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Abstract

The phenomenon of multidrug resistance in cancer is often associated with the overexpression of 

the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug 

resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. 

Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter 

expression to poor outcome in several cancer types, leading to the development of transporter 

inhibitors. Three generations of inhibitors later, we are still no closer to validating the ‘Pgp 

hypothesis’, the idea that increased chemotherapy efficacy can be achieved by inhibition of 

transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures 

encountered in the development of clinical inhibitors of ABC transporters. We discuss the 

challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. 

In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for 

clinical intervention.

Introduction

Despite recent developments in anticancer drug discovery, various obstacles hinder 

successful cancer treatment. One such complication is the phenomenon of multidrug 

resistance (MDR), which is similar to the well-studied occurrence of antibiotic resistance in 

micro-organisms. Cellular resistance can be linked to the original genetic make-up of cancer 

cells, but may also develop in response to exposure to anticancer agents during treatment.

One intensively studied mechanism of MDR relies on the efflux of cytotoxic drugs from 

cancer cells by ABC (ATP-binding cassette) transporters. ABC transporters are energy-

dependent transporters that normally function in the detoxification and protection of normal 

cells from xenobiotics. The substrates of ABC transporters include a wide range of 

structurally unrelated compounds that include numerous anticancer drugs. Although there 

are a number of ABC transporters that have been identified as potential transporters of 

anticancer drugs, three have received the most attention in the laboratory and in clinical 

oncology: Pgp (P-glycoprotein) (ABCB1/MDR1), MRP1 (multidrug-resistance protein 1) 

(ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)/MXR (mitoxantrone-

resistance protein)]. A model of Pgp based on the elucidated crystal structure [1] is shown in 
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Figure 1. Whereas these transporters have been shown to confer resistance in in vitro and in 
vivo model systems, proof that they are responsible for a significant fraction of drug 

resistance in clinical oncology is lacking. The prevailing strategy used over the last decade 

to evaluate the contribution of the transporters to clinical drug resistance has been to 

investigate the efficacy of anticancer therapy in combination with ABC transporter 

inhibitors. Three generations of ABC transporter inhibitors have been developed and tested 

for clinical application. Unfortunately, these clinical trials have had minimal success. It is 

important to examine and understand the failure of these trials if ABC transporters are to be 

developed as therapeutic targets in clinical oncology.

Localization and expression

ABC transporters are endogenously expressed in a wide range of human tissues. Both Pgp 

and ABCG2 appear to play a major role in cellular protection from cytotoxins and 

xenobiotics. Pgp and ABCG2 are highly expressed in pharmacological barriers, including 

the brain microvessel endothelium, syncytiotrophoblasts of the placental chorionic villus, 

interstitial cells of the testes and haemopoietic stem cells in the bone marrow [2,3]. In 

addition to these barrier sites, Pgp is expressed on the canalicular surface of hepatocytes in 

the liver, in the epithelial cells of the proximal convoluted tubule in the kidney, the apical 

surface of gastrointestinal epithelial cells, the cortex and medulla of the adrenal glands, 

myoepithelium and in cells of the immune system [4]. ABCG2 is localized in the 

hepatocytes of the liver, zona reticularis layer of the adrenal glands, alveolar pneumocytes of 

the lung, prostate epithelium, uterine endocervical cells, cortical tubules of the kidney, islet 

and acinar cells in the pancreas, epithelial cells of the gastrointestinal tract and ducts and 

lobules of the mammary glands [5–7]. MRP1 is known to transport metabolic by-products, 

including glucuronide, glutathione and sulfate conjugates [8]. Key localizations of MRP1 

also suggest protection at blood-normal tissue barriers, including testicular tubules, the 

choroid plexus, where it contributes to the blood-CSF (cerebrospinal fluid) barrier, and in 

bone marrow precursor cells [9,10].

In addition to their role in normal physiology, ABC transporters are highly expressed in 

multiple tumour types. In breast cancer, sarcoma and certain leukaemias, increased 

expression of Pgp was observed in recurrent or relapsed disease compared with expression at 

diagnosis [11]. In AML (acute myelogenous leukaemia), approximately 50% of clinical 

samples show Pgp expression with increasing levels in recurrent leukaemia cells, and 

expression has been repeatedly linked with poor outcome [12–16]. Although still under 

debate, numerous studies have reported increased Pgp expression following chemotherapy in 

tumours of the breast, ovaries, bladder, CNS (central nervous system) and cervix [2]. Pgp 

expression in these cancers is generally correlated with poor clinical outcome [14,17–19].

