster than the 

original progenitor despite fewer than 100 total generations of evolution, highlighting the 

impressive speed with which ALE can realize significant fitness improvements.

ALE has been used to tackle challenges in the utilization of plant biomass as a nutrient 

source, such as the presence of toxic or inhibitory byproducts like furfural and acetate 

(Bellissimi et al., 2009; Heer and Sauer, 2008). A study by Rajaraman et al. addressed this 

with a chemostat ALE on several E. coli strains with acetate as the sole carbon source 

(Rajaraman et al., 2016). Evolved strains had a specific growth rate increase of ~25% and 

significantly altered expression for a number of genes, enabled by a single amino acid 

substitution in the RNA polymerase complex subunit RpoA; unlike with rational engineering 

of specific genes for altered expression, ALE can find point mutations changing global 

expression patterns in a net beneficial way not predictable with current protein modeling 

techniques. In addition to improving growth rate on non-optimal nutrients, a properly 

designed ALE experiment can also enable growth on completely non-permissive substrates. 

With a passage protocol in which glycerol concentration was steadily lowered while L-1,2-

propanediol was increased, E. coli strains were obtained capable of growth solely on the 

latter substrate, despite the ancestral strain’s inability to uptake or metabolize this nonnative 

carbon source (Lee and Palsson, 2010). A study that significantly expanded this approach 

involved automation of the process, weaning cultures off of a helper substrate (which 

generated diversity), and selecting for strains that could utilize a number of non-native 

carbon sources by directly targeting promiscuity properties of enzymes (Guzmán et al., 

2019; Notebaart et al., 2018). Impressively, growth on these new substrates was enabled by 

the acquisition of only one or two point mutations – completely ‘novel’ phenotypes for a 

particular strain can readily be acquired via evolution if the growth environment provides the 

necessary fitness benefit for such an occurrence.

Although ALE has proven efficacy for enabling growth on non-native substrates, access to a 

new nutrient niche can require large jumps across the fitness landscape that render a 

phenotype infeasible to select for on reasonable timeframes – famously, it took 15 years for 

one of twelve Long Term Evolution Experiment populations to acquire a citrate-consuming 

phenotype, and the other eleven populations are still unable to consume citrate after 30 total 

years (Leon et al., 2018). Rational design with heterologous pathways can facilitate such 

fitness landscape leaps, but clever use of ALE alone can sometimes suffice. Szapponos et al. 

utilized metabolic modeling to identify non-native growth substrates with similar catabolic 
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pathways, then performed a multi-step ALE to select for a complex metabolic innovation 

(Szappanos et al., 2016). Specifically, E. coli cannot natively grow on propylene glycol (PG) 

or ethylene glycol (EG), but culturing of a hypermutable variant resulted in isolation of PG+, 

but not EG+, strains. However, selecting for EG growth using PG+ mutant strains did 

successfully yield the EG+ phenotype, indicating an increase in adaptation rate of more than 

two orders of magnitude. Innovative niche expansions can thus be achieved via stepwise 

evolution, with complimentary technologies such as metabolic modeling providing the 

information necessary to choose suitable substrate targets.

ALE has seen significant use as a tool for improving substrate uptake and metabolism, often 

countervailing the growth-inhibitory effects of toxic byproducts or fixing metabolic network 

misregulation in non-optimal growth environments. In this way, the utility of ALE has been 

established in use cases ranging from improving wild-type strain growth on a sub-optimal 

substrate, to facilitating proper metabolic assimilation of heterologous pathways in 

engineered strains, to imparting novel growth phenotypes even in unengineered strains - in 

each case improving substrate uptake as a coupled property. The mutational mechanisms 

range from single-nucleotide polymorphisms and small indels (insertions or deletions) in 

specific enzymes that enable pure innovation (e.g., utilizing a novel substrate), to altered 

transporter activity that leads to more efficient import and routing of substrates into central 

metabolism, to regulatory mutations which globally rebalance the metabolic network, 

shutting down cellular content unnecessary for bioreactor growth and freeing up resources 

for growth-coupled processes like substrate uptake. ALE can thus greatly complement 

traditional engineering techniques for altering microbial response to various feedstocks, 

creating more efficient organisms with improved chemical conversion to industrially 

desirable products.

