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Abstract

The hypothalamic–pituitary–gonadal axis is of relevance in many processes related to the 

development, maturation and ageing of the male. Through this axis, a cascade of coordinated 

activities is carried out leading to sustained testicular endocrine function, with gonadal 

testosterone production, as well as exocrine function, with spermatogenesis. Conditions impairing 

the hypothalamic–pituitary–gonadal axis during paediatric or pubertal life may result in delayed 

puberty. Late-onset hypogonadism is a clinical condition in the ageing male combining low 
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concentrations of circulating testosterone and specific symptoms associated with impaired 

hormone production. Testosterone therapy for congenital forms of hypogonadism must be lifelong, 

whereas testosterone treatment of late-onset hypogonadism remains a matter of debate because of 

unclear indications for replacement, uncertain efficacy and potential risks. This Primer focuses on 

a reappraisal of the physiological role of testosterone, with emphasis on the critical interpretation 

of the hypogonadal conditions throughout the lifespan of the male individual, with the exception 

of hypogonadal states resulting from congenital disorders of sex development.

The hypothalamic–pituitary–gonadal (HPG) axis (FIG. 1) is of paramount importance in 

many processes related to the development, maturation and ageing of the male1. The 

pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus 

stimulates the biosynthesis of gonadotropins (glycoprotein polypeptide hormones secreted 

by the anterior pituitary gland) — namely, luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH). LH (with gonadal testosterone and insulin-like factor 3 (INSL3)) sustains 

testicular endocrine function led by Leydig cells which is required for male genital 

development and differentiation throughout human sexual determination2. FSH, in turn, 

sustains testicular exocrine function led by Sertoli cells through spermatogenesis. The two 

Sertoli cell hormones, anti-Müllerian hormone (AMH) and inhibin B, participate in the 

regulation of genital masculinization and negative feedback regulation of FSH secretion, 

respectively. Likewise, the HPG axis has a key role in completing phenotypic differentiation 

and development of the fetus and male sexual maturation at puberty and into adulthood3.

Overall, congenital or acquired disturbances at any level of the HPG axis can lead to an 

impairment of reproductive function and the clinical syndrome of hypogonadism. Male 

hypogonadism is a disorder associated with decreased functional activity of the testes, with 

decreased production of androgens (steroid hormones that regulate male characteristics), 

inhibin B, AMH and/or impaired sperm production4. Hypogonadism can be caused by a 

primary testicular pathology (primary hypogonadism, otherwise known as 

hypergonadotropic hypogonadism) resulting from malfunction at the level of the testes due 

to a genetic cause, injury, inflammation or infection (BOXES 1,2). Conversely, 

hypothalamic and/or pituitary failures lead to secondary hypogonadism (also called central 

hypogonadism or hypogonadotropic hypogonadism), which is most often caused by genetic 

defects, neoplasm or infiltrative disorders (BOXES 1,2).

Signs and symptoms of hypogonadism depend on the age of onset, the severity of androgen 

deficiency and the underlying cause of androgen deficiency3. In healthy childhood, 

testosterone is low and spermatozoa are not produced; thus, decreased Sertoli cell function, 

as reflected by low inhibin B and AMH, is the cardinal sign of hypogonadism before 

puberty. Conditions impairing the HPG axis that occur during paediatric or pubertal life may 

result in delayed puberty (defined as the lack of sexual maturation by an age at which 95–

98% of the children have initiated sexual maturation)5,6. In adulthood, this can manifest as 

testosterone deficiency, which is a clinical syndrome resulting from reduced testicular 

testosterone production or from reduced serum testosterone activity, in conjunction with 

clinical signs and symptoms. Spermatogenic failure is usually included as a sign of 

hypogonadism. When specifically associated with ageing, obesity or poor health, adult-onset 
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hypogonadism is usually called late-onset hypogonadism (LOH). Depending on the causes, 

LOH can be persistent or potentially reversible (BOX 1).

This Primer focuses on a reappraisal of the physiological role of testosterone, with emphasis 

given to the critical interpretation of the hypogonadal conditions throughout the entire 

lifespan of the male, while considering as distinct the two periods of paediatric/pubertal and 

adult life in terms of both pathophysiology and clinical manifestations. Hypogonadal states 

resulting in congenital disorders of sex development fall outside the scope of this Primer.

Epidemiology

Pubertal hypogonadism

According to the age of onset, paediatric hypogonadism can manifest differently (BOX 3). 

Clinical presentation of hypogonadism at birth is rare, with abnormal genitalia occurring in 

~1 in 4,500 live births7. Hypogonadism established after birth, throughout childhood, is 

usually inapparent until pubertal age; at this point, the hypogonadal condition manifests as 

delayed puberty. The prevalence of delayed puberty in the general population has not been 

thoroughly assessed. In this context, it is important to note that the current definition of 

delayed puberty is statistical. In most textbooks and review articles, a cut-off of 14 years is 

cited; using this definition, early studies have found a prevalence of delayed puberty of <2% 

among boys in the United States8. However, the real prevalence is likely higher because 

transient forms (such as constitutional delay of growth and puberty (CDGP) or reversible 

forms of congenital isolated secondary hypogonadism) may remain undiagnosed. Delayed 

puberty is caused by CDGP in 60% of cases, secondary hypogonadism of organic origin in 

10% of cases, primary hypogonadism of organic origin in ~7% of cases or functional 

hypogonadism (both primary and secondary) in 20% of cases9–12. Some examples of 

paediatric and pubertal hypogonadisms of functional origin, which include chronic diseases 

and excessive drug use causing physiological suppression of the HPG axis, are listed in 

BOX 2 (REFS9–12). Type 1 diabetes mellitus is not usually associated with delayed puberty 

unless it is poorly controlled. However, in many of the chronic illnesses that can lead to a 

transient disorder, functional hypogonadism is rare, having an incidence between 1 per 

10,000 and 1 per 100,000 per year over childhood and young age13–16.

Secondary hypogonadism.—Secondary hypogonadism can be congenital or acquired 

(BOX 2). Congenital forms can present as isolated secondary hypogonadism, in which only 

GnRH and/or gonadotropins levels are affected, whereas the rest of the hypothalamic–

pituitary hormone axis remains intact. Congenital secondary hypogonadism is rare, having a 

global prevalence of 1 case per 4,000–10,000 boys17. Kallmann syndrome represents 60% of 

these forms and has been recognized to be familial (X-linked, autosomal dominant or 

autosomal recessive) or sporadic18. In addition to secondary hypogonadism, patients with 

Kallmann syndrome also present with hypo-anosmia (lack of smell) and malformations 

(such as midline defects, unilateral renal agenesis, bimanual synkinesia or mirror 

movements, syndactyly and dental agenesis)17.

Combined congenital secondary hypogonadism, is characterized by the deficiency of 

multiple pituitary hormones and results from a wide variety of even more rare genetic 
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conditions than isolated congenital hypogonadism, such as mutations of HESX1, PROP1, 
LHX3 and LHX4, which encode proteins involved in the HPG axis.

Acquired secondary hypogonadism could result from intracranial masses (such as 

craniopharyngioma) or infiltrative diseases (such as Langerhans cell histiocytosis) (BOX 2), 

both rare conditions, with a reported incidence of <5.0 per 1,000,000 per year, but 

characterized by a twofold higher prevalence during childhood than adulthood19,20. Other 

causes of acquired secondary hypogonadism are more typical in adult age. However, they 

can occur also in children and adolescents, delaying normal pubertal onset or progression. 

Of relevance, of boys with delayed puberty, the majority of cases are due to chronic diseases, 

such as hypothyroidism, growth hormone deficiency, Crohn’s disease and severe asthma9. 

Malnutrition is described in 3% of cases, whereas excessive exercise and anorexia nervosa 

as well as hyperprolactinaemia are less frequent in males9 (BOX 2).

Primary hypogonadism.—Klinefelter syndrome, a trisomy associated with a 47,XXY 

karyotype21,22, is the most important genetic cause of primary hypogonadism, with a global 

prevalence of 1 per 500–1,000 live male births23. A wide range of clinical manifestations 

characterize Klinefelter syndrome, but low testis volume and less often slow pubertal 

development are commonly reported, and primary hypogonadism develops almost 

universally by late adolescence (resulting in a delayed accomplishment of pubertal 

development) or early adulthood24. Of note, Klinefelter syndrome is frequently 

undiagnosed; indeed, as few as 25% of patients with Klinefelter syndrome are accurately 

diagnosed and most of these diagnoses are not made until adulthood25. Nevertheless, this 

may be changing with increased use of prenatal testing and increased use of karyotyping of 

comparative genomic hybridization array in evaluating boys with learning and/or 

behavioural issues.

Acquired causes of primary hypogonadism during childhood or puberty include 

chemotherapy and radiotherapy. For instance, alkylating agents are associated with a 

spermatogenesis failure in 80–90% of cases, which is irreversible in the majority of cases26. 

In ~10% of childhood cancer survivors, normal testosterone levels can be found with a 

normal development of secondary sexual characteristics26. After puberty, irradiation and 

chemotherapy may have even more severe adverse effects on testicular function.