Pgp is by far the best characterized among the three ABC transporters, whereas MRP1 and 

other members of the ABC family are less well studied. MRP1 has not been found to be a 

significant factor in drug resistance in AML [12,20]. Its prognostic value in CLL (chronic 

lymphocytic leukaemia), lung cancer and breast cancer remains indeterminate [21–24]. To 

date, few studies have shown expression changes in MRP1 following treatment or have 

correlated expression with clinical outcome.
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Association of ABCG2 with clinical outcome has also been inconclusive. Data concerning 

the expression of ABCG2 in AML are inconsistent, with high levels of expression being 

reported in some studies and lower levels in others [25–28]. The association of ABCG2 with 

response in AML is also debated, although some studies conclude that higher ABCG2 

expression is associated with poor response to chemotherapy [15,29–31]. Notably, co-

expression of Pgp and ABCG2 were linked with a lower complete response rate, worse 

event-free survival and worse overall survival in three studies of patients with AML[14,20]. 

In a study that did associate Pgp with poor outcome in breast cancer, there was no significant 

impact of ABCG2 expression [17]. In lung cancer, analysis of biopsy specimens from 

NSCLC (non-small-cell lung carcinoma) treated with cisplatin-based chemotherapy found 

that ABCG2 expression was associated with shorter survival, although there was no impact 

on response rate [32]. The same group found that ABCG2 expression in SCLC impaired 

response and progression free survival during platinum-based treatment [33]. Both 

associations were found despite the fact that platinum is not a substrate for transport.

Data such as those obtained from the lung cancer studies raise the possibility that other 

explanations may exist for the poor clinical outcome linked with transporter overexpression. 

One hypothesis is that cancer stem cells, existing as a separate and identifiable compartment 

of the tumour, are responsible for drug resistance. The model predicts a small subpopulation 

of drug-resistant pluripotent cells that is long-lived, quiescent, evades initial treatment and 

leads to the relapse of a drug-resistant tumour [34]. In this model, ABCG2, and Pgp in some 

cases, serves only as a marker for the stem cell and is responsible for the Hoechst-dim ‘side 

population’ phenotype, serving as a drug-resistance mechanism only for those stem cells. 

The stem cells are then responsible for repopulating a tumour following therapy, and drug 

resistance is due to this repopulation. Increasing numbers of these cells in a tumour could be 

linked with a poor outcome unrelated to the ability to extrude chemotherapy. Although the 

stem cell model is as yet unproven, it has led to the documentation of functional ABCG2 in 

putative cancer stem cells.

Substrates and inhibitors of ABC transporters

ABC transporter substrates include a diverse array of compounds, many of them structurally 

unrelated. In general, Pgp transports large hydrophobic compounds, whereas MRP1 and 

ABCG2 transport both hydrophobic drugs and large anionic compounds [3]. This wide 

range of substrates originally led to speculation that the transporters could be responsible for 

significant MDR in cancer cells. The list of substrates is striking not only in the number of 

anticancer agents, but also in the number of non-oncologic compounds. This highlights the 

potential role of ABC transporters in protection against xenobiotics and in pharmacology. A 

comprehensive but not exhaustive list of ABC transporter substrates found among anticancer 

drugs is provided in Table 1. This chapter focuses on the three transporters most studied 

clinically: Pgp, MRP1 and ABCG2. It is entirely possible that other ABC transporters may 

be clinically relevant, but the association has yet to be discovered. Transporters in the ABCC 

subfamily, for example, generally efflux methotrexate and other anionic substrates such as 

SN-38 [2], but clinical information is lacking.
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Attempts to overcome MDR by preventing anticancer drug efflux have led to the 

development of a number of ABC transporter inhibitors. It has not been difficult to identify 

inhibitors due to the broad range of compounds that interact with the transporters; a partial 

list is provided in Table 2.

Clinical trials

It was hypothesized that inhibition of ABC drug transporter activity during cancer therapy 

could sensitize drug-resistant tumours and/or improve the initial activity of anticancer 

agents. Laboratory models showed promise for the clinical application of Pgp inhibitors to 

circumvent drug resistance. Unfortunately, translation of this knowledge to clinical 

application was unexpectedly difficult. Oncology drugs are generally developed in three 

steps, termed phases, which delineate how far along the drugs are in clinical development. 

Earliest trials, Phase I studies, are dose-finding studies. The goal is to define a safe and 

potentially effective dose to take to the next phase. Typically, these trials are carried out in a 

standardized sequential dose escalation until a pre-defined level of toxicity is observed that 

suggests that further escalation would be harmful to patients. Phase II studies seek to find 

some sign of efficacy in a given patient population. Phase III studies then compare two 

treatments. In drug-resistance reversal trials, where a modulator of resistance is being tested, 

it is critical that the activity of the modulator be tested in a Phase III trial design. Given that 

modulators seldom have intrinsic activity, a modulator is studied in combination with an 

anticancer agent that has been proven safe in the Phase I or II setting and then is compared 

in the Phase III setting against the anticancer agent alone. As described below, many Phase 

II trials of modulators were considered promising and then the results not borne out in Phase 

III trials. A list of clinical trials examining ABC transporter inhibitors is provided in Table 3. 