2.4 Product Titer/Yield Optimization

Maximizing the bioproduction of metabolites of interest is a difficult task, and rational 

approaches to strain design are frequently insufficient to achieve desired productivity 

(Guimarães et al., 2008; Kuyper et al., 2005, 2004; Shepelin et al., 2018). A main source of 

difficulty lies in the conflict between fast, robust strain growth and the fitness-

counterproductive repurposing of cellular resources to produce large amounts of a desirable 

compound. Nevertheless, ALE studies with proper experimental design can be used to 

overcome this conflict and optimize metabolite production and increase titer (Basso et al., 

2011; Charusanti et al., 2012; Fong et al., 2005a; Fu et al., 2013; Grabar et al., 2006; Jiang et 

al., 2013; Lee et al., 2016, 2014; Lu et al., 2012; Luo et al., 2019; Mahr et al., 2015; Otero et 

al., 2013; Pontrelli et al., 2018; Reyes et al., 2014; Royce et al., 2015; Shen et al., 2012; 

Smith and Liao, 2011; Vilela et al., 2015; Wang et al., 2012; Wisselink et al., 2007; Zhang et 

al., 2007; Zhao et al., 2013; Zhou et al., 2005, 2003). Given that an ALE experiment’s 

efficacy is contingent on the fitness advantage bestowed by adaptive mutations, it is essential 

to tie metabolite production to fitness in some way. The most straightforward way to do this 

is to genetically alter strains to couple production to overall energy and biomass generation 

rates in a given environment, and computational studies suggest a multitude of possible 

growth-coupled products that go far beyond simple and intuitive strain designs (Burgard et 

al., 2003; Klamt and Mahadevan, 2015; Pharkya et al., 2004; von Kamp and Klamt, 2017). 

Sandberg et al. Page 10

Metab Eng. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, given the limited scope of molecules for which this has been executed and 

validated (i.e., coupling production to overall energy generation), innovative methods (e.g., 

using a selective environment where production of the molecule of interest provides some 

protective or fitness-beneficial function) and advanced selection systems (e.g., fluorescent 

reporters + FACS sorting) are often needed to improve production for a wide range of 

molecules. Success cases for multiple forms of production optimization via growth coupling 

will now be discussed.

Genetic alterations that modify the metabolic network of a cell can force growth-sustaining 

flux through desired pathways, thereby coupling cell viability to the production of a 

compound of interest. Significant computational work has been performed to enable 

prediction of specific gene knockouts or heterologous pathway insertions that result in 

growth-coupling (Burgard et al., 2003; Feist et al., 2010; Jensen et al., 2019; Klamt and 

Mahadevan, 2015; Pharkya et al., 2004; von Kamp and Klamt, 2017), and such approaches 

have been experimentally validated (Alper et al., 2005; Fong et al., 2005a; Yim et al., 2011) 

and are growing in utility due to advances in genome-scale metabolic modeling techniques 

(King et al., 2017). In a study by Jantama et al., this modeling-informed rational design was 

combined with ALE to optimize an E. coli strain with gene knockouts that forced NAD+ 

regeneration to occur via malate- and succinate-producing pathways under anaerobic growth 

conditions (Jantama et al., 2008). By thus coupling production to NADH oxidation, 

necessary for the growth-essential maintenance of ATP generation, ALE successfully 

selected for strains with robust minimal medium growth and improved malate and succinate 

titer. Further, physiological characterization of evolved strains pointed to additional 

knockouts to decrease byproduct formation, ultimately yielding strains with even greater 

chemical yields. Properly designed growth-coupling strategies can even see utility across 

diverse organisms and enzyme types (Jensen et al., 2019), as exemplified by recent work 

coupling SAM-dependent methylation to growth (Luo et al., 2019). By tying production of 

the essential amino acid cysteine to the activity of methyltransferases, Luo et al. were able to 

use ALE to select for both E. coli and S. cerevisiae strains with mutations providing 2-fold 

increases in heterologous methyltransferase activity. Ensuring that the methyltransferase 

activity was rate-limiting for growth forced adaptive mutations to preferentially target this 

enzymatic bottleneck; in vivo enzyme engineering was thus undertaken by the evolving 

cells, with demonstrated success for improving activity of both N- and O-type 

methyltransferases.

