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ABSTRACT Because of variation in linkage phase and heterozygosity among individuals, some individuals produce genetically more
variable gametes than others. With the availability of genomic EBVs (GEBVs) or estimates of SNP-effects together with phased
genotypes, differences in gametic variability can be quantified by simulating a set of virtual gametes of each selection candidate.
Previous results in dairy cattle show that gametic variance can be large. Here, we show that breeders can increase the probability of
breeding a top-ranking genotype and response to recurrent selection by selecting parents that produce more variable gametes, using
the index I ¼ GEBV þ ffiffiffi

2
p

xpSDgGEBV ; where xp is the standardized normal truncation point belonging to selected proportion p, and
SDgGEBV is the SD of the GEBV of an individual’s gametes. Benefits of the index were considerably larger in an ongoing selection
program with equilibrium genetic parameters than in an initially unselected population. Superiority of the index over selection on GEBV
increased strongly with the magnitude of the SDgGEBV ; indicating that benefits of the index may vary considerably among popula-
tions. Compared to selection on ordinary GEBV, the probability of breeding a top-ranking individual can be increased by �36%, and
response to selection by �3.6% when selection is strong (P = 0.001) based on values for the Holstein-Friesian dairy cattle population.
Two-stage selection, with a preselection on GEBV and a final selection on the index, considerably reduced computational requirements
with little loss of benefits. Response to multiple generations of selection and inheritance of the SDgEBV require further study.
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usefulness criterion

GENETIC improvement in livestock and crop populations
relies on recurrent selection of parents of the next gen-

eration in outbred populations, or on the identification of elite
parents to produce a new commercial variety for clonal re-
production. In outbred populations, recurrent selection of
parents based on estimated breeding values (EBV) is widely
used tomaximize response to selection in the short term. This
is because the EBV of a parent predicts themean phenotype of
its offspring. The focus on EBV, however, partly obscures the
mechanism of genetic improvement and the central role of
Mendelian-sampling therein. An alternative perspective is

that genetic improvement of populations requires the off-
spring generation to be better, on average, than the parent
generation.Genetic improvement, therefore, ultimately relies
on selection for Mendelian sampling deviations, i.e., on se-
lection for deviations of the offspring breeding value from the
parent-average breeding value (Wray and Thompson 1990;
Woolliams et al. 1999). The central role of Mendelian sam-
pling deviations is also illustrated by the fact that any breed-
ing value can be decomposed fully into Mendelian sampling
deviations of ancestors (Thompson 1977).

In the classical infinitesimal model, the Mendelian sam-
pling variance on the gametes produced by noninbred indi-
viduals in outbred panmictic mating populations equals one-
quarter of the additive genetic variance. Hence, apart from
limiting inbreeding, there are no opportunities to accelerate
response to selection in outbred populations by increasing the
Mendelian sampling variance in the infinitesimal model.

The actual Mendelian sampling variance, however, differs
among individuals (beyond the effect of inbreeding). Because
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of linkage and finite genome size, the effective number of
segregating segments in the meiosis is limited (Stam 1980;
Hill and Weir 2011). Together with variation among individ-
uals in heterozygosity and linkage-phase, this leads to varia-
tion among individuals in the Mendelian sampling variance
on their gametes, both in panmictic outbred populations
(Segelke et al. 2014; Bonk et al. 2016) and in crosses between
inbred lines (Schnell and Utz 1976; Bernardo 2014). In other
words, relative to the breeding value of the parent, the mean
breeding value of gametes is zero, but some parents produce
more variable gametes (and thus offspring) than others.

Figure 1 illustrates this phenomenon, showing that het-
erozygotes in coupling phase for closely linked loci have the
highest standard deviation (SD) in the genetic merit of their
gametes. While all four individuals in Figure 1 have the same
genetic merit, only the heterozygous coupling-phase individ-
ual produces gametes carrying all four favorable alleles.