These inhibitors have been classified into three generations: the first indicating compounds 

that were already U.S. FDA (Food and Drug Administration)-approved for other medical 

uses; the second comprising compounds developed specifically as Pgp inhibitors, some with 

notable pharmacokinetic interactions; and the third including compounds intentionally 

developed, but lacking major pharmacokinetic interactions [2].

First generation

The first-generation MDR inhibitors included verapamil, quinidine and cyclosporin A. 

Clinical trials generally found these drugs ineffective and/or toxic at doses required to inhibit 

ABC transporter function [35]. However, several promising trials generated optimism for the 

use of ABC transporter inhibitors in clinical oncology. For example, quinine was shown to 

increase complete remission and survival rates in Pgp-positive myelodysplastic syndromes 

treated with intensive chemotherapy [36]. Also, cyclosporin A combined with daunorubicin 

and cytarabine in patients with poor risk AML revealed a statistically significant 

improvement in overall survival during a 2-year follow-up from the Phase III clinical trials 

[37]. Addition of dexverapamil to EPOCH chemotherapy (a regimen comprising etoposide, 

doxorubicin, vincristine, cyclophosphamide and prednisone) in a cross-over design resulted 

in an increased response rate in lymphoma patients [38]. These findings motivated 

investigators to develop more potent inhibitors of drug efflux. Interestingly, limited 

confirmation of the cyclosporin A trial was reported in two sequential Phase II trials in 
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which the addition of cyclosporin A in the second trial again improved relapse-free survival 

[39].

Second generation

The second generation of inhibitors was developed to improve potency over the first-

generation inhibitors. The most developed inhibitor was valspodar (PSC-833), a 10–20-fold 

more potent analogue of cyclosporine D [40,41]. Although valspodar fulfilled the 

requirement for a higher-affinity non-toxic Pgp inhibitor, the drug presented unanticipated 

pharmacokinetic interactions. Through concurrent inhibition of CYP3A4 (cytochrome P450 

3A4), valspodar interfered with drug metabolism and elimination, thus increasing anticancer 

drug exposure [42,43]. The Pgp drug-binding site is similar to the drug-binding site on 

CYP3A4, and many anticancer agents are substrates for Pgp and also CYP3A4. Valspodar 

reduced CYP3A4-mediated intestinal or liver metabolism of the anticancer agents at the 

same time that it blocked Pgp-mediated efflux from cancer cells and normal tissues. This 

resulted in reduced drug metabolism that elevated drug exposure, and increased the severity 

and incidence of adverse effects associated with the anticancer therapy. These were often 

bone marrow toxicities, including neutropenia and thrombocytopenia that could be attributed 

to increased AUCs (areas under the concentration curves) for a chemotherapeutic agent. In 

order to accommodate this pharmacokinetic interaction in valspodar trials, anticancer drug 

doses were reduced by 25–50% [44,45]. However, because of interpatient variation in 

CYP3A4 metabolism, some patients were underdosed and others overdosed [46,47]. A 

Phase III CALGB (Cancer and Leukemia Group B) trial using valspodar in previously 

untreated AML patients over age 60 was closed early due to excessive mortality in the 

experimental arm during induction [45]. Despite this problematic result, a subset of patients 

with detectable leukaemic cell drug efflux had a statistically significant improvement in 

complete remission rates and a trend towards an improved disease-free survival [45]. 

Another interesting result was seen in a study with AML patients under the age of 60. The 

trial observed that the addition of valspodar to daunorubicin, etoposide and cytarabine 

showed an advantage in disease-free and overall survival in a subset of patients 45 years old 

or younger [48]. Unfortunately, the result has not been duplicated, and development of 

valspodar has since been discontinued.

Similar findings were obtained with VX-710 (Biricodar, Incel™), which has the ability to 

inhibit Pgp, MRP1 and ABCG2 [49]. Responses were observed in trials with sarcoma and 

ovarian cancer, but because of the non-randomized design, it was not possible to determine 

their significance [17,50,51]. Development of Biricodar also appears to have been 

discontinued.

Third generation

The third-generation compounds were better agents: potent, non-toxic and with minimal 

pharmacokinetic interaction. These new inhibitors include tariquidar (XR9576), zosuquidar 

(LY335979), laniquidar (R101933) and CBT-1.

Tariquidar, as well as the second-generation inhibitor elacridar, have the added benefit of 

extended Pgp and ABCG2 inhibition [52,53]. A Phase I study demonstrated that 
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administration of elacridar combined with oral topotecan resulted in complete apparent oral 

bioavailability of topotecan [54]. Flow cytometry studies using rhodamine 123, a fluorescent 

substrate of Pgp, showed that the Pgp and ABCG2 antagonist tariquidar is able to inhibit 

Pgp-mediated rhodamine efflux for up to 48 hours after a single dose [55]. Phase I studies of 

tariquidar in combination with vinorelbine, paclitaxel or doxorubicin showed no significant 

side effects or pharmacokinetic interactions [56]. However, two large Phase III trials with 

tariquidar closed early due to toxicity. Both trials combined tariquidar with first-line 

chemotherapy for patients with NSCLC [57,58].