Innovative selection strategies and systems have also been demonstrated, which expand the 

range of compounds whose production can be optimized using ALE beyond those that can 

be directly growth-coupled. One such selective approach involves utilizing interspecies 

competition or cooperation (i.e., syntrophy). Charusanti et al. serially propagated MRSA 

alongside an antibiotic-producing microorganism, harnessing competition to achieve an S. 
clavuligerus strain with constitutive holomycin expression (Charusanti et al., 2012). The 

production of this molecule, though energetically costly, was nevertheless selectable with 

ALE due to the competitive co-culturing growth environment utilized. Similarly, through the 

use of syntrophic coupling and co-cultures, Lloyd et al. designed and evolved mutually 

reliant strains to optimize the sharing and production of non-trivial compounds (Lloyd et al., 

2019). Environmental manipulation in monocultures has also been successfully employed, 
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as in a study by Reyes et al. wherein exposure to hydrogen peroxide selected for more than 

3-fold increases in carotenoid production due to these compounds’ antioxidant properties 

(Reyes et al., 2014). Such approaches change the meaning of “fitness” to now include 

production of the molecule of interest as a factor, but other selective techniques are possible 

– a noteworthy study in this category used FACS to apply multi-dimensional selection to a 

strain engineered with a biosensor for valine-induced fluorescence (Mahr et al., 2015). 

Biosensors provide a powerful way to link otherwise-obscured intracellular states to a 

screenable output (D. Liu et al., 2015), and by screening out and serially propagating only 

the most highly fluorescent cells, Mahr et al. increased valine titer by ~25% alongside 

growth rate improvements and decreased byproduct formation, despite maximum possible 

growth rate being higher if the cells had acquired mutations to eliminate their energetically 

wasteful expression of fluorescent proteins.

When paired with properly selected experimental methodology and biological design, 

ALE’s ability to increase bioproduction of desired molecules has been established. Though 

more difficult to select for than simple growth rate improvements, fitness can still be tied to 

titer increases in a variety of circumstances: when the produced molecule can enable better 

growth or survivability in spite of production costs; when evolution can countervail 

phenotypic defects resulting from metabolic engineering for a novel production phenotype; 

or when growth rate maximization is not the sole driving force behind selection. An 

important factor to keep in mind is the stability of production strains – though production 

phenotypes can be selectable under carefully designed ALE conditions, industrial-scale 

bioreactor growth can open the door for population-takeover by mutant strains which 

genetically purge the production machinery (Rugbjerg and Sommer, 2019). Engineering 

techniques can improve strain stability by removing mobile genetic elements or error-prone 

polymerases and thus reducing mutation rate (Csorgo et al., 2012), but, fortunately, this is 

not a strict necessity – a 1,4-BDO bioproduction strain (Yim et al., 2011) which was further 

improved using ALE has been used at industrial scales by Genomatica, and found to remain 

genetically stable over the course of a bioprocess cycle (personal communication, John D. 

Trawick). As our knowledge of metabolic and regulatory networks grows and techniques for 

engineering and strain design continue to improve, we are poised to see an increased 

adoption of ALE as a complementary technology for optimizing microbial production 

strains.

2.5 General Discovery

By enabling observation of evolutionary outcomes in a controlled laboratory setting, ALE 

facilitates research into basic bioprocesses in addition to its more applied uses as an 

engineering and strain design/optimization tool. ALE studies have yielded insight into 

important evolutionary phenomena such as clonal interference and regulatory rewiring (Kao 

and Sherlock, 2008; Oud et al., 2013; Sniegowski and Gerrish, 2010; Maddamsetti et al., 

2015), rate and mechanism of mutation development (Araya et al., 2010; Chang et al., 2013; 

Dunham et al., 2002; Notley-McRobb and Ferenci, 1999; Yona et al., 2012; Lind et al., 

2017; Ene et al., 2018; Lauer et al., 2018), and response to genetic perturbation or sub-

optimal growth environment (Charusanti et al., 2010; Conrad et al., 2010; Fong et al., 2005b; 

Wang et al., 2010; Giusy M. Adamo et al., 2012; Deng and Fong, 2011; Szamecz et al., 
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2014; Wenger et al., 2011; Wright et al., 2011). ALE has also been used to study 

fundamental aspects of biology such as regulatory gene network response to external 

stressors or a new environment (Quan et al., 2012; Zhu et al., 2015), as well as the impact of 

genome shuffling and recombination techniques on the construction of industrially pertinent 

strains (Peabody et al., 2016; Reyes et al., 2012; Winkler and Kao, 2012). When paired with 

in silico modeling and algorithmic approaches frequently used in systems-level analyses, 

ALE additionally serves as an empirical hypothesis tester (Dekel and Alon, 2005; Ibarra et 

al., 2002).