After selection in the offspring generation, offspring of
parents with greater Mendelian sampling variance will show
a greater within-family selection differential. This suggests
that variation in the Mendelian sampling variance among
potential parents can be used to accelerate response to re-
current selection, or to increase the probability of breeding a
top-ranking individual or commercial variety (Schnell andUtz
1976; Bernardo 2014; Segelke et al. 2014). In other words,
the response to selection, and the probability of breeding a
top-ranking individual, can be increased by selecting parents
not only on EBV, but also on the Mendelian sampling vari-
ance on their gametes.

In the context of development of inbred lines, such as in
maize breeding, plant breeders have long realized the rele-
vance of selecting crosses that produce variable offspring.
About 40 years ago, Schnell and Utz (1976) proposed the
usefulness criterion (UC), which represents the expected ge-
notypic mean of the selected inbred offspring of biparental
crosses among inbred lines. The UC increases with the genet-
ic variance among the offspring of a cross. More recent work
has investigated the benefit of selecting parents for the de-
velopment of inbred lines, combining the UC with genomic
information (Zhong and Jannink 2007; Bernardo 2014;
Lehermeier et al. 2017; Allier et al. 2019a,b; Beckett et al.
2019). These studies show that the genetic level of double
haploids and recombinant inbred lines can be improved by
selecting crosses that yield more genetically variable off-
spring. (See Discussion for other strategies to increase long-
term response in plant breeding).

For recurrent selection in outbred populations, such as in
livestock or tree breeding, selection of parents with greater
Mendelian sampling variance has received little attention,
probably because it is difficult to use in the absence of genomic
information. Before the genomic era, Van Raden et al. (1984)
and Woolliams and Meuwissen (1993) investigated the ben-
efit of selecting parents with a lower accuracy of their EBV.
Given their EBV, such parents also produce more variable
offspring. Benefits of this strategy, however, and application
in breeding, were limited.

The availability of genomic information allows us to esti-
mate the Mendelian sampling variance on the gametes of an
individual, either by simulation or by theoretical prediction
(Bernardo 2014; Segelke et al. 2014; Lian et al. 2015; Bonk
et al. 2016; Lehermeier et al. 2017). With simulation, for
example, one can create a virtual sample of the gametes of
a selection candidate and estimate the variance in the geno-
mic EBVs (GEBV) of these gametes. Thus, for breeding
schemes with an existing genomic reference population, a
known linkage map, and the availability of phased geno-
types, it only requires computing time to obtain the SD of
the gametic GEBV for all selection candidates.

The central “parameter” to assess the benefit of recurrent
selection of parents that produce more variable gametes is
the distribution of the gametic variability of individuals. At
present, however, empirical knowledge of this distribution is
very limited for panmictic outbred populations, and available
only for the Holstein Friesian dairy cattle population. Segelke
et al. (2014) used simulation to find the distribution of the SD
ðsĝÞ of gametic GEBV ðĝÞ in this population. Though they do
not explicitly present the SD of sĝ among individuals, results
in their Figures 2 and 4 indicate that the coefficient of vari-
ation (CV) of sĝ ranges from �0.10 through �0.14 for the
traits protein yield, fat yield, somatic cell score, and still birth.
These values are similar to results of Bonk et al. (2016), who
find a CV of the Mendelian sampling variance of�0.20 in the
same population. (Note that the CV of the variance is twice
the CV of the SD, so that results of both studies are in agree-
ment). With an approximate normal distribution of sĝ, and
an average sĝ of 0.5 sGEBV, these results indicate that the SD
of gametic GEBV of individuals ranges from �0.32 to �0.68
sGEBV (m 6 3 SD, using CVðsĝÞ ¼ 0:12). This range suggests
considerable variation among Holstein-Friesian individuals
in the SD of the GEBV of their gametes, where extreme indi-
viduals may differ by a factor of two. Moreover, empirical
results in Segelke et al. (2014) suggest that the variability
of the gametes of an individual is independent of the GEBV of
the individual, in contrast to findings in biparental crosses in
maize (Bernardo 2014). The variability in sĝ is unknown for
other traits and populations, but may be larger for species
with smaller genomes, and for traits determined by fewer
genes.