Zosuquidar is one of the most potent Pgp inhibitors in development. It has been evaluated in 

patients with AML, where zosuquidar is able to completely inhibit Pgp function, and results 

are awaited in these trials [59]. A previous clinical study showed a 75% response rate among 

16 patients receiving zosuquidar in combination with daunorubicin and cytarabine for AML 

[60]. A Phase I/II trial demonstrated that administration of zosuquidar with standard 

chemotherapy in patients with untreated non-Hodgkin’s lymphoma had little effect on the 

pharmacokinetics of the anticancer drugs [61]. A similar Phase II trial tested the effects of 

docetaxel with zosuquidar administration in breast cancer patients. Although the trial found 

no significant difference in progression-free survival, overall survival or response rate, the 

treatment regimens were found to be safe [62].

Additional third-generation inhibitors include laniquidar and CBT-1. Laniquidar has shown 

promise as a potent orally active MDR inhibitor with no observed pharmacokinetic 

interactions. A Phase II study of laniquidar in combination with docetaxel or paclitaxel in 

refractory breast cancer has been conducted, but results have not yet been reported [63]. Pre-

clinical studies examining CBT-1 have affirmed the drug’s ability to inhibit Pgp function at 

low concentrations [64]. Phase I trials testing CBT-1 with paclitaxel or doxorubicin have 

been completed, and the agent is now in Phase II and III trials in patients with NSCLC [65]. 

The initial Phase I studies demonstrated that CBT-1 had no effect on the pharmacokinetics 

of doxorubicin or paclitaxel [66].

Inhibitor trials revisited

To date, clinical trials using ABC transporter inhibitors have not met the expectations of the 

scientific community. Whereas the negative results may be explained by several factors, such 

as the effect of the inhibitors on pharmacokinetics, it is also possible that the hypothesis that 

ABC transporter inhibition will increase drug accumulation in tumours and thereby efficacy 

is simply incorrect. It will be difficult to be certain which conclusion is correct without 

further clinical and translational work. Some of the flaws in earlier trials that support the 

first conclusion are as follows.

• The initial enthusiasm for the Pgp hypothesis led to a large number of trials and a 

rapid loss of optimism when these trials were unable to achieve the magnitude of 

benefit anticipated based on in vitro models. More realistic expectations may 

have allowed identification of a subset of patients with true benefit.

• Clinical trials were guided by highly drug-resistant intraperitoneal murine 

tumour models. A recent study using a hereditary breast cancer mouse model 
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showed that modest increases in Pgp were sufficient to cause resistance to 

doxorubicin [67], and to the PARP [poly(ADP-ribose) polymerase] inhibitor 

olaparib (AZD2281) [68]. Increased sensitivity to both drugs was shown with the 

addition of tariquidar. Better pre-clinical models could have aided in the 

selection of appropriate drug and inhibitor combinations.

• A clinically validated assay for Pgp or other ABC transporters has never been 

established. This meant that correlative studies detecting Pgp in tumour tissue 

were not conducted in a standardized fashion. Since no definitive guidelines for 

clinical analysis existed, clinical trials differed in assay methodology, which 

resulted in confusing data that could not be used to interpret clinical trial results, 

or compared across institutions.

• Patients were not selected based on tumour expression of Pgp. To conduct a trial 

with power to determine the true impact of ABC transporter inhibitors in MDR, 

it is crucial to select the subset of patients whose tumours express ABC 

transporters as a dominant mechanism of resistance. For example, a Phase III 

clinical trial used tariquidar in patients with NSCLC, despite a lack of evidence 

suggesting that NSCLC expresses Pgp to a significant extent [57]. Much like 

trastuzumab for HER2-overexpressing breast cancers, imatinib in CML (chronic 

myeloid leukaemia) and erlotinib for patients with lung cancers containing 

epidermal growth factor receptor mutations, it is not likely that a targeted therapy 

will succeed without presence of the target.

A corollary to the inadequate Pgp detection methods is that other transporters, both uptake 

and efflux, were not assessed. A diagnostic imaging test would allow identification of 

tumours in which Pgp was a dominant factor in drug accumulation [69]. In many tumours, 

ABC transporters other than Pgp are likely to be equally important in reducing drug 

accumulation. It is now understood that there is a large family of uptake transporters that 

also determine drug accumulation. The relative importance of uptake compared with efflux 

transporters is not known, but is likely to vary among tumours or even across degrees of 

differentiation. Only a tumour in which Pgp is a dominant mechanism of resistance would 

be expected to be sensitive to modulation.