Several studies have been dedicated to uncovering the molecular framework of an 

organism’s response to a genetic perturbation, with obvious implications for strain 

engineering. Gene essentiality and the impact of gene knockouts has been analyzed using 

ALE (Charusanti et al., 2010; Tokuyama et al., 2018), wherein strain physiology 

immediately post knockout can be compared against the physiological state following the 

strain’s adaptive evolution. For example, Charusanti et al. investigated the adaptive response 

of multiple E. coli lineages following knockout of the important phosphoglucose isomerase 

(pgi) gene (Charusanti et al., 2010), a frequent target for disruption in engineered strains 

(Chin and Cirino, 2011; Papapetridis et al., 2018; Shiue et al., 2015). Distinct phenotypic 

outcomes were reached across the different evolved endpoints, and examination of the flux 

state via carbon-13 metabolic flux analysis determined that the dominant mechanism of 

adaptation was to overcome key bottlenecks in cofactor metabolism and substrate uptake 

that were induced by the knockout (Long et al., 2018). Studies such as these examining 

evolutionary response to genetic perturbation are increasingly yielding insight into the 

regulatory architecture of metabolic networks (McCloskey et al., 2018).

Modifications to ALE experiment methodology have been explored for the purposes of 

speeding adaptation, increasing mutation rate, and maintaining beneficial mutations. 

Bacterial asexual reproduction leads to clonal interference, preventing many beneficial 

mutations from reaching fixation within the evolving populations. Chu et al. investigated 

induced horizontal gene transfer as a method to speed adaptation and circumvent clonal 

interference, and found that genetic exchange between distinct co-cultured E. coli strains 

could significantly aid in adaptation to growth on novel carbon sources, contingent on the 

specifics of donor vs. host strain similarity and evolutionary environment (Chu et al., 2018). 

Contrasting with horizontal gene transfer, another technique to increase the accessibility of 

adaptive mutations is simply to increase the mutation rate, which can be induced with 

chemical mutagens (Lee et al., 2011) or naturally result from a DNA repair gene 

deactivation (LaCroix et al., 2014; Lenski et al., 2015); in all cases, mutation rate positively 

correlated with the speed of adaptation and magnitude of fitness gains. However, Couce et 

al. found that, even under conditions of strong selection and with improving population 

fitness, hypermutability leads to steady decay of the genome and can cause ‘genomic draft,’ 

whereby deleterious mutations hitchhike and cannot be purged from the population (Couce 

et al., 2017). Care should thus be taken when evolving hypermutable strains – though 

hypermutability can facilitate the speed and magnitude of ALE fitness increases, and even 

make leaps across the fitness landscape accessible by providing a large mutational pool with 

complex epistatic interactions, there are downsides in regards to genome stability and even 

adaptive potential, if the mutation rate is inordinately high (Sprouffske et al., 2018).
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The novel or improved microbial phenotypes achievable with ALE makes it a powerful 

engineering tool, and studying the genetic and metabolic mechanisms underlying these 

phenotypic changes can yield valuable biological discoveries. Moreover, modifications to 

the selection protocol and evolutionary environment are easily explorable with ALE, 

allowing investigation into methods by which adaptation can be facilitated. Insights gained 

through the use of ALE can then be employed in other design strategies for novel solutions 

in industrial settings.

3. Strain Types and Generations

As long as an organism is reproducibly culturable in laboratory conditions it can be 

subjected to ALE, though the majority of studies analyzed in this review utilize either 

bacteria or yeast, specifically E. coli and S. cerevisiae (Supplemental Figure 1A). This is due 

to their fast growth, genetic tractability, and status as model organisms, providing the 

necessary knowledge base with which to interpret evolutionary outcomes. Using different 

organisms such as algae can allow for evolved phenotypes not achievable with bacteria or 

yeast, but ALE studies focusing on less standard microbial species are comparatively scant. 

Although much less relevant to metabolic engineering, higher organisms like fruit flies or 

even mice have been selectively competed and bred under controlled conditions (Barrett et 

al., 2019; Folk and Bradley, 2005), though these non-microbial ALE studies are beyond the 

scope of this review. ALE for mammalian production systems is limited given their slow 

growth rates and more involved culturing requirements, but some work has been done 

examining the genetic changes which accumulate in CHO cell lines under various culturing 

conditions (Feichtinger et al., 2016). Earlier examples without genetic analysis also exist, 

such as adapting hybridoma cells to lower serum concentrations (Lee et al., 1991). However, 

larger scale DNA sequencing is needed to reliably identify the potential causal mutations 

from such mammalian selection experiments, and epigenetic factors can further complicate 

the interpretation of results.