Adult-onset hypogonadism

In healthy, young eugonadal men (defined as <30 years of age, with a normal testosterone 

production), serum testosterone levels range from 10.4 to 36.4 nmol/1 (300–1,050 ng/dl), 

with a slight gradual decline after 40 years of age27 (FIG 1). Using a serum total testosterone 

level <11 nmol/1 (317 ng/dl) to define biochemical hypogonadism, the Baltimore 

Longitudinal Study of Aging (BLSA) reported that ~12%, 20%, 30% and 50% of men in 

their 50s, 60s, 70s and 80s, respectively, are biochemically hypogonadal27. However, 

estimates regarding the prevalence of symptomatic hypogonadism vary widely. The 

European Male Ageing Study (EMAS) evaluated >3,000 men aged 40–79 years according to 

the combination of biochemistry (total testosterone level of <11 nmol/1 (317 ng/dl) and a 

free testosterone level of <0.22 nmol/1 (6.3 ng/dl)) and specific symptoms (presence of 
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erectile dysfunction, loss of morning erections and reduced sexual desire)28. Results showed 

an overall prevalence of 2.1 % in men aged 40–79 years and rates of 0.1% in 40–49 year 

olds, 0.6% in 50–59 year olds, 3.2% in 60–69 year olds and 5.1% in 70–79 year olds. Of 

note, 63% of men maintained physiological total testosterone (>11 nmol/1) levels into old 

age (70–79 years of age), suggesting that hypogonadism is not a uniform sign of ageing. 

Using only biochemical criteria, central hypogonadism was found in 11.8% of the EMAS 

cohort, with 2% having primary hypogonadism and 9.5% having ‘compensated 

hypogonadism’ (defined as high LH, with normal total testosterone), a condition not 

associated with clear symptoms of hypogonadism but that may be a potential harbinger of 

primary hypogonadism29,30. Hence, LOH is a relatively common condition in the ageing 

male (>40 years of age) — with a prevalence of 2–15% within the general population — and 

it is frequently associated with age-related comorbidities, such as obesity, metabolic 

syndrome and type 2 diabetes mellitus (T2DM)31,32.

Mechanisms/pathophysiology

The physiology of the HPG axis

An understanding of the role of the HPG axis throughout development, puberty and ageing 

and its role in male sex development is crucial in order to comprehend the pathophysiology 

of hypogonadism (FIG 2).

Infancy and childhood.—The initial differentiation of the testes in the embryo precedes 

the functional development of pituitary gonadotropins (BOX 4). At birth, gonadotropins and 

testicular hormone levels are low and increase during the first weeks and months of life33,34. 

Peak levels of LH, testosterone and INSL3 are reached during the third month4. Thereafter, 

serum gonadotropins and testosterone decline and remain low until the onset of puberty 

(FIG 2). During this relative physiological quiescence in childhood, basal gonadotropins and 

testosterone measurements do not reflect HPG axis function. Conversely, AMH and inhibin 

B levels increase progressively through infancy and remain high during childhood; their 

basal levels are most informative of Sertoli cell function4. Interestingly, the high androgen 

levels observed during fetal life and the postnatal period are not capable of inducing Sertoli 

cell maturation, full spermatogenesis and secondary sex characteristics as they do at puberty. 

The lack of androgen effect on Sertoli cells and spermatogenesis may be explained by the 

absence of androgen receptor expression in Sertoli cells over the first year of life. Indeed, the 

abnormal persistence of elevated testosterone beyond the first year results in signs of 

seminiferous tubule maturation (that is, a reduction in AMH and increase in inhibin B)35.

Puberty.—Puberty in boys begins with a progressive increase in the pulse amplitude and 

frequency of gonadotropin release36. FSH induces the proliferation of immature Sertoli cells 

and boosts testicular volume from 2 ml to 4 ml, the clinical landmark of pubertal onset that 

occurs at a mean age of 11.5 years37. Pubertal onset is considered delayed if it occurs 

between 14 years and 18 years of age, with the exact cut-off age depending on the 

considered guidelines38. LH induces a progressive increase in testicular androgen 

production; androgens together with FSH trigger Sertoli cell maturation. Consequently, 

Sertoli cell proliferation stops, AMH production declines and inhibin B secretion rises, as 
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seen in the initial stages of puberty (that is, stages 2 and 3 following the classic description 

by Marshall and Tanner39,40). The overt increase in serum testosterone levels is a later event, 

particularly marked during Tanner stages 3 to 5 (REF41). Germ cells undergo the complete 

spermatogenic process, leading to sperm production and to the overt increase in testis 

volume to 15–25 ml (FIG. 2) in Tanner stages 4 and 5. FSH and spermatogenesis are 

essential for inhibin B production, which in turn acts as a negative feedback regulator of 

pituitary FSH secretion42. Thus, in puberty and adulthood, inhibin B is an extremely 

informative biomarker of testicular function because it reflects the whole pubertal 

maturation process (for example, FSH and testosterone action on Sertoli cells and 

spermatogenesis)43.

Adulthood and ageing.—After puberty, in addition to their fundamental roles shown in 

terms of spermatogenesis1,44 and of male sexual function45, androgens have a variety of 

anabolic actions in the regulation of body composition, bone, muscle, glucose and lipid 

metabolism, erythropoiesis and cardiovascular and cognitive function over the entire 

lifespan46. Furthermore, several findings suggest that testosterone is neuroprotective and that 

declining testosterone levels during ageing are associated with cognitive and brain 

pathologies47. Ageing is characterized by a slow decline in testosterone levels with a 

substantial individual variability29,48–50; these age-related reductions in serum testosterone 

are mainly of primary origin in healthy men and are associated with both a loss of Leydig 

cells and their reduced ability to produce testosterone in response to LH51,52.

Apart from the deficiency of testosterone, hypogonadism also entails the deficiency of other 

testicular hormones (including INSL3, AMH and dihydrotestosterone (DHT)). As 

testosterone is a substrate for oestradiol synthesis, oestradiol production also decreases when 

testosterone levels decline. Hence, some of the symptoms associated with male 

hypogonadism may be due to suppressed oestrogen effects53. Among them, hypogonadal 

and/or ageing symptoms such as bone loss, osteoporosis, increased fat deposits and impaired 

sexual function may be even direct consequences of oestrogen rather than androgen 

deficiency.

Pubertal secondary hypogonadism

Secondary hypogonadism results from central defects of the hypothalamus or pituitary gland 

(BOX 2; FIG. 3).

The majority of patients with secondary hypogonadism, including those with Kallmann 

syndrome, respond to exogenous GnRH, pointing to a deficiency of endogenous GnRH as 

the important feature of their pathology54. A variety of LH secretory patterns can be 

observed in patients with congenital secondary hypogonadism. Although the majority have a 

complete absence of GnRH-induced LH pulses, some individuals have preserved sleep-

augmented LH secretion and others demonstrate enfeebled, low-amplitude LH secretion 

throughout the day and night55. Although congenital secondary hypogonadism has 

traditionally been regarded as a permanent condition, a considerable proportion of patients 

(~22%) in whom the diagnosis has been confirmed with repeated biochemical assessments 

spontaneously ‘reverse’ their reproductive function56,57. These patients undergo a 
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spontaneous amelioration of their disease by developing spontaneous GnRH-induced LH 

pulses, leading to spermatogenesis, in the absence of any fertility medications. Clinical58,59, 

laboratory60 and genetic61–63 characteristics of patients have been studied to identify 

prognostic phenotypic features for reversal, but identifying predictive characteristics has 

been difficult as reversal can occur even in the context of severe GnRH deficiency (that is, in 

those presenting with cryptorchidism, micropenis, absence of pubertal development or rare 

variants in a number of genes)57,64.

Genetic factors.—Over 35 loci have been implicated in the pathogenesis of congenital 

secondary hypogonadism. These loci can be loosely divided into two categories: genes 

encoding proteins that are involved in the development and migration of GnRH neurons and 

genes encoding proteins that are involved in the synthesis and secretion of GnRH itself (FIG 

4). The first gene associated with Kallmann syndrome was ANOS1 (an X-linked gene 

previously called KAL1), which encodes anosmin 1, an extracellular matrix protein that has 

a role in the guidance and migration of olfactory axons to the olfactory bulb65. Mutations in 

this gene cause a failed migration of GnRH neurons along the olfactory axons to the brain. 

Other genes associated with Kallmann syndrome encode proteins that work cooperatively 

with anosmin 1 (FIG. 4). For example, loss-of-function mutations in FGFR1 cause an 

autosomal dominant form of Kallmann syndrome65,66. Other genes, encoding proteins that 

amplify the GnRH secretory programme at puberty and modulate GnRH neuronal activity, 

are also associated with secondary hypogonadism by affecting GnRH secretion. Loss-of-

function mutations in KISS1 and KISS1R (encoding kisspeptin 1 and its receptor, 

respectively) have been associated with recessive forms of secondary hypogonadism67,68. 

Kisspeptin is expressed in the medial basal hypothalamus and is a powerful stimulus for 

GnRH-induced LH secretion in mammalian species6,69. Although a powerful stimulus for 

GnRH secretion, kisspeptin seems to be just one part of an intricate network of 

hypothalamic neuropeptides that regulate GnRH release. Mutations in the genes encoding 

neurokinin B and its receptor (TAC3 and TACR3, respectively) have also been identified in 

patients with secondary hypogonadism70. Neurokinin B can stimulate LH secretion in some, 

but not all, physiological settings and may have an important role in modulating GnRH pulse 

frequency71.

Discovery of causal genetic variants for Kallmann syndrome led to greater understanding of 

the heritability of delayed puberty and the timing of puberty within the healthy population. 

Patients with delayed puberty are more likely than control subjects with normal pubertal 

timing to carry potentially pathogenetic variants in genes associated with secondary 

hypogonadism genes72. Moreover, delayed puberty probands seem enriched for rare variants 

in TAC3 or TACR3 as compared with controls. This observation suggests that delayed 

puberty and secondary hypogonadism with reversal sit on the same phenotypic and genetic 

spectra. Further supporting the important role of neurokinin B in reproduction, a common 

variant near TACR3 has been shown to be associated with variation in the normal timing of 

female puberty73,74.
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Adult hypogonadism

Late-onset hypogonadism.—In principle, testicular function continues after puberty 

uninterrupted until old age. Men have no abrupt decrease in testosterone production 

comparable to menopause in women. However, epidemiological studies have demonstrated a 

0.5–1.5% per year decrease in circulating total testosterone concentrations and a 2–3% per 

year decrease in free testosterone concentrations in community-dwelling middle-aged to 

older men beyond the age of ~30 years27,28,75–77. The difference between the decline of total 

testosterone and free testosterone over the ageing process is explained by the age-related 

increase in circulating concentration of sex hormone-binding globulin (SHBG), which 

reduces the proportion of free testosterone78. In healthy men, the age-related decline of 

testosterone is accompanied by an increase in LH, indicating that it is mainly caused by a 

primary testicular failure compensated for by an increased LH secretion (FIG. 5). The age-

related decrease in testosterone apparently reflects general age-related cellular degeneration, 

reduced number of functional Leydig cells and atherosclerosis of testicular arterioles75. 