The earlier trials did not confirm that the Pgp inhibitor under question was actually able to 

inhibit the ABC transporter in vivo. In time, ex vivo assays confirming Pgp inhibition by 

second and third-generation inhibitors in CD56+ circulating mononuclear cells were 

developed [70]. The radionuclide imaging agent [99mTc]sestamibi was identified as a Pgp 

substrate and was shown in patients to increase in tissues and tumours known to express 

high levels of Pgp, when administered in the presence of a Pgp inhibitor [56,71].

Most of the trials were conducted with ‘home-run’ Phase II designs in patients whose 

tumours did not necessarily overexpress ABC transporter, and in which it was not known 

whether or not an ABC transporter was a dominant mechanism of resistance. The hope was 

that benefit would be substantial and obvious; thus this design did not allow determination 

of the benefit of adding an inhibitor to the treatment regimen. Randomized studies were 
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needed, but those that came later again failed to select patients where the dominant 

mechanism of resistance was transporter-mediated.

Thus the authors would conclude that the hypothesis that Pgp mediates drug resistance was 

never adequately tested in the clinic. The failure to document the expression of Pgp in 

tumours, that it conferred resistance and that the inhibitors reached the tumour to block 

efflux and increase drug accumulation all suggest that the negative results from the clinical 

trials were flawed. Indeed, pharmaceutical companies are sufficiently wary of drug 

transporter-mediated drug resistance that compounds are often optimized during 

development to make them poorer substrates for transport.

However, it is also possible that Pgp inhibitors cannot increase drug uptake in tumours. Like 

anticancer drugs, inhibitors access solid tumours via blood vessels and must penetrate 

tumour tissue to reach all cancer cells. A recent study in a xenograft model demonstrated 

that Pgp inhibitors increase uptake of doxorubicin only in cells close to blood vessels and 

have little effect on drug uptake at intermediate distances [72]. Pgp inhibition may not have 

a significant impact if there is impaired permeability and drug diffusion, particularly in solid 

tumours. Imaging studies to evaluate drug uptake in tumours are critically needed to answer 

this question.

A third possibility is that Pgp, or other ABC transporter inhibitors that reside in bone 

marrow cells, will not succeed in the clinic because of the lack of a therapeutic window. To 

the extent that transporters protect normal bone marrow cells, normal tissue sanctuaries, and 

are involved in drug excretion, effective inhibitors have the potential to block these vital 

roles and increase toxicity to patients. It has been felt that a therapeutic window would exist 

because transporter levels are lower in tumours than in normal cells. Further, Pgp-knockout 

models have generally shown only a modest impact on blood levels of cancer 

chemotherapeutics, presumably related to complex and redundant metabolic pathways. To 

date, clinical trials have suggested that a therapeutic window does exist. But this question 

will remain inconclusive as long as clinically effective ABC transporter inhibition has not 

been achieved.

Implications from pharmacology

ABC transporters have emerged as an important variable in pharmacology and drug 

distribution. A number of SNPs (single nucleotide polymorphisms) have been identified that 

may contribute to inter-individual variation in drug metabolism. It is possible that some of 

the increased toxicity observed in the earlier trials occurred in patients with polymorphic 

ABC transporters with altered folding and impaired function or lower expression levels, 

described for certain ABC transporter variants [73–78]. A patient whose genetics constrain 

expression or function of Pgp or ABCG2 would not be expected to benefit from the addition 

of a transport inhibitor since both normal tissues and tumours would be affected. The data 

showing that, in the trial with valspodar mentioned earlier, patients with efflux-positive 

leukaemia did not have high mortality and actually had some evidence of treatment benefit 

support this hypothesis [45]. Understanding the impact of inter-individual variation in 

pharmacogenomics could clarify patient selection in future clinical trials.
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Non-traditional applications of ABC transporters as targets

As a component of the blood-brain barrier and the gastrointestinal epithelium, the clinical 

applications of ABC transporter inhibitors can be expanded to trials examining ways to 

increase CNS uptake of non-toxic drugs and improve oral drug bioavailability. This is of 

increased importance in diseases such as breast, lung and renal cancer, where newer targeted 

therapies are increasing systemic control, and more CNS metastases are emerging [79]. TKIs 

(tyrosine kinase inhibitors), such as erlotinib, lapatinib and sorafenib, are effective in the 

systemic control of these tumours, but are also substrates for the transporters [80–84]. 

Remarkably, murine studies show that, whereas knockout of either transporter alone has 

minimal impact, deletion of the orthologues for Pgp and ABCG2 results in a 22-fold 

increase in relative CNS uptake of dasatinib, a 40-fold enhancement of CNS uptake of 

lapatinib, an 8.5-fold increase for erlotinib and a 9-fold increase for sorafenib. The ability to 

increase CNS penetration of these agents could thus have a major impact on decreasing the 

occurrence of CNS disease in solid tumours sensitive to these agents. Studies to assess 

accumulation of radionuclide-imaging agents in the brain are in early stages and may help to 

identify agents that could increase the accumulation of TKIs for patients whose systemic 

disease has been controlled [85–88]. The mouse knockout models also show an impact of 

the transporters on pharmacokinetics, although to a much lesser extent. Nonetheless, the 

ability of transport inhibitors to increase oral bioavailability and to equalize blood levels 

among patients is an area for investigation that could lead to increased access to anticancer 

agents, particularly where infusional therapy is either too cumbersome or too costly to 

administer.