A critical parameter in an ALE experiment is the length of time for which populations of 

strains are evolved. Generations is the most commonly used metric for evolutionary time, 

though alternatives exist that include more data on the selective protocol employed, such as 

Cumulative Cell Divisions, which factors in population bottlenecks resulting from serial 

passage (Lee et al., 2011; Sandberg et al., 2014). Most ALE studies have a duration of 100–

500 generations of growth (Supplemental Figure 1B), though significantly reduced (<50 

generations) and increased (>60,000 generations) timescales have also seen use. The 

decision to stop an ALE experiment after a certain number of generations is always 

somewhat arbitrary - though evolved strains get labelled ‘endpoints,’ this does not mean 

further fitness gains are not achievable with increased experiment duration. The Long Term 

Evolution Experiment (LTEE) provides the best example of this; E. coli has been kept 

adapting to glucose minimal media for over 30 years, and competition assays on strains 

spanning 60,000 generations of evolution revealed that fitness gains best fit a power-law 

model, indicating a decreasing rate of improvement over time but no asymptotic limit 

(Lenski et al., 2015). Despite fitness gains being achievable indefinitely, for practical 

applications it is important to strike an appropriate balance between acquiring a fit endpoint 

and not wasting resources drawing out an experiment excessively. For example, Hua et al. 
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evolved E. coli onto lactate growth and found ~60% fitness improvements with less than 250 

generations of ALE, while increasing experiment duration to 900 generations only resulted 

in a further fitness gain of less than 20% (Hua et al., 2007).

When an ALE experiment is performed in a way that facilitates easy fitness tracking over 

time, it is typically sufficient to set an ‘endpoint’ based on subjective valuation of when 

fitness starts to plateau. If fitness-tracking is not possible, the studies collected herein 

establish ALEs of a several hundred generation timescale as suitable for most purposes. 

Further, modeling approaches have been developed to optimize ALE experimentation and 

best decide passage protocols and when to end an experiment (Bittihn et al., 2017; LaCroix 

et al., 2017). Such approaches will better enable automation and optimization of ALE use in 

the strain design process.

4. ALE Protocols and Experimental Setup

The evolutionary environment employed in an ALE experiment determines the selective 

pressure guiding adaptation, and is thus a critical choice when a particular phenotypic 

outcome is sought. Batch culturing is both the simplest and most popular ALE method 

(Supplemental Figure 1C), though there are significant differences between various batch 

culturing methods. Often it is desirable for fitness and growth rate to be equivalent, and 

serial batch culture propagation is a way to enforce this if cultures are passed while still in 

exponential phase and with excess nutrients. Without limited resources or shifts in growth 

phase between lag/exponential/stationary, improvements to maximum growth rate determine 

which strains come to dominate the population. Unfortunately, as growth rate increases over 

the course of the ALE, changes must be made either to the passage frequency or passage 

volume used for propagation if stationary phase is to be avoided (Charusanti et al., 2010; 

Fong and Palsson, 2004). Increasing passage frequency can be prohibitively difficult without 

automation, while decreasing passage volume leads to tighter population bottlenecks and a 

potential loss in adaptive mutations. Given these issues, many researchers opt for batch 

culture propagation of fixed volumes at fixed intervals (generally once per day), as in the 

LTEE (Lenski et al., 1991). This is a more easily maintainable experimental setup, but by 

virtue of going through cycles of resource excess followed by depletion selection occurs for 

more than just growth rate: decreases in lag phase and survival in stationary phase also 

significantly impact fitness. With a dynamic environment such as this, selection can also 

lead to co-existing specialist strains that thrive in different phases of the daily cycle (Rozen 

et al., 2009).