Segelke et al. (2014) considered the use of variation in sĝ

in mating schemes, and illustrated this phenomenon for the
mating of two sires and three dams. However, they did not
quantify the benefits of systematic selection of parents with
high sĝ for response to recurrent selection in an outbred
population, or for the probability of breeding a top-ranking
individual.

Here we investigate the potential to increase response to
recurrent selection and the probability of breeding a top-
ranking genotype by selecting parents with higherMendelian
sampling variance in an outbred population. Building on the
conceptunderlying theUC,weproposeanumberof indices for
the selection of parents of the next generation of an outbred
population, and identify the optimum index of an individual’s
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GEBV and the variability of its gametes using simulation. We
quantify the benefits of selection on the optimum index for
response to recurrent selection and for the probability of
breeding a top-ranking genotype, for a range of selection in-
tensities and CVs of sĝ. Because the magnitude of the Men-
delian sampling variance, expressed relative to the full
genetic variance, increases in selected populations (Bulmer
1971), we consider both initially unselected and selected
populations (Bijma et al. 2018). Finally, we consider the pros-
pects of selection in two stages to reduce the computation
requirements for selection on Mendelian sampling variance.

Materials and Methods

We consider an outbred population with an existing genomic
reference population, where GEBV for a polygenic additive
trait are available on all selection candidates. We assume that
the GEBV is an unbiased predictor of the true breeding value,
bBV;GEBV ¼ 1, which is a property of a Best Linear Unbiased
Predictor (BLUP; Henderson 1975). With this assumption,
the response to selection in true breeding value is equal to
the change in mean GEBV. We directly model GEBVs and SD
of gametic GEBV of selection candidates based on the empir-
ical distribution found by Segelke et al. (2014) in dairy cattle,
without simulating actual genomes. Hence, we do not simu-
late the QTL, SNPs, linkage disequilibrium, chromosome
structure, and recombination underlying the GEBV. We take
this approach because results of Segelke et al. (2014) repre-
sent the best current knowledge of the distribution of gametic
GEBV for an outbred population, and because response in
true breeding value is equal to response in GEBV with Best
Linear Unbiased Prediction (Henderson 1975; see Discussion
for a more detailed motivation of this choice.) Because re-
sponse to selection follows directly from the change in mean
GEBV, we do not model the true breeding values, but simply
calculate response to selection as the change in mean GEBV
due to selection. Moreover, given the coefficient of variation
of sĝ, the relative benefit of selecting for higher gametic var-
iability is independent of the heritability of the trait (see
section Scenarios and simulations below). For this reason,
we do not consider heritability values.

Furthermore, we assume that the SD of the GEBV of the
gametes produced by each selection candidate is known. We
makethisassumption,becauseanaccurateestimateoftheSDin
gameticGEBVcanbeobtainedbysimulatinga sufficiently large
sample of virtual gametes for each selection candidate, assum-
ing that accurately phased genotypes are available for all
selection candidates (see Discussion). Thus all selection candi-
dates have a known value for their GEBV and for the variability
of the GEBV of their gametes. Wewill use the symbol Â for the
GEBV of an individual, ĝ for the GEBV of a gamete, and sĝ for
the SD in GEBV of the gametes of an individual.

Model for variation in gametic variability

Figures 5 and 6 in Segelke et al. (2014) show that the distri-
bution of sĝ is close to log-normal; sĝ is restricted to positive

values and shows slight positive skewness (after removal of
thewell-known effect of the DGAT1 gene on fat%).Moreover,
Figure 2 in Segelke et al. (2014) shows that the GEBV and sĝ

of individuals are independent in dairy cattle. For this reason,
we simulated sĝ from a log-normal distribution, and inde-
pendent of GEBV.