Future directions

The most important question is where the field should go from here, and whether this family 

of proteins warrants continued investigation as potential therapeutic targets in cancer. Since 

Pgp and ABCG2 expression continue to be linked to poor outcome, we argue that it would 

be a mistake to discontinue studying the role of ABC transporters in clinical oncology. Data 

from clinical trials being conducted with zosuquidar in AML and with CBT-1 in NSCLC are 

awaited. However, negative results from these trials are still subject to many of the same 

caveats as the older trials, if conducted without selection of patients whose tumours have 

been shown to have a Pgp-mediated reduction in drug accumulation.

Whereas the list of ABC transporter substrates has steadily expanded, investigation into the 

implications of these compounds being substrates has waned. For example, the drugs 

imatinib, nilotinib and dasatinib, which are used in the treatment of CML, are both Pgp and 

ABCG2 substrates [89,90]. Therefore drug transporters could contribute to drug resistance 

in CML [91]. Mutation of the target and altered uptake are also relevant mechanisms of 

resistance for CML, hence the need to study the individual contribution of the different 

mechanisms, determine which are dominant and develop strategies to overcome resistance. 

Whereas resistance that manifests clinically is a problem for a relatively small subset of 

patients with CML in chronic phase, it is an inevitable problem for patients who receive 

TKIs as therapy for solid tumours. In this setting, resistance is again certain to be 

multifactoral, and the contribution of ABC transporters is one among several mechanisms. 

The sanctuary site data in murine knockout models that demonstrate marked redundancy 
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between Pgp and ABCG2 in limiting the CNS uptake of dasatinib, lapatinib, sorafenib, 

erlotinib and sunitinib suggest that together these transporters could markedly limit the 

uptake of the TKIs in solid tumours. Approaches that successfully increase accumulation of 

the TKIs in the CNS could reignite the question of whether systemic ABC transporter 

inhibition in solid tumours could be successful.

ABC transporters have received considerable attention since being discovered in putative 

cancer stem cells. Whether one accepts the idea that cancer cells and progeny divide 

stochastically, i.e. at random, or the revisionist hypothesis that cancer stem cells represent a 

unique subpopulation of cancer cells that persist and repopulate a tumour following each 

therapy-mediated reduction in cell number, the molecular pathways that produce the 

‘sternness’ phenotype can be targeted. Inhibitors of Notch, Wnt and Hedgehog pathways 

could easily be ABC transporter substrates. Since putative cancer stem cells identified to 

date have high levels of ABCG2, it will be important to know whether inhibitors of these 

stem cell pathways are substrates. If the role of ABCG2 is to protect stem cells, then the 

stem cell pathway inhibitors need to circumvent drug efflux.

With the discovery of Pgp, MRP1 and ABCG2, each ABC transporter in turn was 

scrutinized as the crucial new transporter in MDR. As a result, research and literature 

focused on that one transporter rather than forming a cohesive study on multiple ABC 

transporters responsible for MDR. In order to avoid this bias, and to clarify tumour tissue 

expression of transporters in drug resistance, it is critical that transporters not be studied as 

individual entities in clinical samples. To understand mechanistically why drug 

accumulation may be limited, unbiased assays of known uptake and efflux transporters 

should be conducted within a single study, as they may function as a synergistic unit to 

reduce drug accumulation. Fortunately, advanced array technologies offer this possibility.

When Pgp inhibitors were introduced as a means of circumventing MDR, expectations for 

the inhibitors were very high. Early clinical trials were unable to meet these expectations 

and resulted in disappointment for many in the scientific community. Since then, changes 

have occurred in the standards of anticancer drugs as well as our perception of cancer 

therapy. For instance, cancer is more often viewed as a chronic disease and incremental 

improvements more acceptable. This concept has brought many new agents to the anticancer 

stage, and it may be worth examining transporter inhibitors in this current context. Indeed, 

AZD2281, a PARP inhibitor found to be active in BRCA1 (breast cancer early-onset 1)-

deficient breast cancer, is also a substrate for Pgp-mediated drug resistance. A genetically 

engineered mouse model for BRCA1-associated breast cancer shows marked improvement 

in response and duration of response with the addition of tariquidar to AZD2281 [68].