Non-batch ALE culturing setups are dominated by chemostat use, but other methods also 

exist and are practiced. Chemostats are the second most popular culturing technique for 

ALEs, and this method differs from batch culturing in ways that alter the selective forces at 

play. Chemostats culture cells in a bioreactor, enabling tight control over environmental 

parameters like pH and oxygenation, and maintain continuous growth via a constant influx 

of media at a set dilution rate (Gresham and Dunham, 2014). Although this can facilitate 

undesirable adaptive events, such as bacterial persistence due to adhesive wall growth (Rao 

and Rao, 2004), and can be more difficult to maintain multiple replicates in parallel, it can 

also be used to select for particular phenotypes. For example, Koppram et al. evolved yeast 
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for improved biomass inhibitor tolerance via both batch and chemostat culture, and found 

that batch culture selected more for improvements in growth rate, glucose consumption, and 

ethanol productivity, while chemostat evolution favored improved inhibitor conversion rates 

(Koppram et al., 2012). Other culturing methods have seen occasional use in ALE 

experiments for specific purposes, such as long term culturing in a single flask to select for a 

growth advantage in stationary phase (Westphal et al., 2018), or growth on oversized petri 

dish with antibiotic gradients to allow spatiotemporal tracking competing lineages (Baym et 

al., 2016). Serial propagation of colonies streaked onto plates, by virtue of the clonal 

bottlenecks at each step, is not a form of ‘adaptive’ evolution without some secondary 

screening measure influencing the transfer process, but can be used for mutation 

accumulation studies (Shibai et al., 2017).

5. Automation and ALE

Although ALE experiments can be performed manually without significant difficulty and 

require little setup or specialized equipment, automating the process can facilitate greatly 

increased experimental capabilities, throughput, and clarity in outcome. In terms of 

expanding capabilities while running an ALE experiment, automation allows for complex 

culturing procedures which cannot be reasonably performed manually (e.g. propagating 

cultures many times a day, or splitting many independent cultures different thresholds) as 

well as for dynamic alterations to passage protocols (e.g., alternating substrates or 

temperature from flask to flask) (Sandberg et al., 2017; Wong et al., 2018). Automation also 

allows for improved monitoring of physiological properties of evolving cultures, enabling 

researchers to better understand the evolutionary dynamics at play and to make informed 

decisions on when and how many times to sequence for adaptive mutations. Furthermore, 

eliminating repetitive manual ALE passage work saves time and effort and reduces 

researcher fatigue, which can lead to mistakes and premature stoppage of an experiment 

where a mutational jump in fitness is still possible. Perhaps the most important aspect of 

automated ALE is the ability to efficiently execute multiple independent replicates of the 

same experiment at one time. With this ability to “play the same game” repeatedly, evolved 

genotypes can be more easily interpreted by leveraging cross-replicate mutational 

comparisons (e.g., identifying genetic hitchhikers which lack statistically significant 

independent recurrence), and multiple equivalent fitness-optimized clones are obtainable 

from which a strain with desirable properties can be selected, spanning the range of 

intracellular states enabling improved growth (e.g., a high uptake rate vs. a high yield clone).

Automation can speed up the time it takes to obtain a desirable strain by virtue of less 

stringent population bottlenecks and sustained exponential-phase growth, translating to 

faster mutant fixation. The tight environmental control of automated systems can also 

obviate an important issue intrinsic to manually performed batch culture propagation 

(Gresham and Dunham, 2014), namely the difficulty in maintaining a strict selection 

pressure that evolves cells under essentially invariant conditions. For example, automation 

has been used to select for growth rate improvement in a 2,000 generation ALE in which the 

cells never experienced nutrient limitation or left exponential growth phase, all while 

maintaining large passage volumes (LaCroix et al., 2014). When contrasted with the 
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manually-performed Long Term Evolution Experiment (Lenski et al., 1991), this automated 

ALE saw equivalent fitness gains on a real-world timescale nearly 10 times shorter.

A number of automated ALE devices have been developed that span the range of culturing 

methods: large volume batch culture (Sandberg et al., 2014; LaCroix et al., 2014; Wong et 

al., 2018), microtiter plates (Horinouchi et al., 2014; Radek et al., 2017), chemostats/

turbidostats (Blaby et al., 2012; Toprak et al., 2013), or microfluidics (Rotem et al., 2016). 

Such demonstrations establish the broad scope of technologies which can be part of 

automated strain construction workflows (Chao et al., 2017). Putting some of the current 

capabilities of such automated systems in context, gains in throughput enabled by 

automation allowed for more than 30 independent replicates to be evolved simultaneously on 

the same robotic system, or for large culture volumes to be propagated multiple times per 

day, minimizing the risk of missing out on adaptive mutations due to population bottlenecks 