Without loss of generality, we assume that the variance of
GEBV in the unselected base population is equal to 1,
varðbAÞ ¼ 1. Thus the mean Mendelian sampling variance of
GEBV equals 1=2, the mean variance of gametic GEBV equals
1=4;sĝ

2 ¼ 1=4, and the mean SD of gametic GEBV equals �1=2,
sĝ ffi 1=2. (The mean sĝ is not precisely equal to 1=2, because

sĝ ffi
ffiffiffiffiffiffi
sĝ

2
q

when sĝ
2 varies among individuals). The GEBV of

selection candidates were drawn from Â � Nð0; 1Þ. The var-
iance in the GEBV of the gametes produced by each selec-
tion candidate ðsĝ

2Þ was drawn from a log-normal
distribution, with mean 1=4 and a variance, varðsĝ

2Þ,
depending on the scenario of interest (see below);
sĝ

2 � LN
�
m ¼ 1

4;s
2 ¼ varðsĝ

2Þ�. The log-normal distribu-
tion avoids negative values of gametic variances, and re-
sults in slightly positive skewness and excess kurtosis of
the SD of gametic GEBV. For example, for a coefficient of
variation of sĝ

2 of 20% (Bonk et al. 2016), skewness of sĝ

equals 0.30 and excess kurtosis equals 0.16. By visual in-
spection, the resulting distribution is very similar to that
for fat yield (corrected for DGAT1) presented in panel 2 of
Figure 6 of Segelke et al. (2014).

Selection indices

We investigated the performance of several selection indices
for two criteria: (1) The probability that offspring in the next
generation exceed a predefined GEBV threshold. (2) The
mean GEBV of the selected offspring in the next generation.
The first criterion measures the probability of breeding a top-
ranking genotype, while the second criterion measures re-
sponse to recurrent selection at the population level. Note
that the second criterion is an analogy of the usefulness cri-
terion (UC) used for the selection of biparental crosses in
plant breeding. However, our selection indices will differ
from the UC because we considered the selection of single
parents of the next generation of an outbred population from
a set of available selection candidates, rather than selection
of biparental crosses to be made for inbred development (see
also Discussion).

The default index was the ordinary GEBV,

I1 ¼ Â:

In addition, we considered three types of selection indices of
an individual’s GEBV and the variability of its gametes. First,
we used empirical linear indices of Â and sĝ of a candidate,
where the latter was weighted by an empirically obtained
regression coefficient. Second, we used theoretically moti-
vated linear indices of Â and sĝ. Finally we used theoretically
motivated nonlinear indices based on probabilities derived from
the normal distribution.
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Empirical indices: Indices 2 through 4 used empirical index
weights estimated from simulated data. Hence, we used
separate simulations to find the weights on sĝ in indices
2 through 4, which were independent of the simulations used
later to evaluate the indices. To find the empirical index
weights, we regressed the “success” of an individual’s off-
spring ðyoff Þ on its Â and sĝ,

yoff ¼ b1Âþ b2sĝ þ e;

where b1 and b2 are regression coefficients (see Appendix A
for details). The relative weight on sĝ in indices 2 through
4 was the ratio of the estimated regression coefficients;

b̂p; b̂�A; b̂c
n o

¼ b̂2=b̂1:

For Index 2, offspring “success” (yoff) was defined as the
fraction of offspring of the candidate that rank in the top p
fraction of GEBVs in the next generation,

I2 ¼ Âþ b̂psĝ:

For Index 3, offspring “success” was defined as the mean
GEBV ð�AÞ of the selected offspring of a candidate,

I3 ¼ Âþ b̂�Asĝ:

For Index 4, offspring “success” was defined as the contribu-
tion (c) of the candidate to the mean GEBV of all selected
offspring in the next generation,

I4 ¼ Âþ b̂csĝ:

The contribution of the candidate to the mean GEBV of all
selected offspring was calculated as the product of the prob-
ability that an offspring of the candidate ranks in the top p
fraction of GEBVs in the next generation and the mean GEBV
of those top offspring. A table of empirical regression coeffi-
cients is given in Appendix A.