Nevertheless, in most men, testosterone production remains well within the reference range 

of young individuals, and, if there are no hypogonadal symptoms, the decline is apparently 

clinically nonsignificant.

Many men gain weight and acquire chronic diseases with ageing; both conditions are also 

associated with decreased testosterone levels79 (FIG. 5). In the EMAS, 73% of men with 

reduced testosterone were overweight or obese, and serum testosterone of men with a body 

mass index (BMI) >30 kg/m2 was 5 nmol/l (144ng/dl) lower than for those with normal 

weight28. Furthermore, a 4.5-year longitudinal arm of the EMAS80, as well as a meta-

analysis81, demonstrated that weight gain suppresses and weight loss increases testosterone 

level. In these situations, the suppression of testosterone production is of the secondary type 

(that is, not accompanied by increased LH secretion but rather caused by decreased activity 

at the hypothalamic–pituitary level). It is also apparent that obesity (and chronic diseases) 

suppresses testosterone production rather than the opposite82. In real life, suppressed 

testosterone of ageing men emerges as the combined effect of ageing, obesity and 

comorbidities. Of further note, obesity mainly suppressed total testosterone, with less effect 

on free testosterone, because of an accompanying decrease in SHBG. Hence, symptomatic 

hypogonadism, apart from a biochemical reduction in total testosterone, is less common in 

otherwise healthy obese men83.

The exact cause of secondary hypogonadism in men with obesity with suppressed 

gonadotropin secretion is still not completely understood. In this context, the obesity-related 

suppression of HPG function has several possible mechanisms. These mechanisms include 

the pleiotropic inhibitory effects of adipocyte-produced adipokines, cytokines and 

chemokines on GnRH and gonadotropin secretion84 as well as obesity-related central insulin 

resistance85, which may negate the stimulatory effect of insulin on gonadotropin secretion. 

One of the candidate peptides is fat-cell-produced leptin86. Such a link is suggested by the 

observed decreasing effect of testosterone treatment on leptin levels in men87. Adequate 

leptin concentrations are needed for a normal function of the HPG axis, and in obesity cases 

with high leptin levels, the resistance to this hormone may explain the mechanism for its 

tenuous involvement in obesity-associated secondary hypogonadism88,89. The mechanisms 
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of leptin resistance entail its limited access at the blood–brain barrier to the central nervous 

system90, defects in leptin receptor signalling89 and hypothalamic endoplasmic reticulum 

stress91. Other adipokines such as the pro-inflammatory fat tissue cytokines (for example, 

tumor necrosis factor, IL-2 and IL-6)92,93 might also suppress gonadotropin secretion, in 

addition to central nervous system endocannabinoids94, central insulin resistance95 and 

adiponectin96.

By contrast, the long-held hypothesis of involvement of increased adipose tissue oestrogen 

production, through increased feedback inhibition of GnRH secretion, may not hold true in 

light of newer findings29. Serum oestrogen concentrations are in fact low in obese men29 

and high only in morbidly obese men (defined by BMI >40 kg/m2)97,98. It was recently 

demonstrated that hyperinsulinaemia alongside elevated serum lipid levels suppresses 

gonadotropin secretion directly at the pituitary level, providing an additional candidate 

mechanism for the obesity-associated secondary hypogonadism99. Finally, the low SHBG 

values associated with obesity might lower the set point of the hypothalamic–pituitary 

feedback inhibition in relation to circulating total testosterone. Because mainly total 

testosterone, and to a lesser extent free testosterone, is suppressed in obese men, negative 

feedback inhibition of gonadotropins can be achieved at a lower level of circulating total 

testosterone.

Diagnosis, screening and prevention

Diagnosis of prepubertal hypogonadism

Disorders of sex development and treatment of neonatal hypogonadism are not the focus of 

this Primer; however, the dramatic changes taking place in the HPG axis during fetal and 

postnatal development (BOX 4) require special consideration in the diagnostic approach of 

male hypogonadism in later paediatric ages.

Paediatric and prepubertal hypogonadism.—After the third to sixth month of age, 

serum gonadotropins and testosterone normally decline (FIG. 2); thus, they are no longer 

informative for the diagnosis of central hypogonadism33. In this period of life, only AMH 

and inhibin B determinations may be helpful: low serum AMH and inhibin B in a boy with 

non-elevated gonadotropins point to secondary hypogonadism41 (TABLE 1). As detailed, 

elevated gonadotropins are indicative of primary hypogonadism. However, up to one-third of 

boys with complete absence of testicular tissue have normal FSH and LH in childhood, 

showing that primary hypogonadism is not always associated with high gonadotropin levels 

in childhood100.

When established during childhood, clinically evident symptoms are limited. As a result, 

secondary hypogonadism or primary hypogonadism may go undiagnosed unless Sertoli cell 

function is assessed101 (TABLE 1) Viable trisomies (chromosomal disorders characterized 

by additional chromosomes), such as Klinefelter syndrome and Down syndrome, are the 

most frequent causes of primary hypogonadism (TABLE 1). Gonadal dysfunction is present 

from early childhood in most boys with Down syndrome102, whereas it usually emerges 

during mid-puberty in patients with Klinefelter syndrome103.
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Hypogonadism in pubertal age.—Most boys have initiated pubertal development by 

the age of 14 years. The lack of pubertal signs by this age should prompt diagnostic 

evaluation (FIG. 6). In approximately two-thirds of cases, delayed puberty represents an 

extreme of the normal spectrum of pubertal timing (that is, CDGP)3. Family history may be 

informative: delayed puberty followed by spontaneous onset in a parent or sibling suggests 

CDGP, whereas a history of anosmia and/or hyposmia points to Kallmann syndrome104. In 

delayed puberty, stature is short for chronological age but adequate for bone age, which is 

typically delayed in CDGP. Chronic disease, medication use, inadequate nutritional status or 

psychosocial condition, which all can lead to functional hypogonadism105, should also be 

ruled out. Primary hypogonadism105 is easily diagnosed by the presence of elevated 

gonadotropins. On the other hand, the differential diagnosis between persistent secondary 

hypogonadism, responsible for ~10% of cases, and CDGP may prove extremely difficult. 

Basal gonadotropin levels may be informative only to rule out, but not to confirm, secondary 

hypogonadism103, and although there is no unequivocal agreement on their usage, dynamic 

tests with native GnRH or its agonists can be considered106. A large number of different 

tests have been described, but none of them can ascertain the diagnosis without pitfalls 

because a prepubertal response may be observed in patients with CDGP in whom the HPG 

axis has not yet been reactivated105. It is worth mentioning that secondary hypogonadism 

with partial pubertal development is particularly difficult to distinguish from CDGP. The 

concomitant measurement of serum inhibin B may be helpful: low levels are indicative of 

hypogonadism whereas normal levels suggest CDGP107 (TABLE 1). Of relevance, adults 

with idiopathic secondary hypogonadism may have normal inhibin B levels. MRI is 

performed when central nervous system lesions are suspected, when delayed puberty is 

extreme or in patients with anosmia and/or hyposmia to demonstrate evidence of olfactory-

bulb aplasia and/or hypoplasia and to support the diagnosis of Kallmann syndrome105. 

Genetic testing is becoming more widely available and may be useful for diagnosis, 

prognosis108 and genetic counselling, although the utility may be limited by the variable 

penetrance and expression associated with many genetic causes of idiopathic secondary 

hypogonadism109. Comparative genomic hybridization array identifies large deletions or 

insertions, and candidate gene screening or next-generation sequencing are used to unveil 

point mutations in >30 genes known to be implicated in central hypogonadism following 

monogenic or multigenic patterns110.

Diagnosis and screening in adults

According to most international scientific societies, the mainstay of an LOH diagnosis 

includes the presence of signs and symptoms consistent with hypogonadism coupled with 

low morning serum testosterone levels on two or more occasions as measured with a reliable 

method28,45,111–113. However, the constellation of symptoms commonly associated with 

LOH in adult men can be diverse and nonspecific and often mimics several systemic 

conditions, including obesity, metabolic syndrome and even the normal ageing process114. 

In addition, the exact cut-off values to define low testosterone levels differ depending on the 

society guidelines (TABLE 2). For a relatively large number of hysicians involved in the 

diagnosis and therapy of LOH, as well as in the translational research dedicated to LOH, the 

clinical practice guidelines first published in 2010 and recently updated by the Endocrine 

Society in 2018 are the most widely accepted procedures for the diagnosis and treatment of 

Salonia et al. Page 10

Nat Rev Dis Primers. Author manuscript; available in PMC 2020 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypogonadism; however, adherence to these guidelines remains poor45,111,112. Thus, with a 

lack of a universally accepted protocol (TABLE 2), inconsistent and improper case 

management of LOH patients in many clinical settings has been observed114–116.

Signs and symptoms.—The symptoms of low testosterone in adult males can be 

difficult to diagnose. Given the myriad of pathways affected by the HPG axis and the 

potentially slow progression of symptoms, LOH signs may include a wide range of clinical 

presentations, including loss of libido, erectile dysfunction, depression, lethargy, anaemia 

and loss of muscle and bone mass111–113,117–119. At present, questionnaire-based scoring 

systems on LOH symptoms are not reliable enough because of their poor specificity and 

they are required to be followed-up with confirmatory serum testosterone testing and never 

used in isolation for making a diagnosis of hypogonadism45,113,120.