(LaCroix et al., 2017). With real-time tracking of growth response to environmental 

particulars, automation allows a ‘sweet spot’ of chemical concentration to be maintained, 

such as keeping cultures in a constantly growth-inhibiting but non-lethal antibiotic 

environment to study mechanisms of resistance evolution (Toprak et al., 2013). This ability 

to modify an ALE environment on the fly opens up a number of experimental possibilities - 

tolerance to certain chemicals can be incrementally built up, resulting in optimized 

bioproduction strains (Mohamed et al., 2017), or the growth environment can be rapidly 

alternated to yield strains with desirable diauxic phenotypes (Sandberg et al., 2017). The 

information needed to develop inexpensive, automated culturing systems is also becoming 

publicly available (Wong et al., 2018), contrasting with systems using industrial-grade 

hardware (LaCroix et al., 2014), and will doubtlessly lead to more widespread and 

innovative adoption of ALE as a powerful technique for both biological discovery and 

metabolic engineering.

6. Conclusions and Future Directions

Adaptive laboratory evolution stands as a powerful tool available to strain engineers and 

biologists, yielding strains with phenotypic improvements that stem from random mutation 

and natural selection rather than rational engineering. This renders ALE a multi-functional 

technique: 1) it enables laboratory investigation of evolutionary processes, expanding the 

biological knowledge base that informs successful strain engineering through identification 

of beneficial mutations associated to a specific selection pressure, or those which counteract 

production goals; 2) it complements rational design approaches by improving engineered 

strain properties, countervailing the fitness defects frequently introduced by genetic 

manipulation; and 3) it can replace rational design approaches when a desired phenotype is 

selectable due to a fitness benefit in a particular environment. Furthermore, with a sizable 

and well-annotated collection of causal mutations, phenotypes of interest could be designed 

by directly engineering ALE-identified alleles into a strain to induce a particular cellular 

state. ALE can thus be of great utility in the Design-Build-Test-Learn cycle employed in 

strain construction (R. Liu et al., 2015), augmenting or even replacing the Design and Build 

steps (Figure 3).
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ALE can serve as a powerful tool, but several principles constrain such experiments. First 

and foremost, ALE only has efficacy with achieving evolutionarily selectable phenotypes. 

Growth rate improvements are inherently selectable, making tolerance and substrate-

utilization ALEs straightforward approaches for phenotypic improvement, but desired 

phenotypes can be fitness-counterproductive for cells (e.g., overproduction of some 

metabolite), preventing evolution from selecting for such traits. In these cases, approaches 

must be taken to alter the environment and/or genome of the starting strain in a way that 

links the property of interest to a growth advantage, e.g. via metabolic growth-coupling, or 

by using a growth environment where the otherwise-wasteful metabolite production now 

confers a benefit. Additionally, the choice of organism is key; model organisms are 

genetically tractable and have the knowledgebase with which to interpret mutational results, 

but more rarely-used species can have atypical physiological properties that make them ideal 

for a particular phenotype. The overall goals of the study are paramount to consider when 

selecting ALE experimental parameters, such as replicate number, evolutionary duration, 

serial passage bottleneck size, etc. – e.g., if a particular strain phenotype is all that’s desired 

then replicates are less important, but if one wants to decipher molecular mechanisms then 

replicates greatly facilitate identifying regions of convergent evolution. Fortunately, tools 

exist to aid in the selection of parameters for optimizing results from an ALE experiment 

without wasting time or resources (LaCroix et al., 2017).

Advances in genetic engineering techniques are facilitating ambitious and novel strain 

designs, which can benefit from ALE as a method by which to understand limitations in 

these highly perturbed systems and uncover fitness-restoring mutations. Some prominent 

examples of studies enabled by advanced genetic engineering include synthetic minimal 

cells (Hutchison et al., 2016) and genome-wide codon repurposing (Wannier et al., 2018). 

ALE can aid in these efforts by mitigating the fitness defects of such highly altered strains, 

as demonstrated in the case of an E. coli strain with nearly 25% of its genome removed 

(Choe et al., 2019). Additionally, improvements in strain engineering techniques allow for 

particular phenotypes to be linked to other properties, such as biosensors that cause cellular 

fluorescence upon production of a desired compound. Biosensors hold great promise as a 

complementary ALE technology, but advancements are needed in their dynamic ranges and 

saturation points, compatibility across organisms, and evolutionary robustness to ‘cheaters’ 

that purge the sensing components, all of which currently limit efficacy in host strains 

(Williams et al., 2016). Nevertheless, biosensors enable enrichment for traits other than 

simple growth rate when the selective environment is properly designed (Mahr et al., 2015). 