Theoretical linear indices: Indices 5 through 8 were theo-
retically motivated linear indices. (Derivations are in Appen-
dix B). Index 5 aimed tomaximize the probability of breeding
a top-ranking genotype, and was proportional to the lin-
early predicted probability that an offspring of the candidate
ranked in the top p fraction of GEBVs in the next generation,

I5 ¼ Âþ
ffiffiffi
2

p
xpsĝ;

where xp is the truncation point of a standard normal distri-
bution belonging to the upper-tail proportion p. Index
6 aimed to maximize response to recurrent selection, and
was the predicted mean GEBV of the selected offspring of a
candidate,

I6 ¼ Âþ
ffiffiffi
2

p
ipsĝ;

where ip is the selection intensity belonging to selected pro-
portion p in a recurrent testing program (Falconer and

Mackay 1996). Indices 5 and 6 are based on a linear approx-
imation of the within-family SD in GEBV (sbMS; See Appendix
B). To investigate the impact of this approximation, we also
considered indices 7 and 8, which are analogous to indices
5 and 6, but use sbMS directly rather than linearizing it in sĝ,

I7 ¼ Âþ 2xpsbMS

I8 ¼ Âþ 2ipsbMS

where sbMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sĝ

2 þ 0:25
q

. Hence, indices 7 and 8 use the
expected GEBV SD among the offspring of the selection can-
didate when it is mated to a randomly chosen other parent
(who has an expected sĝ

2 of 0.25). Note that index 8 is anal-
ogous to the UC (see Discussion for a mathematical expres-
sion of the UC), but it uses a gametic variance equal to 0.25
for the unknown mate of the selection candidate, and it dif-
fers by a factor of two (which does not affect the selection of
parents).

Theoretical nonlinear indices: The theoretically motivated
nonlinear indices 9 and 10 used the probability that offspring
of a candidate were selected (or ranked in the top p fraction),
calculated from the normal distribution. Index 9 aimed to
maximize the probability of breeding a top-ranking individ-
ual, andwas the probability that an offspring of the candidate
ranked in the top p fraction of GEBVs in the next generation,

I9 ¼ F
Âoff 2 tp

sbMS

 !
;

where F is the cumulative normal distribution function,

Âoff ¼ 1
2 Âþ 1

2 Âmate
� �

being the expected mean GEBV of the
offspring of the candidate, and tp is the absolute truncation
point in the offspring generation belonging to the top p frac-
tion. Index 10 was the predicted contribution of the candi-
date to the mean GEBV of all selected individuals in the
offspring generation,

I10 ¼ F
Âoff 2 tp

sbMS

 !
1
2
Âþ 1

2
Âmate þ ioffsbMS

�
;

�

where the first term is the probability that an offspring is
selected, and the second term is the predicted mean of those
selected offspring. In the second term, ioff is the selection
intensity specifically for the offspring of this candidate, which
follows from tp and themeanGEBV andsbMS of those offspring.
Note that Index 10 is a theoretical analogy of Index 4.

Scenarios and simulations

We used simulation to quantify the benefits of selecting on
indices I2 through I10 vs. selection on GEBV (I1), and to iden-
tify the best index. The relative benefit of selecting on sĝ will
depend on the coefficient of variation of sĝ among individu-
als, CVsĝ � SDðsĝÞ=

�
1
2sÂ

�
, and on the intensity of selection.
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The importance of sĝ relative to the GEBV increases with its
CV. Since breeders are usually interested in the relative ben-
efits of innovations (e.g., percentage increase in response)
rather than the absolute benefit, wemeasured the differences
among individuals in variability of their gametes by the CVs ĝ,
rather than the SD of sĝ. (The CV is also independent of the
unit of measurement). Likewise, with increasing selection
intensity the benefit of producing extreme offspring in-
creases. The accuracy of GEBV is irrelevant here, since re-
sponse to selection was modeled entirely in terms of GEBV.
Based on values found by Segelke et al. (2014; see
Introduction), we considered CVs of sĝ of 0.05, 0.10, 0.15,
and 0.20. These values correspond to a range of sĝ of
0.425sÂ to 0.575sÂ for a CV of 0.05, to 0.20sÂ to 0.80sÂ
for a CV of 0.2 (using m 6 3 SD). To vary the intensity of
selection, we considered selected proportions (p) of 0.5, 0.2,
0.1, 0.05, 0.01, 0.005, and 0.001 for both sexes.