Serum testosterone measurements.—Testosterone measurements (taken between 

7:00 and 11:00 am) in the fasting state are recommended45,111–113,120 (FIG. 1). Mass 

spectrometry is the gold standard of testosterone assays, but good-quality immunoassays 

provide fully acceptable results for clinical diagnosis121.

A lack of consensus exists regarding an absolute testosterone level indicative of LOH 

(TABLE 2). A practical definition of biochemical LOH uses cut-off concentrations of total 

testosterone in the range of 9.0–9.5 nmol/1 (260–275 ng/dl). Use of this value to define 

hypogonadism is supported by a randomized controlled trial (RCT) showing that 

testosterone treatment improves symptoms in several domains of sexual function in men 

with morning total testosterone <9.1 nmol/1 (262 ng/dl)117; conversely, another trial with a 

total testosterone threshold of 10.4nmol/l (300ng/dl) did not find improvement of sexual 

function122.

The most recent update of the Endocrine Society guidelines indicates a lower limit threshold 

for total testosterone harmonized to the US Centers for Disease Control and Prevention 

standard in healthy nonobese young men of 9.2 nmol/1 (264ng/dl), whereas the guidelines 

did not indicate any thresholds for free testosterone owing to the lack of harmonized 

accepted criteria112. The same authors recognized that free testosterone should be measured 

by an equilibrium dialysis method and that until a harmonized reference range is established, 

the lower limits indicated by the laboratory method may be used111,112 (TABLE 2). 

According to the EMAS, the most specific diagnosis of LOH is reached if, in addition to 

total testosterone and free testosterone levels below the defined threshold concentrations 

(that is, <11 nmol/l and <220 pmol/l, respectively), three sexual symptoms should be present 

(more specifically, erectile dysfunction, reduced morning erections and diminished sexual 

thoughts)28.

If low total testosterone is observed, a second total testosterone test should be administered 

to confirm the diagnosis45,111,112. Clinicians should exercise caution when using total 

testosterone testing in men who are elderly or obese or who have diabetes as these 

conditions modulate the level of SHBG and, therefore, may overestimate or underestimate 

serum bioactive testosterone levels111–113,123,124 (FIG. 1). In these selected patients, testing 

for free testosterone or bioavailable testosterone is suggested, although bioavailable 

Salonia et al. Page 11

Nat Rev Dis Primers. Author manuscript; available in PMC 2020 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



testosterone is not unanimously recommended by all guidelines111,112. In the case of free 

testosterone, ligand displacement immunoassays have been criticized and are currently not 

recommended as they are influenced by SHBG and are inaccurate111,112. The most accurate 

method of measuring free testosterone is equilibrium dialysis, but calculating free 

testosterone using total testosterone, SHBG and albumin levels and one of the algorithms 

(for example, the equation of Vermeulen et al.111,112,125) provides a sufficiently accurate 

estimate for clinical practice, although it has not met consensus126,127. The latest findings 

indicate that measurement of free testosterone (direct or calculated) improves the diagnostic 

accuracy of symptoms, especially in obese men83,113,123,128.

Following confirmation of low serum testosterone levels and concomitant signs and 

symptoms of hypogonadism28,45,113, providers should use serum LH and FSH in 

conjunction with testosterone to differentiate between primary and secondary 

hypogonadism29.

Additional analyses.—If LOH is suspected, clinicians need to comprehensively exclude 

acquired causes (BIX 2). Often, obesity maybe the main causative factor of LOH. Additional 

laboratory tests and imaging techniques can be used to define the diagnosis. For patients 

suspected of primary hypogonadism, routine semen analysis and testicular sonography are 

examples of specialized diagnostic practices that can aid in confirming a diagnosis and 

localizing a lesion or specific area of testicular dysfunction129,130. Conversely, in the case of 

suspected secondary hypogonadism, laboratory tests such as serum prolactin levels, iron 

saturation and pituitary function tests can assist in identifying causes of hypothalamic and/or 

pituitary dysfunction. Pituitary contrast-enhanced MRI or CT may be indicated to exclude a 

pituitary adenoma or other lesions of the hypothalamic-pituitary region45,111–113,130–132. 

Defining the aetiology is important as it might influence management. Indeed, if, for 

instance, hyperprolactinaemia emerges as the cause of hypogonadism, the condition of 

hypogonadism needs to be differently managed using dopamine agonist therapy131.

Screening.—Screening for hypogonadism in adult men is still an area of heavy 

debate45,111,112. For instance, the Endocrine Society’s guidelines recommend against any 

form of screening in the general population127, except in patients with diabetes and bone 

fractures. Conversely, Endocrine Society guidelines along with the European Association of 

Urology (EAU), the International Society for Sexual Medicine (ISSM) and the British 

Society for Sexual Medicine (BSSM) guidelines suggest screening adult men with sexual 

dysfunction45,113,120, including those with reduced sexual desire and sexual activity, erectile 

dysfunction and fewer and diminished nocturnal erections (Level of Evidence (LoE) 1, grade 

A)113.

Management

In general, secondary hypogonadism is characterized by low or inappropriately normal 

gonadotropin levels; thus, the rationale is to substitute the gonadotropin deficiency with FSH 

and LH if fertility is desired133,134. If fertility is not an issue, testosterone therapy is advised. 

By contrast, when there is testicular damage, the condition is termed primary, and the only 

rational therapy is testosterone therapy. Testosterone therapy for congenital forms of 
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hypogonadism must be lifelong; management of acquired causes depends on whether the 

condition is permanent or can be resolved, but testosterone treatment of LOH remains a 

matter of debate.

Paediatric and pubertal hypogonadism

The focus of this section is on the management of delayed puberty; the management of 

disorders of sex development and neonatal hypogonadism are reviewed elsewhere135,136. It 

should be noted that trials comparing different treatment regimens are lacking in delayed 

puberty; thus, the recommendations below are based, in part, on expert opinion and do not 

include all potential regimens.

CDGP.—Management of CDGP is often limited to reassurance, adult height prediction and 

expectant observation, particularly if puberty has started clinically and/or biochemically, but 

therapy with low-dose testosterone can be used as well104,105,137,138 (BOX 5). If medication 

is initiated, it is usually to assuage psychosocial difficulties that derive from negative 

interactions with peers, decreased self-esteem and anxiety about growth rate and/or body 

habitus.

A short course of low-dose testosterone in boys with CDGP can lead to increased growth 

velocity, initiation of secondary sexual characteristics and positive effects on psychosocial 

well-being without considerable adverse effects, rapid advancement of bone age or reduced 

adult height139,140. Testosterone esters given by intramuscular injection are the mainstay of 

treatment. A common protocol is to initiate supplementation with testosterone enanthate or 

cypionate each month for 3–6 months, which can be repeated for another 3–6 months with 

dose escalation if evidence of spontaneous puberty is lacking (BOX 5). However, 

intramuscular injections are painful and may require frequent health-care visits for 

administration. Moreover, intramuscular injections result in levels of serum testosterone that 

lack diurnal rhythm and are characterized by non-physiological peaks and troughs, although 

it is still unclear whether this is clinically significant. Hence, there is interest in alternative 

approaches, including use of subcutaneous testosterone injections141, oral androgens such as 

testosterone undecanoate10 and transdermal testosterone gels142,143, including a nasal gel 

that decreases the risk of person-to-person medication transfer144. Novel therapies such as 

synthetic kisspeptin are also being explored5,145. Although some of these agents are 

promising, additional data and experience are needed before these alternatives can be 

recommended for routine management of CDGP in place of testosterone esters.

For a subset of patients, short stature can be more concerning than delayed puberty, and 

CDGP is considered by some to be a subgroup of idiopathic short stature (ISS). Although 

growth hormones are approved for the treatment of ISS in many countries, this therapy has 

at best a modest effect on adult height in adolescents with CDGP and its routine use is not 

recommended. In boys with CDGP and short stature, another potential therapeutic approach 

is aromatase inhibition146,147. Aromatase inhibitors inhibit the conversion of androgens to 

oestrogens, the predominant hormone responsible for epiphyseal closure, raising the 

possibility that aromatase inhibitors could prolong growth and increase adult height. 

Recently, the use of aromatase inhibitors to promote endogenous puberty in boys with 
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CDGP has also been reported148. However, the amount of height gained as well as the 

optimal timing, dose and duration of aromatase inhibitor treatment remain uncertain; 

moreover, potential adverse effects must be considered, and this treatment also requires 

further study before it should be incorporated into routine practice146,147.

Persistent hypogonadism.—In boys with persistent primary or secondary 

hypogonadism, initial testosterone therapy is the same as for CDGP (BOX 5), but doses are 

gradually increased to full adult replacement levels over ~3 years to allow development of 

secondary sexual characteristics. In cases of known defects, therapy can be initiated at 

younger ages that are more typical for pubertal initiation rather than waiting for an 

individual to have confirmed delayed puberty. When the differentiation of CDGP from 

persistent secondary hypogonadism is uncertain, time is often the defining variable; if 

spontaneous puberty has not occurred after 1 year of treatment, doses of testosterone can be 

gradually advanced towards adult levels while monitoring endogenous puberty (examination 

of testicular size and measurement of LH, FSH and testosterone) every 6 months.