However, clinical trials should not be conducted again until patients can be selected who 

have tumours in which resistance is dominated by ABC transporters. We lack a validated 

assay for detecting any of the transporters, i.e. an assay with known sensitivity, specificity 

and reproducibility for detection of Pgp, MRP1, ABCG2 or any of the transporters, in the 

clinical setting. The specificity of antibody-based assays has been a major problem; RNA 

assays appear too sensitive. More important is the development of a functional assay; 

indeed, unrelated to ABC transporters, determination of actual drug accumulation in solid 
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tumours has been a neglected area of cancer research. Currently, there is no test by which a 

treating physician can determine whether an ineffective agent is reaching the tumour or its 

therapeutic target. Diagnostic imaging has the potential to determine whether Pgp or other 

transporters are functioning to reduce drug accumulation and whether inhibition can change 

drug uptake in solid tumours. A number of new PET (positron-emission tomography) 

imaging agents that could remedy this problem are under study [85–87,92,93]. Indeed, it can 

be easily argued that laboratory investigations aimed at identifying transporter inhibitors 

should not be conducted further until a clinical assay exists to define which tumours have 

transporter-dominated resistance mechanisms. It has been much easier to select new 

inhibitors in vitro than it has been to show that these agents increase drug accumulation in 
vivo. This latter question should be the focus of future research in this field.

Conclusion

“I have made some progress. But why so late and with such difficulty?”

—Paul Cezanne

Progress in science, and apparently in art, is often painstakingly slow. The effort to exploit 

ABC transporters to reverse drug resistance in clinical oncology has been characterized by 

missteps that ultimately impeded our ability to answer the question of their true role in 

cancer. Koch’s postulates regarding the causal role of bacteria in disease initially insisted 

that the micro-organism should not be found in healthy animals, but was later revised when 

asymptomatic carriers were discovered. In the case of ABC transporters, presence of a 

transporter does not define that transporter as the dominant cause of drug resistance. Thirty-

five years after the discovery of Pgp, we still do not know whether or in which tumours the 

transporter reduces anticancer drug accumulation. This is a question that needs to be 

answered before the field can begin to move again. Emerging understanding of the 

redundancy of ABC transporters in limiting drug distribution to sanctuary sites such as the 

CNS has provided proof-of-concept for their ability to limit drug accumulation in solid 

tumours. Methods must be developed to determine whether the latter is true, and whether it 

matters, in patients with cancer.

Note added in proof (received 19 July 2011)

Results from a randomized Phase III trial in older patients diagnosed with AML treated with 

cytarabine and daunorubicin with zosuquidar or placebo were reported recently [101]. The 

trial found that addition of zosuquidar to the treatment regimen did not significantly affect 

the complete response rate, outcome or progression-free survival.

Summary

• ABC transporters are overexpressed in a variety of tumour types and are 

associated with poor outcome in some malignancies.

• The ‘Pgp hypothesis’ conveys the notion that overexpression of Pgp or other 

ABC transporters confers clinical drug resistance, which could be overcome 

through inhibition of drug efflux mediated by the ABC transporter.
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• Efforts to circumvent drug resistance through ABC transporter inhibition largely 

failed, with Pgp inhibitors the most intensively studied. Problems encountered 

during early development suggest, from one perspective, that the Pgp hypothesis 

was never adequately tested. It is also possible that non-transporter mechanisms 

limiting drug delivery also limited delivery of the inhibitors, and that these non-

transporter mechanisms are more crucial to adequate drug exposure.

• Pharmacogenomic variation in ABC transporter expression or function could 

have made some individuals markedly more sensitive to the inhibitors, with loss 

of a therapeutic window.

• Normal tissue expression may provide the most relevant strategy to exploit ABC 

transporters as therapeutic targets. Thus inhibition of drug efflux at the blood-

brain barrier may allow increased CNS uptake and retention of anticancer agents. 

Inhibition of efflux in the gastrointestinal tract could allow improved oral 

absorption of anticancer agents.

• Many novel targeted agents are substrates for ABC transporters in in vitro 
assays. It is not known whether Pgp or other ABC transporters are relevant in 

clinical resistance to targeted agents such as lapatinib, sorafenib, dasatinib or 

imatinib. These compounds are important candidates for strategies aimed at 

increasing CNS uptake.

• Development of imaging agents is critical to determining whether Pgp or another 

ABC transporter is a dominant mechanism of drug resistance, whether there is 

tumour heterogeneity, and whether expression might be critical in a small subset 

of stem-cell-like cancer cells. Imaging anticancer agents or surrogates in vivo has 

the potential to tell us whether ABC transporters are rate-limiting for drug 

uptake, whether they are a dominant mechanism of drug resistance and whether 

they should re-emerge as therapeutic targets.
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Figure 1. Substrate transport by Pgp
(A) The substrate, shown in magenta, enters the membrane and diffuses through a portal in 

the transporter. (B) Once in the drug-binding pocket, coloured blue, ATP, shown in yellow, 

binds to the nucleotide-binding domains and causes a conformational change, leaving the 

drug-binding pocket facing the extracellular space. ATP then binds again to reset the 

transporter to its original conformation shown in (A). From [1]: Aller, S., Yu, J., Ward, A., 

Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P., Trinh, Y., Zhang, Q., Urbatsch, I. and 

Chang, G. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific 

drug binding. Science 323, 1718–1722. Reprinted with permission from AAAS.
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Table 1.
Clinically relevant substrates of the MDR-related ABC transporters

Data compiled from [2,94].