Each index was used to select the best 100 individuals
(50 males and 50 females) as parents from 100/p selection
candidates. Selected parents were mated at random, and a
total of 100/p offspring were simulated using normally dis-
tributed gametic GEBV with the appropriate sĝ. The thresh-
old used to define the top p fraction in the offspring
generation was based on the offspring of parents selected
on ordinary GEBV (I1). Then, for parents selected on indexes
2 through 10, we estimated (i) the probability of breeding a
top-ranking genotype as the fraction of offspring exceeding
this selection threshold, and (ii) response to recurrent selec-
tion as the mean GEBV of the best 100 offspring. Hence, in
the results on the probability of breeding a top-ranking ge-
notype, p refers to the definition of “top,” whereas in the
results on response to recurrent selection, p refers to the pro-
portion of the candidates that is selected to become parent of
the next generation. Results were expressed relative to selec-
tion on ordinary GEBV (I1), and were based on 10,000
replicates.

With respect to the selection history of the population, we
considered two scenarios: a scenario where selection candi-
dates come from an unselected population (“unselected pop-
ulation”), and a scenario where parents come from an
selected population (“selected population”) in which recom-
bination balances the gametic phase disequilibrium gener-
ated by selection, leading to equilibrium genetic parameters
(known as the “Bulmer equilibrium,” after Bulmer 1971).
Directional selection reduces the between-family variance
compared to the within-family segregation variance (Mende-
lian sampling variance). Under the infinitesimal model,
selection does not affect the within-family segregation vari-
ance, while the between-family and full genetic variance
reach an equilibrium in about three generations (Bulmer
1971; see also Discussion). Simulations for the selected pop-
ulation scenario, therefore, consisted of three generations of
truncation selection on GEBV to obtain the equilibrium var-
iance of GEBVs, and a fourth generation where parents were
selected on one of the indices. Hence, the indices were judged
based on response to selection in generation 4. Because

Segelke et al. (2014) found no correlation between the GEBV
and the sĝ of individuals, we assumed that selection on GEBV
in generations 1 through 3 does not affect the sĝ in genera-
tion 4.

Empirical indices I2-4 were omitted for the selected pop-
ulation scenario for two reasons: (i) those indices had been
estimated from data on initially unselected populations, so
they were probably suboptimal for a selected population. (ii)
Results from initially unselected population indicated that
theoretically motivated indices were superior to empirical
indices (See Results section below).

Two-stage selection

Practical implementation of the above indices requires the
estimation of sĝ for each selection candidate. While this is
essentially straightforward, and can be done either by simu-
lating virtual gametes (Bernardo 2014; Segelke et al. 2014)
or by deterministic prediction (Bonk et al. 2016), it may be
computer intensive when the number of candidates is large.
With simulation, for example, a large number of gametes has
to be simulated for each candidate to accurately estimate the
variance in GEBVs among those gametes. To investigate op-
portunities to reduce computational effort without losing the
benefit of selecting for sĝ, we considered a two-stage selec-
tion scenario. Selection in the first stage was for GEBV, while
selection in the second stage was for Index 5. (This choice
was motivated by the results, see below). Such preselection
may greatly reduce computational requirements, because sĝ

needs to be estimated only for the individuals that enter the
second stage.

Data availability

Data sharing isnotapplicable to this articleasnodatasetswere
generated or analyzed during the current study. The R-codes
used for simulation are available in Supplemental Material,
Files S1 through S3. Supplemental material available at fig-
share: https://doi.org/10.25386/genetics.11106125.

Results

Differences between the indices were small, both for the
probability that offspring rank within the top p fraction and
for response to recurrent selection. Moreover, empirical in-
dices were not systematically superior over theoretically mo-
tivated indices (Tables S1 and S2). We, therefore, show
results for Index 5 only, which was among the best in all
scenarios, both for the probability to breed a top-ranking ge-
notype and for response to recurrent selection.