Exogenous testosterone does not induce testicular growth or spermatogenesis, and initiation 

of spermatogenesis is often not possible in those with testicular defects. Induction of fertility 

in secondary hypogonadism requires treatment with pulsatile GnRH and/or exogenous 

gonadotropins (BOX 5). Over the past several years the use of gonadotropins and/or GnRH 

to induce puberty has garnered increasing interest. Many questions have been identified. Are 

fertility outcomes better if FSH is administered before administration of human chorionic 

gonadotropin (hCG)? Would FSH pretreatment versus GnRH administration alone improve 

outcomes, especially for those with the smallest testes? Is GnRH administration superior to 

gonadotropin therapy? Perhaps most important for adolescents is the question of whether 

fertility outcomes would be improved if GnRH and/or gonadotropins were used to induce 

puberty instead of waiting to administer these agents in adulthood104,137,138,149,150. For the 

last question, more research is needed before such therapies are routinely recommended for 

pubertal induction in place of the less invasive and less expensive use of testosterone. 

Regardless of the treatment regimen used, it is important that the care of these patients be 

transferred successfully from paediatric care to adult care providers.

Hypogonadism in adults

The management of genetic secondary hypogonadism depends on the type of the underlying 

disease and on patients’ needs. In adulthood, when fertility is required, the most widely used 

compound is injected hCG (intramuscular or subcutaneously) weekly, alone or in 

combination with FSH weekly. In men, the recombinant preparations seem not to offer 

significant advantages when compared with the purified compounds, derived from the urine 

of either pregnant or postmenopausal women151. Fertility can also be induced using GnRH 

administered in a pulsatile manner, but this treatment is not widely available151. Conversely, 

the use of anti-oestrogens is useless and even contraindicated in these individuals133.

Men with genetic disorders.—In males with Klinefelter syndrome, the degree of 

androgen deficiency depends on the number and residual function of Leydig cells; 

spontaneous fertility is rarely observed152. Likewise, even among men with Klinefelter 
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syndrome, hypogonadism is associated with greater risk of metabolic syndrome, T2DM, 

cardiovascular disease (CVD), breast cancer and extragonadal germ cell tumours25.

Testosterone replacement therapy is the mainstay of treatment in hypogonadal patients with 

Klinefelter syndrome; however, randomized trials are needed to determine optimal 

therapeutic regimens and subsequent follow-up schedules22. Although the degree of 

virilization as well as the levels of testosterone are usually normal at puberty in boys with 

Klinefelter syndrome, some evidence has suggested that an early treatment with testosterone 

should be offered to the majority of patients, starting from the peri-pubertal period, to ensure 

an optimal development of sexual characteristics, muscle bulk and bone structure and to 

prevent the long-term negative consequences of hypogonadism, including metabolic diseases 

and mental impairment153. However, available data on this topic are conflicting and are 

largely based on nonrandomized studies. An age-dependent decline in testosterone is 

reported with a high prevalence of hypogonadism detected in adulthood154,155. Hence, 

testosterone therapy in Klinefelter syndrome should be offered in the presence of 

documented reduced levels of total testosterone (<12 nmol/1 (<3.5ng/ml)) associated with 

symptoms, in adulthood, or earlier as a consequence of delayed puberty152,153.

Infertility in men with Klinefelter syndrome had long been considered an untreatable 

condition. Recent data have emphasized that individuals with Klinefelter syndrome may 

benefit from assisted reproductive techniques owing to the presence of residual foci of 

preserved spermatogenesis within the testis. Accordingly, a recent meta-analysis of the 

available data has documented that testicular sperm extraction can be successful in almost 

50% of individuals with Klinefelter syndrome, with a subsequent live birth rate close to 

50%156. All these results seem to be independent of any clinical or biochemical parameters 

tested156 or the age at which surgery was performed157.

Late-onset hypogonadism.—In contrast to testosterone therapy for congenital forms of 

hypogonadism, which has to continue throughout the lifespan of the man, testosterone 

treatment of LOH is controversial because of unclear indications for replacement and 

potential risks in older individuals that have been widely and often harshly debated without a 

definitive conclusion45,158. Ageing men may develop low testosterone mainly owing to 

being overweight, inactive and having chronic diseases28,45. The first advice for these 

patients is to address modifiable risk factors — if present — and to improve lifestyle through 

exercise, reducing weight and good treatment balance of comorbidities80,159–161. These 

modifications may result in serum testosterone level improvement (although it may not 

become fully normalized) and reduce associated symptoms and health risks159. Moreover, in 

real life, lifestyle modification may be difficult; thus, the pharmacological reversal of 

reduced testosterone levels has been promoted as an alternative. Indeed, low testosterone is a 

biomarker for impaired general health, and treatment of comorbid conditions is important in 

combination with testosterone therapy45,46,49,162. Overall, it is necessary to underline how 

the debate related to testosterone therapy in men with clinical and biochemical 

characteristics suggestive of LOH is still continuing. In this context, the principle of 

testosterone therapy is based on the assumption that low testosterone levels are the cause 

(that is, risk factor) of the hypogonadism-associated symptoms rather than their 

consequence. Although the causality is definitely bidirectional, evidence is mounting that 
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low testosterone is primarily the consequence (that is, risk marker) of ill health rather than 

its cause80,81. Thus, testosterone therapy, aimed at treating symptoms associated with low 

testosterone and improving quality of life in LOH, remains controversial without a definitive 

and unanimously accepted conclusion120. Indeed, although improvement of symptoms is 

often observed, unclear indications for replacement, the optimum serum testosterone levels 

and potential risks (especially cardiovascular risk) in older individuals have led to 

conflicting recommendations by societies, as outlined below. The most worrying gap in our 

knowledge at the moment is the paucity of information on potential long-term effects, both 

positive and negative. To this aim, we also discuss recommendations in terms of follow-up 

and contraindications for treatment.

As detailed, common symptoms in men with low testosterone are sexual dysfunction; less 

specific conditions associated with low testosterone, including unexplained anaemia, 

osteoporosis, loss of vigour, frailty, insomnia, cognitive dysfunction and depression, have 

been described, although these symptoms may occur also in older men with normal serum 

testosterone levels and on their own seldom justify the diagnosis of LOH120. Recently, RCTs 

have advanced our knowledge on indications for testosterone therapy45,113,117,120,163: sexual 

symptoms may improve, including erectile dysfunction and loss of libido. For patients with 

T2DM and erectile dysfunction, this was only the case in men with clearly reduced 

testosterone levels (<8 mmol/1 (2.31 ng/ml))164. From a pathophysiological standpoint, it 

has been argued that this is because erectile dysfunction in T2DM is predominantly due to 

vascular and neuropathic disease and is, therefore, not likely to be the case in those men who 

do not have an established vascular disease.

The Birmingham, Lichfield, Atherstone, Sutton Coldfield, and Tamworth (BLAST) RCT 

showed that the administration of injectable testosterone undecanoate or placebo for 30 

weeks to hypogonadal men with T2DM promoted a significant reduction in glycated 

haemoglobin (HbA1c) in testosterone-treated patients compared with placebo-treated men at 

6 weeks and 18 weeks, but not at 30 weeks165. Among non-depressed men, those treated 

with testosterone undecanoate had significant improvements in BMI, weight, waist 

circumference, erectile function scores and Aging Males’ Symptoms (AMS) scores165. The 

Testosterone Replacement in Hypogonadal Men with Type 2 Diabetes and/or Metabolic 

Syndrome (TIMES2) trial evaluated symptomatic hypogonadal men treated with 

testosterone gel or placebo for 12 months166. At 6 months, testosterone-treated patients had 

reduced insulin resistance (assessed by the homeostasis model assessment of insulin 

resistance (HOMA-IR)) compared with placebo-treated patients, reduced lipo-protein A 

(Lpa), reduced high-density lipoprotein (HDL) and improved erectile function scores, 

although no improvements of HbAlc levels were observed. Among participants with 

metabolic syndrome, testosterone therapy reduced Lpa and low-density lipoprotein (LDL) 

compared with placebo166. Hence, although testosterone treatment of men with LOH has in 

some studies shown modest improvement in glycaemic control, such data overall are 

inconsistent. The current evidence is insufficient to support testosterone therapy to improve 

the metabolic status in older men with LOH or in particular those with T2DM or the 

metabolic syndrome. The recent Endocrine Society guidelines support this conclusion112.
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One of the hallmarks of male hypogonadism is osteoporosis. Testosterone treatment of 

hypogonadal men has been shown to bring about variable increases in areal and volumetric 

bone mineral density in lumbar, spinal, vertebral and femoral neck regions167–169. In 

general, the magnitude of the treatment effect is inversely related to basal serum 

testosterone118. Unfortunately, information about treatment response of the most important 

clinical end point (that is, fracture prevention) is completely missing. Expert opinions 

consider the specific anti-resorptive treatments and osteoanabolic agents effective in 

preventing bone loss in hypogonadal men170,171. Testosterone treatment as monotherapy for 

osteoporosis is recommended only in hypogonadal men in whom there are contraindications 

for approved anti-resorptive therapies. Nevertheless, testosterone may have a modest positive 

effect on bone health in men whose testosterone treatment has been initiated for other 

reasons.

An additional common sign of hypogonadism in ageing men is unexplained anaemia. 

Convincing data exist that this symptom responds favourably to testosterone 

treatment172,173, even to the extent that polycythaemia is a common adverse effect of the 

therapy and must be carefully controlled. However, in the Testosterone Trials (TTrials), the 

average increase in haemoglobin by 10g/l was not found to be associated with clinically 

significant improvements of physical performance173.

Numerous studies also suggested an association between serum testosterone levels and 

depressive symptoms174. However, the relationship between low testosterone and depression 

seems to be complex and associated with many factors, such as androgen receptor genetic 

polymorphisms175,176. A registry study of 762 hypogonadal men found that 92.4% of men 

demonstrated some level of depressive symptoms, with 17.3% of men having moderately 

severe to severe depressive symptoms174. After 12 months of testosterone therapy, the 

percentage of patients with moderately severe to severe symptoms decreased from 17.3% to 

2.1 %174. In the Vitality Trial, there were significantly greater improvements between the 

testosterone therapy group and the placebo group in the 36-Item Short-Form Health Survey 

(SF-36) vitality score (mean difference 2.41 points; P=0.03) and the Patient Health 

Questionnaire 9 (PHQ-9) depression score (mean difference −0.72 points; P=0.004)117. 