Modifications to the ALE environment can also select for complex phenotypes, such as the 

evolution of multicellularity in a unicellular yeast as a result of predator-induced selection 

against small or individual cells (Ratcliff et al., 2015). The inherent dependence of ‘fitness’ 

on the particulars of the evolutionary environment makes ALE capable of selecting for 

diverse and novel traits.

The growing body of ALE work and the increased throughput of studies driven by 

automation necessitate bioinformatics pipelines and databases to fully realize its potential as 

an efficient tool in the strain engineering process. The ability to generate hundreds of 

relevant clones and populations in any given experiment (which can contain thousands of 

unique mutations), and the ease and cost-efficiency with which they can be sequenced, 
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makes mutational analysis and data handling non-trivial. In addition, new technologies are 

enabling increased clarity on genetic alterations, such as long-read sequencing that reveals 

genomic rearrangements and expansions difficult to discover with shotgun sequencing alone 

(Pollard et al., 2018). There is a need to coalesce the growing body of studies (~102), 

relevant strains (~104), and mutations (~105–6) derived from ALE to learn the overarching 

principles and mutational types that drive phenotypic changes. Work towards meeting this 

challenge has appeared in the form of a database which collates ALE-derived mutations 

across a variety of species, growth environments, and selection schemes (Phaneuf et al., 

2018). Such mutation collections essentially represent “parts lists” for cell engineers (Fig. 

3C), and are ripe for computational probing with Big Data techniques that can extract salient 

evolutionary features. Inclusion of mutations identified in environmental and clinical isolates 

can also expand this rich source of allelic parts for strain engineering. The grand promise of 

such collections is that ALE wet lab experiments may not be required to engineer a desirable 

trait - mutations could be mined directly from a structured database with query tools to 

isolate alleles which convey desired physiological features.

In conclusion, ALE has facilitated a number of strain engineering efforts, and the rapid 

improvements in complementary technologies leave it poised for accelerated adoption, 

improved utility, and establishment as an essential method in the metabolic engineer’s 

experimental toolbox. Causal mutations identified in evolved strains serve both as a way to 

interpret the biochemical method by which fitness and any associated production or growth-

coupled property was increased, and as genetic parts that can be introduced into related 

strains to induce a desired phenotype; importantly, these mutations are also patentable and 

can form the basis for intellectual property generation.
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Figure 1. Adaptive Laboratory Evolution
A) Microbes are cultured in a desired growth environment for an extended period of time, 

allowing natural selection to enrich for mutant strains (altered coloration) with improved 

fitness. This example depicts ALE via serial propagation of batch cultures. B) Evolved 

strains are characterized for phenotypic improvements relative to the ancestral strain, using 

whatever “fitness” metric is appropriate given the evolutionary environment. C) Evolved 

strains have their DNA sequenced to reveal the adaptive mutations enabling phenotypic 

improvement. This example case depicts the fixation of two successive mutations targeting 

the same genetic region.
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Figure 2: A Categorization of ALE Studies
A diagram of different categories of use for laboratory evolution experiments, detailing the 

percent makeup of studies examined (159 total). ‘Growth rate optimization’ illustrates 

fitness development over the course of an ALE, with noticeable fitness jumps. ‘Increase 

tolerance’ illustrates an experimental schematic of an initially mixed population acquiring 

beneficial mutations (red cells) that promote cell survival in a constantly increasing external 

stress environment (e.g., pH, antibiotics, temperature, etc). ‘Substrate utilization’ and 

‘Increase Product Yield/titer’ illustrate evolutionary pathways enabled via ALE that enhance 

the organism’s ability to make use of alternative nutrient sources (colored circles), and to 

increase production of metabolites of interest (colored squares), respectively. Lastly, 

‘General Discovery’ encompasses studies that examined ALEs at a genetic or systems level 

in greater detail.
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Figure 3: ALE for use in the Design, Build, Test, Learn cycle.
A) The typical Design, Build, Test, Learn cycle used in metabolic engineering to generate a 

strain with a desired property. B) Augmentation of the cycle where ALE is included in the 

Build step to rescue a strain that has decreased fitness due to a perturbation, or to optimize a 

strain after removal or addition of genetic content. C) Augmentation of the cycle where a 

collection of mutations (e.g., ALEdb (Phaneuf et al., 2018)) associated to a particular 

phenotype is leveraged for the Design step D) Augmentation of the cycle where ALE can be 

used to completely replace the Design and Build steps and a desirable strain is acquired 

directly from ALE when a phenotype can be tied to selection without engineering.
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