Initially unselected population

Table 1 shows the relative increase in the probability of
breeding a top-ranking genotype for the unselected popula-
tion scenario. Compared to selection on ordinary GEBV, this
probability increased when a smaller fraction was defined as
“top” (smaller p), and when the CV of sĝ was larger. For a CV
of 0.1 (as found in dairy cattle; Segelke et al. 2014), the
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probability that an offspring ranked within the top 0.1% (P=
0.001) increased by 19% when parents were selected on In-
dex 5 instead of ordinary GEBV. The probability of breeding a
top-ranking offspring increased very strongly with the CV of
sĝ. Hence, the benefits of selecting for sĝ may depend
strongly on the species and on the population history.

Table 2 shows the relative increase in response to recur-
rent selection for the unselected population scenario. Com-
pared to selection on ordinary GEBV, selection of parents on
Index 5 increased the mean GEBV of the selected offspring.
The relative increase was larger when selection was stronger
(smaller p), and when the CV of sĝ was larger. The increases
in response to selection were smaller than those in the prob-
ability of breeding a top-ranking individual (Table 2 vs. Table
1). For example, for CVðsĝÞ ¼ 0:1 and P = 0.001, the mean
GEBV of selected offspring increased by only 2%,whereas the
probability of breeding a top-ranking individual increased by
19%when parents were selected on Index 5 instead of GEBV.

Selected population

Table 3 shows the probabilities of breeding a top-ranking
individual for the selected population scenario. The benefit
of selecting on Index 5 instead of ordinary GEBV was larger
than for an initially unselected population (Table 3 vs. Table
1). For a CV of 0.1, for example, the probability of breeding
an offspring that ranked within the top 0.1% (P = 0.001)
increased by 36% when selecting on Index 5 instead of the

GEBV. The corresponding value for an initially unselected
population was 19% (Table 1).

Table 4 shows the responses to selection for the selected
population scenario. Benefits of selecting on Index 5 instead
of GEBV were �70% greater than for an initially unselected
population (Table 4 vs. Table 2). For example, for a CV of 0.1
and strong selection (P= 0.001), the mean GEBV of selected
offspring increased by 3.6% when parents were selected on
Index 5 instead of ordinary GEBV. The corresponding value
for an initially unselected population was 2% (Table 2).

Two-stage selection

Figure 2A shows the relative increase in the probability of
breeding a top-ranking genotype as a function of the degree
of preselection on GEBV, for Index 5 and the selected popu-
lation scenario. Results show that very strong preselection
can be applied with little loss in the probability of breeding
a top-ranking genotype. For example, for a total selected pro-
portion of P = 0.001, preselection with p1 = 0.01 (so that
p2 = 0.1) showed no significant reduction in the probability
of breeding a top-ranking genotype. Hence, for this scheme,
preselection allowed a 100-fold reduction in the computation
effort for estimating sĝ, without meaningful loss of benefit.
Figure 2B shows similar results for response to selection.

Discussion

We have investigated the opportunities to increase the prob-
ability of breeding a top-ranking genotype, and the response to
recurrent selection, by selecting parents with greater Mende-
lian sampling variance on their gametes, for outbred panmictic
populations. Ten selection indices were compared, most of
whichgavesimilar results.A simple indexwitharelativeweight
of

ffiffiffi
2

p
xp on the SD of gametic GEBV ðsĝÞ of the selection

candidates was near optimal in all scenarios (Index 5; xp is
the truncation point of a standard-normal distribution belong-
ing to an upper-tail fraction p). Benefits of selection for sĝ

increased with the intensity of selection, and were larger for
populations with a history of selection than for initially un-
selected populations. For input values based on results found
in dairy cattle (Segelke et al. 2014), selection for sĝ consider-
ably increased the probability of breeding a top-ranking geno-
type, while benefits for response to selection were limited. For
practical implementation, preselection on ordinary GEBV can
be used to substantially reduce computational requirements.