More recently, findings from a meta-analysis aimed at assessing the association of 

testosterone treatment with depressive symptoms in men showed a moderate antidepressant 

association of testosterone treatment translatable into a clinically relevant symptom 

reduction119. This effect was confirmed only in men with hypogonadism and in those having 

more subtle symptoms of depression. However, the large portion of studies with high or 

unclear risk of bias and the low number of methodologically rigorous RCTs primarily 

addressing the effect of testosterone treatment in depressed but otherwise healthy men limit 

the interpretation, as per the admission of the authors. Considering all available information, 

testosterone treatment of men with LOH may have a slight improving effect on mood, but 

there is no convincing evidence suggesting that testosterone therapy could be used to treat 

depression of older men. Other mental well-being symptoms of LOH, such as cognitive 

dysfunction, did not significantly improve under testosterone therapy compared with 

placebo177.
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Recently, findings from the Physical Function Trial, one of the of seven TTrials, 

demonstrated that testosterone therapy consistently improved self-reported walking ability in 

men >65 years of age and modestly improved 6-minute walk test distance but did not affect 

falls178. The effect of testosterone on mobility measures was related to baseline gait speed 

and self-reported mobility limitation and changes in testosterone and haemoglobin 

concentrations178.

Although there are as yet insufficient data to define optimal serum levels of testosterone 

during testosterone therapy, the aim is to restore serum testosterone to physiological 

levels45,112,113,120, and most of the scientific societies suggest they aim at achieving 

testosterone concentrations in the mid-normal range during treatment with any of the 

approved formulations, usually taking into consideration the patient’s preference as the 

criterion of choice of preparation after having involved the patient in decision-making and 

the potential benefits and risks of therapy have been discussed45,112,113,120. Several 

applications of testosterone are available for testosterone therapy, induding oral preparations, 

transdermal gels and intramuscular injections. Truly comparative studies of different 

applications are not available45,120.

Testosterone therapy is associated with a number of possible adverse events, including an 

increase in red blood cells and an elevation of prostate-specific antigen (PSA)112. Although 

observational studies do not indicate a higher risk of thrombosis or prostate cancer in men 

undergoing testosterone therapy, monitoring remains highly advisable112,113,120,179,180. As a 

whole, serious adverse events related to testosterone therapy are relatively rare. Overall, they 

are more significant in elderly patients and are often dependent on the method of delivery. 

Some adverse events are related to supraphysiologic levels and can be lowered or stopped 

altogether by adjusting the dose or switching to a different formulation113.

In terms of treatment follow-up, it is strongly recommended to perform haematological, 

cardiovascular, breast and prostatic assessment before the start of 

treatment45,112,113,120,179,180. After testosterone therapy has been established, it is suggested 

to assess the response to testosterone treatment at 3 months, 6 months and 12 months after 

the onset of treatment and thereafter annually45,112,113,120,179,180. This assessment includes 

monitoring haematocrit (haematocrit levels should remain <54%), haemoglobin, testosterone 

values and PSA during testosterone treatment. Men with CVDs should be monitored 

carefully throughout the follow-up45,112,113,120,179,180. Decisions to continue treatment 

should be based not only on avoiding adverse events but also on a documented improvement 

in hypogonadism symptoms. In fact, owing to the aspecificity of LOH clinical features, their 

improvement upon testosterone therapy is useful information to corroborate the initial 

diagnosis and a reason to continue treatment if adverse events do not occur. As suggested by 

the Endocrine Society guidelines112, symptom monitoring should be performed at 3 months 

after treatment initiation and then annually.

Contraindications for testosterone therapy are locally advanced and metastatic prostate 

cancer. In addition, breast cancer, although rare, is considered a contraindication for this 

therapy45,112,113,120. Likewise, men with an active wish for children should not use 
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exogenous testosterone because it inhibits spermatogenesis owing to suppression of 

gonadotropin secretion and intratesticular testosterone45,112,120,181.

Some evidence suggests that hypogonadal men have an increased risk of CVD182. In this 

context, a recent meta-analysis, including 37 observational studies published between 1988 

and 2017 and enrolling 43,041 men with a mean follow-up of 333 weeks, showed that low 

endogenous testosterone at enrolment predicted overall and cardiovascular mortality and 

cardiovascular morbidity183. With normalization of serum testosterone levels to the 

physiological range, this risk could theoretically decrease, but the causality between low 

testosterone and CVD risk remains unclear. Indeed, many observational studies indicated 

that the normalization of serum testosterone levels to the physiological range can improve 

metabolic risk factors (such as obesity, diabetes and metabolic syndrome)184,185.

Conversely, data from RCTs are still conflicting and not unequivocal186. Moreover, evidence 

mostly obtained from observational studies has suggested a possible increased CVD risk 

related to testosterone therapy187. The CVD risk seems to be higher at the beginning of the 

treatment188. As a sign of conflict and confusion about the position of testosterone treatment 

of LOH, the US FDA cautioned that the benefits and safety of testosterone replacement 

therapy have not been clearly established for the treatment of low testosterone levels in older 

men189. This position has been endorsed by Health Canada190 and by the Australian Society 

of Endocrinology191. By contrast, the European Medicines Agency (EMA), after its own 

review of the available data, did not find sufficient evidence for declaring a testosterone 

replacement therapy-associated cardiovascular risk192. In line with this position, a recent 

meta-analysis including 15 pharmaco-epidemiological trials and 93 RCTs evaluating the 

cardiovascular safety of testosterone replacement treatment concluded that when 

testosterone treatment is correctly applied, it is not associated with an increase in CVD 

risk193. Conversely, the same study documented that an increased cardiovascular risk is 

observed when testosterone treatment is used at dosages higher than those routinely 

recommended193. Debate is still ongoing, and the potential risks of CVD and venous 

thromboembolism associated with testosterone therapy in older men with symptomatic low 

serum testosterone may not be resolved until results of adequately powered RCTs 

specifically designed to this end are available. Such a study (TRAVERSE), sponsored by 

several major drug companies, has recently been initiated in the United States (). Further 

confusion to this issue was added by a very recent Mendelian randomization study from the 

United Kingdom, reporting that the genetically predicted endogenous testosterone levels 

were positively associated with thromboembolism, heart failure and myocardial infarction in 

men194.

Development of polycythaemia during testosterone treatment is relatively common, with 

frequency ranging from 2% to 7% and older men appearing to be at higher risk195. Thus, 

elevated haematocrit is considered a contraindication of testosterone treatment, and 

adherence to the guidelines advising frequent follow-up of haemoglobin or haematocrit is 

important.
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Finally, testosterone treatment has been documented to worsen the symptoms of obstructive 

sleep apnoea196, and severe untreated sleep apnoea is included in the contraindications of 

testosterone treatment in ageing men112.

Quality of life

As previously detailed, the EMAS found that the presence of at least three sexual symptoms 

offered the greatest sensitivity and specificity in identifying hypogonadal patients28. The 

association between these sexual symptoms and low testosterone was statistically significant 

(OR 1.71; CI 1.08–2.63) and remained significant after adjustment for age, BMI and 

coexisting illnesses. As discussed in prior sections, sexual dysfunction symptoms are 

probably the symptoms most consistently associated with low serum testosterone in elderly 

men197–199. In this context, a number of meta-analyses demonstrated significant 

improvements in overall erectile function in hypogonadal men initiating testosterone 

therapy. Isidori et al.200, for instance, evaluated 17 placebo-controlled, RCTs of testosterone 

therapy in hypogonadal and eugonadal men. Among those men with low serum testosterone 

levels (<10nmol/l (<288ng/dl)), there were significant improvements with testosterone 

therapy in morning erections, sexual motivation, erectile function, sexual thoughts, sexual 

satisfaction, episodes of successful intercourse and total erections and/or ejaculations200. 

Recently, Corona et al.197 conducted a meta-analysis of RCTs addressing the effects of 

testosterone therapy to treat erectile dysfunction with a mean follow-up of 40.1 weeks197. 

The results demonstrated that testosterone therapy significantly improved erectile function 

compared with placebo (International Index of Erectile Function-Erectile Function domain 

(IIEF-EF) mean difference = 2.31 (95% CI 1.41–3.22)). Patients with more severe 

hypogonadism reported greater improvements in erectile function compared with those with 

milder testosterone deficiency; in this context, the authors found that those men with a serum 

testosterone level <8 nmol/1 (231 ng/dl) had the greatest improvement in erectile function 

following testosterone therapy. According to the TTrial, designed to determine the efficacy 

of testosterone therapy in older hypogonadal men (≥65 years of age)117, testosterone therapy 

was also associated with increased sexual desire according to the Derogatis Interview for 

Sexual Functioning in Men-II (DISF-M-II) (treatment effect 2.93; P <0.001) and increased 

erectile function according to the IIEF (treatment effect 2.64; P <0.001). More precisely, 

20% of men treated with testosterone reported that their sexual desire was much better since 

the beginning of the trial (P <0.001), as compared with <10% of those individuals who 

received placebo instead117. One weakness of the TTrials is their short duration (1 year), and 

it remains unknown whether more promising results could be obtained upon longer 

treatment. Conspicuously, another similar RCT on slightly younger men (TEAAM) showed 

no improvement in sexual function during 3 years of testosterone treatment122. Thus, we can 

conclude that testosterone therapy may improve several aspects of sexual function, but only 

in men with clearly hypogonadal concentrations of testosterone.