Class Substrate ABCB1 ABCC1 ABCG2

Vinca alkaloids Vinblastine ✓ ✓

Vincristine ✓ ✓

Vinorelbine ✓ ✓

Anthracyclines Daunorubicin ✓ ✓ ✓

Doxorubicin ✓ ✓ ✓

Epirubicin ✓ ✓ ✓

Epipodophyllotoxins Etoposide ✓ ✓ ✓

Teniposide ✓ ✓

Taxanes Docetaxel ✓

Paclitaxel ✓

Kinase inhibitors Dasatinib ✓ ✓ ✓

Erlotinib ✓ ✓

Gefitinib ✓ ✓

Imatinib (Gleevec) ✓ ✓ ✓

Lapatinib ✓ ✓

Nilotinib ✓ ✓ ✓

Sorafenib ✓ ✓

Sunitinib ✓ ✓

Vandetanib ✓ ✓

Campthotecins Irinotecan (CPT-11) ✓ ✓ ✓

SN-38 ✓ ✓ ✓

Arsenite ✓

AZT ✓

Bisantrene ✓ ✓

Cisplatin ✓

Colchicine ✓ ✓

Digoxin ✓

Flavopiridol ✓

Methotrexate ✓ ✓ ✓

Mitoxantrone ✓ ✓

Saquinivir ✓
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Table 2.
Inhibitors of MDR-related ABC transporters

Data compiled from [2,94].

Substrate ABCB1 ABCC1 ABCG2

Amiodarone ✓

Cyclosporine A ✓ ✓ ✓

Nifedipine ✓

Quinidine ✓ ✓

Quinine ✓ ✓

Verapamil ✓ ✓

Biricodar (VX-710) ✓ ✓ ✓

Dexniguldipine ✓

Dofequidar (MS209) ✓ ✓

S9788 ✓

Valspodar (PSC-33) ✓

CBT-I ✓ ✓

Elacridar (GF120918) ✓ ✓

Laniquidar (Rl01 933) ✓

LY475776 ✓ ✓

ONT-093 ✓

Tariquidar (XR-9576) ✓ ✓

Zosuquidar (LY335979) ✓

Curcumin ✓ ✓

Flavonoids ✓

FTC ✓

Mitotane ✓

MK57I ✓
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Table 3.
Phase III drug resistance inhibitor trials

ADE, cytarabine, daunorubicin and etoposide; MDS, myelodysplastic syndrome; OS, overall survival; PFS, 

progression-free survival; RAEB-t, refractory anaemia with excess blasts in transformation; VAD, vincristine, 

adriamycin and dexamethasone.

Generation Modulator Cancer type Anticancer drug(s) Outcome Reference

First Cyclosporin Relapsed and 
refractory AML

ADE No benefit [95]

Cyclosporin Poor risk AML, 
RAEB-t

Daunorubicin, cytarabine Improved OS in 
cyclosporin A group

[37]

Cyclosporin Myeloma VAD No benefit [96]

Second Valspodar 
(PSC-833)

AML Daunorubicin, cytarabine No benefit [97]

Valspodar 
(PSC-833)

Untreated AML ADE Terminated early due to 
toxicity

[45]

Valspodar 
(PSC-833)

Untreated AML ADE No OS advantage age >45 
years, OS benefit age <45 
years

[48]

Valspodar 
(PSC-833)

Ovarian Carboplatin, paclitaxel No benefit [98]

Valspodar 
(PSC-833)

Refractory AML, 
high-risk MDS

Mitoxantrone, etoposide, 
cytarabine

No benefit [99]

Valspodar 
(PSC-833)

NSCLC Carboplatin, paclitaxel Terminated early due to 
toxicity

Novartis

Valspodar 
(PSC-833)

Multiple myeloma VAD No benefit; increased 
toxicity with valspodar

[44]

VX-710 (Biricodar, 
Incel™)

Lung Doxorubicin, vincristine Unknown http://
clinicaltrials.gov

Third CBT-1 NSLC Paclitaxel, carboplatin Ongoing http://
clinicaltrials.gov

Dofequidar 
(MS-209)

Breast Cyclophosphamide, 
doxorubicin, fluorouracil

Improved PFS in subset [100]

XR-9576 
(Tariquidar)

NSCLC Vinorelbine Terminated early due to 
toxicity

http://
clinicaltrials.gov

XR-9576 
(Tariquidar)

NSCLC Paclitaxel, carboplatin Terminated early due to 
toxicity

http://
clinicaltrials.gov

Zosuquidar 
(LY335979)

AML, MDS Daunorubicin, cytarabine Ongoing http://
clinicaltrials.gov
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