Finally, uncontrolled trials have demonstrated that hypogonadal patients not responding to 

PDE5 inhibitors (PDE5Is) may improve their response to PDE5Is after initiating 

testosterone therapy201–203. In the real-world setting, most patients with erectile dysfunction 

will first be prescribed a PDE5I, which is usually effective201; however, if diagnostic criteria 
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suggestive for testosterone deficiency are present, testosterone therapy is the more 

appropriate treatment even in erectile dysfunction patients.

Outlook

Klinefelter syndrome

A longstanding question has been how the presence of an additional X chromosome leads to 

the various features of Klinefelter syndrome. Big data approaches have been used to identify 

new clinical associations with Klinefelter syndrome204, and transcriptomic, epigenomic, 

proteomic and metabolomic approaches have the potential to identify specific pathways 

affected by Klinefelter syndrome205–208. These studies may lead to the development of 

targeted treatments for the many issues associated with Klinefelter syndrome.

When to start androgen treatment in individuals with Klinefelter syndrome is an area of 

active investigation. Whereas frank hypogonadism does not typically become evident until 

late adolescence or adulthood, it has been proposed that boys with Klinefelter syndrome 

have some degree of testosterone deficiency throughout life and that this testosterone 

deficiency may contribute to differences in body composition, learning and behavioural 

challenges and increased risk of CVD. In this context, some studies suggested that early 

testosterone therapy might be beneficial for individuals with Klinefelter syndrome. A 

retrospective analysis including 101 boys with Klinefelter syndrome and micropenis showed 

that early testosterone treatment (from early infancy) improved neuromotor function, speech 

and language, and intellectual and reading function209.

It is important to recognize that the evidence for these effects has largely come from 

observational studies, but randomized trials of early testosterone therapy are now underway 

().

Diagnosis

Currently, the only way to definitively determine whether a child has self-limited CDGP or 

more persistent idiopathic secondary hypogonadism is to monitor over time to determine 

whether the child eventually enters puberty and achieves normal adult reproductive 

endocrine function or not (). Because CDGP is the more common diagnosis, the initial 

approach to management is typically reassurance and watchful waiting, with treatment with 

sex steroids deferred until well after the typical age for entering puberty. A prospective 

method to distinguish constitutional delay from idiopathic secondary hypogonadism would 

allow those with idiopathic secondary hypogonadism, for whom reassurance is 

inappropriate, to receive more timely treatment. However, despite decades of searching, such 

a method does not currently exist210.

Building on the identification of both rare and common genetic variants that contribute to 

constitutional delay and idiopathic secondary hypogonadism, genetic testing may lead to 

earlier diagnosis211. However, this approach may be complicated by genetic overlap between 

these two conditions, and variable penetrance and expressivity may limit the predictive 

power of genetic testing72.
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Provocative stimulation tests offer another potential method to assess future reproductive 

endocrine potential in prepubertal children. Stimulation tests using hCG, GnRH or GnRH 

analogues have been found to lack complete sensitivity or specificity210, but stimulation 

testing using recently identified factors that function upstream of the GnRH neuron, such as 

kisspeptin, may hold promise212.

Treatment

For decades, testosterone therapy has been used to induce pubertal changes in children with 

secondary hypogonadism, with gonadotropin treatment typically reserved for when fertility 

is desired. Recently, there has been renewed interest in the use of gonadotropins as a more 

physiologic method for pubertal induction, as gonadotropin treatment induces testicular 

growth and spermatogenesis in addition to testosterone production in boys104,137,149,213. 

Gonadotropin treatment has also been used during the mini-puberty of infancy214,215. Trials 

directly comparing testosterone to gonadotropin treatment will determine whether the 

benefits of gonadotropin treatment justify the substantially higher cost.

Adults and ageing men

In ‘functional’ hypogonadism (BOX 1), PDE5Is are first-line pharmacotherapy to improve 

erectile dysfunction31. Testosterone therapy can be considered if the previous strategies fail. 

Lifestyle change is also strongly recommended in patients with T2DM, a condition with a 

similar prevalence to hypogonadism, characterized by vague symptoms, including sexual 

dysfunction216. In T2DM, in the presence of defined glucose abnormalities — along with 

lifestyle changes — medical therapy is strongly recommended, although in rare cases an 

‘organic’ alteration is found (1%). Evidence from RCTs indicates that testosterone therapy 

in ‘functional’ hypogonadism is able to improve sexual dysfunction200 and body 

composition186. In addition, meta-analyses of RCTs did not support an association between 

testosterone therapy and an increased cardiovascular risk217–224. One of the main limitations 

in interpreting data from available RCTs is that all currently published controlled studies 

were conducted for a relatively short period of no more than 3 years. Hence, information 

concerning advantages and disadvantages of testosterone medications throughout a longer 

period of time is not yet available. In particular, we need larger and sufficiently powered 

studies with longer duration, and with specific aims, to better clarify hard treatment end 

points. In this framework, multicentre international register studies are welcome ().
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Box 1 |

Classification of male hypogonadism

Historically, classification of male hypogonadism has been based on the anatomical 

location of the derangement that leads to testis failure (that is, primary or secondary 

hypogonadism). More recently, it has been proposed to classify hypogonadism according 

to the age of the appearance of the testicular failure and, therefore, to the 

phenotype133,134. Male phenotype can be severely altered if there is a testosterone 

deficiency during early fetal life, whereas an eunuchoid phenotype is often present when 

testosterone deficiency emerges during puberty133,134. When testosterone deficiency 

manifests during adulthood, the phenotype is relatively vague and mostly sexual 

dysfunction is considered to have some specificity45,225. In 2017, Grossmann and 

Matsumoto31 suggested a new classification of male hypogonadism, distinguishing 

functional hypogonadism from its organic counterpart. Organic hypogonadism is 

characterized by any proven pathology affecting the hypothalamic–pituitary–gonadal axis 

and should be treated with the conventional medications (gonadotropins or testosterone) 

accordingly. Functional hypogonadism is based on the absence of any recognized organic 

alterations in the hypothalamic–pituitary–gonadal axis and should be treated, first by 

resolving or improving the associated comorbidities31.

Salonia et al. Page 35

Nat Rev Dis Primers. Author manuscript; available in PMC 2020 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2 |

Types and causes of hypogonadism

Primary hypogonadism

Primary hypogonadism (also known as hypergonadotropic hypogonadism) is caused by 

an inherent defect within the testes. This condition is biochemically characterized by low 

or absent testosterone levels and high gonadotropins levels. Spermatogenesis is usually 

severely impaired and not responsive to hormonal therapy.

Congenital causes

• Trisomies such as Klinefelter syndromea and Down syndrome

• Y-Chromosome microdeletionsa

• Testicular dysgenesis syndrome or other conditions associated with 

cryptorchidisma

• Disorders of sex developmenta

• Myotonic dystrophy (a genetic disorder associated with impaired muscle 

function)a

Acquired causes

• Mumps-related orchitis (or other types of severe infection of the testes)a

• Irradiation or chemotherapya

• Trauma to the testes or castrationa

• Chronic illnesses (such as chronic kidney disease, chronic obstructive 

pulmonary disease or HIV infection)b

• Ketoconazole (antifungal medication) intakeb

• Chronic alcoholismb

• Older agea,b

Secondary hypogonadism

Secondary hypogonadism (also known as central hypogonadism or hypogonadotropic 

hypogonadism) is caused by a dysfunction in the hypothalamus and/or the pituitary 

gland. This condition is biochemically characterized by low or inappropriately normal 

gonadotropins levels along with low total testosterone levels. Spermatogenesis is 

impaired but is usually responsive to hormonal therapy.

Congenital causes

• Kallmann syndromea

• Idiopathic secondary hypogonadisma

Acquired causes
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• Pituitary dysfunction due to a tumour, surgery, trauma (for example, those 

causing stalk injury), infection (for example, tuberculosis) or infiltrative 

diseases (such as Langerhans cell histiocytosis)a

• Hypothalamic dysfunction (due to, for example, tumours or intracranial 

masses (such as craniopharyngioma))a

• Hyperprolactinaemiaa

• Chronic conditions (such as type 2 diabetes mellitus, haemochromatosis, 

hepatic steatosis and cirrhosis or coronary artery disease)b

• Drug use (glucocorticoids, opioids, androgens, progestins, oestrogens or 

gonadotropin-releasing hormone analogues)b

• Obesityb

• Malnutrition, wasting or anorexia nervosab

• Excessive exerciseb

• Older age (with associated comorbidities)a,b

aOrganic origin. bFunctional origin.
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Box 3 |

Paediatric hypogonadism

When the hormonal deficiency develops during the first trimester of fetal life, the clinical 

manifestation is a disorder of sex development, with a variable degree of hypovi rilization 

of external genitalia. A wide range of rare genetic disorders can be implied that affect 

gonadal development or sex hormone synthesis or action. Overall, the incidence of those 

latter conditions is 1 in 5,000 live male births136,226. Congenital hypogonadotropic 

hypogonadism, either isolated or with deficiency of multiple pituitary hormones (that is, 

combined), is typically established after sex differentiation has occurred (that is, after the 

first trimester). It can present clinically at birth with signs such as micropenis, 

cryptorchidism and/or micro-orchidism or later as delayed puberty17.
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Box 4 |

Ontogeny of the HPG axis during fetal development

During the first trimester, the testes drive the virilization of internal and external genitalia 

(that is, the biological development of sex differences) through placental human 

chorionic gonadotropin (hCG)-stimulated androgen secretion by Leydig cells. Regression 

of Müllerian ducts, the anlagen of the uterus and Fallopian tubes occurs in response to 

anti-Müllerian hormone (AMH) secreted by Sertoli cells independently of pituitary 

gonadotropins4. Subsequently, luteinizing hormone (LH) and hCG maintain Leydig cell 

differentiation characterized by the secretion of androgens and insulin-like factor 3 

(INSL3), whereas follicle-stimulating hormone (FSH) regulates Sertoli cells33. 

Androgens, in particular the testosterone metabolite dihydrotestosterone (DHT), are the 

main hormones responsible for the growth of the penis and the scrotum in the second half 

of intrauterine life, and, together with INSL3, they direct the testicular descent227,228. 

Sertoli cells proliferate, therefore, increasing testicular volume. Basal AMH secretion is 

independent of gonadotropins; however, FSH increases AMH output by stimulating 

Sertoli cell proliferation and upregulating AMH expression in Sertoli cells229. FSH also 

induces inhibin B secretion, which exerts negative feedback on FSH at the pituitary level. 

Testosterone elevation during fetal development has also been suggested to play a part in 

human neurobehavioural sexual differentiation; indeed, testosterone potentially has a 

relevant relationship to human neural structure and function in fetal and/or neonatal life4 

as well as neurobehavioural sexual differentiation during early infancy230.

HPG, hypothalamic–pituitary–gonadal.
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Box 5 |

Treatment of CDGP and persistent hypogonadism in adolescents

Testosteronea

Adverse effects associated with testosterone use include erythrocytosis, weight gain, 

prostate hyperplasia and transaminitis; high doses can cause premature epiphyseal 

closure. Testosterone should be used with caution when bone age is <10 years. Anabolic 

steroids are not recommended for the induction of secondary sexual characteristics.

• Testosterone esters (that is, testosterone enanthate, testosterone cypionate and 

testosterone propionate): these formulations are usually administered as 

intramuscular injections, but subcutaneous use is an emerging option. 

Treatment can be associated with local adverse effects (such as pain, 

erythema, inflammatory reaction and sterile abscess); priapism can occur in 

patients with sickle cell disease.

• Testosterone undecanoate: data and experience of the use of this formulation 

in constitutional delay of growth and puberty (CDGP) are limited.

• Testosterone gel: data and experience of the use of this formulation in CDGP 

are limited. The gel can cause local irritation, and close skin contact with 

others should be avoided after applying to prevent transfer of medication.

• Testosterone nasal gel: data and experience of the use of this formulation in 

CDGP are lacking. Formulation requires multiple doses per day per nostril, 

but the lack of risk of secondary transference is an advantage.

Pulsatile GnRH

This treatment is usually reserved for instances of persistent hypogonadotropic 

hypogonadism due to hypothalamic defects. However, it is sometimes used for treatment 

of CDGP to induce testicular maturation and when fertility is desired. Pulsatile 

gonadotropin-releasing hormone (GnRH)b is the most physiologic form of replacement 

therapy if the primary defect affects the hypothalamus. This formulation is administered 

via subcutaneous pump and requires extensive experience.

hCG combined with recombinant FSH or purified hMG

This treatment is usually reserved for instances of persistent hypogonadotropic 

hypogonadism due to hypothalamic or pituitary defects. However, it is sometimes used 

for treatment of CDGP to induce testicular maturation and when fertility is desired. The 

treatment includes subcutaneous or intramuscular human chorionic gonadotropin (hCG) 

injections combined with subcutaneous recombinant human follicle-stimulating hormone 

(FSH) injections or human menopausal gonadotropin (hMG), which contains equal 

amount of FSH and luteinizing hormone. In secondary hypogonadism with prepubertal 

onset, FSH needs to be included to induce testicular growth and spermatogenesis.

aTestosterone esters are the recommended first-line treatment for CDGP in most cases.
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bInduction of fertility following treatment with GnRH may be less successful in men who 

have lower baseline testicular volumes, have previously received testosterone treatment 

and have not previously received treatment with GnRH or gonadotropins29,46–48. Because 

of these findings, recent studies have explored use of alternative methods to induce 

puberty with the ultimate question being whether these approaches increase subsequent 

fertility49,50. Box based on data originally presented in REF.105.
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Fig. 1 |. The hypothalamic–pituitary–gonadal axis.
Both testosterone synthesis and male fertility result from the delicate coordination 

throughout the hypothalamic–pituitary–gonadal axis, thereby ensuring normal testicular 

function1. Gonadotropin-releasing hormone (GnRH) stimulates the release of luteinizing 

hormone (LH) from the pituitary gland. This triggers the Leydig cells within the testes to 

respond by producing adequate levels of testosterone, which, in turn, exerts negative 

feedback control on the hypothalamus and pituitary gland. Likewise, GnRH stimulates the 

release of follicle-stimulating hormone (FSH) from the pituitary gland. This triggers and 

sustains the spermatogenesis within the exocrine part of the testes. The testes contribute 

>95% of total circulating testosterone in the postpubertal male; testosterone is secreted into 

the circulation down a concentration gradient, where it equilibrates between protein-bound 

(98%) and free hormone (1–2%) fractions. Circulating testosterone and other sex hormones 

are bound either to low-affinity, high-availability proteins (primarily albumin) or to the high-

affinity glycoprotein sex hormone-binding globulin (SHBG). These binding proteins play an 

important part in regulating the transport, distribution, metabolism and biological activity of 

the sex hormones231,232. Conditions that alter SHBG levels (for instance, ageing, obesity, 

insulin resistance and liver disease) influence free testosterone levels. The free hormone 

fraction is postulated to be the biologically active form of testosterone1,231,232. Testosterone 

secretion varies throughout the day and is usually the highest in the morning. Hence, 

samples to determine testosterone levels need to be taken in the morning. Figure adapted 

from REF.233, Springer Nature Limited.
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Fig. 2 |. Anatomical changes and serum hormone levels associated with male sex determination 
and maturation.
In the fetal period, testicular hormones begin to be secreted independently of fetal pituitary 

gonadotropins in the first trimester of fetal life and drive fetal differentiation of the genitalia. 

In the second and third trimesters, growth of the genitalia and testicular descent are 

stimulated by androgen secretion dependent on fetal luteinizing hormone (LH). In the 

postnatal period, testicular volume increases during childhood owing essentially to Sertoli 

proliferation. After the postnatal activation in the 0–6-month period (usually called ‘mini-

puberty’), serum levels of gonadotropins and testosterone (T) decline, but those of the 

Sertoli cell markers anti-Mullerian hormone (AMH) and inhibin B persist at clearly 

detectable levels. During puberty, testicular volume increases dramatically owing to 

spermatogenic development, secondary to gonadotropin and T action. Sertoli cell markers 

show opposite profiles: AMH is inhibited by T whereas inhibin B is upregulated by follicle-

stimulating hormone (FSH) and germ cells. INSL3, insulin-like factor 3; O, testicular 

volume measured by comparison to Prader’s orchidometer; US, testicular volume measured 

by ultrasonography.
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Fig. 3 |. Pathophysiology of hypogonadism.
Hypogonadism may be caused by a primary testicular pathology (primary hypogonadism, 

otherwise known as hypergonadotropic hypogonadism, which is defined as low testicular 

hormones, with high gonadotropins) resulting from malfunction at the level of the testes due 

to a genetic cause, injury, inflammation or infection (panel a). Conversely, central defects of 

the hypothalamus or the pituitary gland lead to secondary hypogonadism (also called central 

hypogonadism or hypogonadotropic hypogonadism, which is defined as low testicular 

hormones, with low or normal gonadotropins), which is most often caused by genetic 

defects, neoplasm or infiltrative disorders (panel b). FSH, follicle-stimulating hormone; 

GnRFI, gonadotropin-releasing hormone; LH, luteinizing hormone. Adapted with 

permission from REF.31, Oxford University Press.
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Fig. 4 |. Pathophysiology of congenital secondary hypogonadism.
Genes associated with congenital secondary hypogonadism. GnRH, gonadotropin-releasing 

hormone.
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Fig. 5 |. Relationship between age, BMI and reproductive hormones.
The graphs present mean levels of total and calculated free testosterone, luteinizing hormone 

(LH) and sex hormone-binding globulin (SHBC). a | Total testosterone is reduced in 

overweight and obese men compared with nonobese men at all ages. b | Free testosterone, 

similar to total testosterone, is reduced in overweight and obese men compared with 

nonobese men at all ages. c | LH increases with age but is not associated with body mass 

index (BMI). d | SHBC increases with age. For total testosterone and SHBC, no interaction 

between BMI and age were found, whereas free testosterone showed an interaction between 

BMI and age. The data were derived from a cohort of 3,220 men aged 40–79 years recruited 

in the European Male Ageing Study (EMAS) study. Shaded areas and vertical lines represent 

the 95% CI. Adapted with permission from REF.76, Oxford University Press.
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Fig. 6 |. Diagnostic algorithm for hypogonadism in pubertal age.
Diagnostic flowchart in a boy presenting with no signs of pubertal development by 14 years 

of age. Tests mentioned may help to distinguish among and/or confirm diagnoses, but the 

full battery is not recommended or warranted in all cases and may not lead to a conclusive 

diagnosis. The main text describes considerations regarding test use. AMH, anti-Müllerian 

hormone; CDGP, constitutional delay of growth and puberty; DHEAS, 

dehydroepiandrosterone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing 

hormone; IGF1, insulin-like growth factor 1; LH, luteinizing hormone; T4, thyroxine; TSH, 

thyroid-stimulating hormone.
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Table 2 |

Laboratory cut-off values for biochemical late-onset hypogonadism

Guideline Total testosterone; nmol/l (ng/ml) Calculated free; testosterone 
pmol/l (pg/ml)

Ref.

American Urological Association 10.4 (3.0) NA 234

British Society for Sexual Medicine • Mild: 12.1 (3.5)
• Severe: 8.0 (2.31)

• NA
• 225 (65)

113

Canadian Endocrine Society Depending on reference values in local 
laboratory

NA 235

European Association of Urology 12.1 (3.5) 243 (70) 120

Endocrine Society 9.2 (2.64) NA 112

International Society for Sexual Medicine 12.0 (3.5) NA 45

International Society for the Study of the Aging 
Male

12.1 (3.5) 243 (70) 236

NA, not applicable.
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