Selection indices

We compared three types of selection indices of the GEBV of
an individual and the Mendelian sampling variance on its
gametes: (i) empirical indices estimated from simulated data
(I2-4), (ii) theoretically motivated linear indices (I5-8), and
(iii) theoretically motivated nonlinear indices (I9,10). For
each type, we considered both indices that aimed to maxi-
mize the probability of breeding a top-ranking genotype
(I2,5,7,9), and indices that aimed to maximize response to
selection (I3,4,6,8,10). All indices are approximations, because

Figure 1 Four diploid individuals (A–D), with two pairs of loci (L1–L4).
Locus 1 and 2 are closely linked, and so are locus 3 and 4, while locus
1 and 2 are unlinked to locus 3 and 4. The unlinked loci are separated by
//. The favorable allele is indicated by “+.” All individuals have the same
genetic merit (“4+” and “42“). Individual A is both in coupling phase
and heterozygous, and produces 25% “4+” gametes, 50% “2+,22”

gametes and 25% “42” gametes. All other individuals produce 100%
“2+,22 gametes.” Hence, individual A produces gametes with most
variation in genetic merit, and is also the only individual producing the
most favorable combination of alleles (“4+”).
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the distribution of GEBV in the offspring generation is a com-
plex mixture of distributions. For the probability of breeding
a top-ranking genotype, empirical indices yielded similar re-
sults as theoretically motivated indices, while empirical in-
dices were slightly worse for response to recurrent selection
(Tables S1 and S2). Nonlinear indices were more complex
than linear indices, but showed similar results.

For the theoretically motivated linear indices, results were
very similar for indices targeting a top-ranking individual (I5,7)
and indices targeting response to recurrent selection (I6,8). For
the first category, the index weight depends on the standard-
ized truncation point (x), while, for the second category, the
index weight depends on selection intensity (i). However,
meaningful benefit of selection for higher gametic variability
was observed only when selection was reasonably strong (say
p# 0:05). With strong selection, x and i have a similar value,
so that indices 5 and 7 are similar to indices 6 and 8.

Results were also very similar for indices that were a linear
function of the SD of the gametic GEBV of the candidate (sĝ;
I5,6), and indices that were a linear function of the Mendelian
SD of the GEBV of its offspring (sbMS; I7,8). The first class
involves an extra approximation, because they approximate
the sbMS by a linear function of sĝ (see Appendix B). The
similarity of results, however, indicates that this additional
approximation had little impact.

Santos et al. (2019) recently proposed the selection index
I ¼ 1

2 Âþ isĝ (labeled RTPA). They state that this index
refers to the genetic level of the selected offspring of a can-
didate in the next generation, but do not provide a proof
thereof. This index, however, ignores that the GEBV SD in
the offspring of a mating follows from the gametic variances
of the parents, sÂP13P2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sĝ;P1
2 þ s2

ĝ;P2

q
, not from the SD,

sÂP13P2
6¼ sĝ;P1 þ sĝ;P2. For this reason, our Index 6 includes

a factor O2 (See Appendix B for the derivation thereof).

Selected vs. unselected populations

The benefit of selecting for higher Mendelian sampling var-
iance was considerably larger for populations undergoing
recurrent genomic selection than for initially unselected

populations (Table 3 and Table 4 vs. Table 1 and Table 2).
This occurs because selection reduces the between-family
variance relative to the Mendelian sampling variance (the
“Bulmer effect,” after Bulmer 1971). This effect is particularly
strong for the variance of GEBV, because genomic selection
yields a very strong reduction in the variance of GEBV when
the update of the reference population in each generation is
relatively small. For a trait determined by many loci of small
effect and equal selection intensity in both sexes, the variance
of GEBV may be modeled as

s2bA;t11
¼ 1

2
ð12 kÞs2bA;t 1 1

2
s2bA;t50

;

where k is the relative reduction in the variance of the
selection criterion (i.e., the GEBV here) due to selection,
and s2

Â;t¼0 is the full variance of the GEBV in the unselected
base population. With truncation selection on Gaussian
GEBV, k = i(i-x), with i the selection intensity, and x the
standardized truncation point (Cochran 1951). Values of k
are typically between �0.6 and �0.93. In around three
generations, the s2

Â;t
asymptotes to an equilibrium value of

s2
Â;N ¼

s
Â;t¼0
2

1þ k
:

For a selected proportion of 5%, for example, k = 0.86, the
equilibrium variance is only 54% of the full variance, and
0.50/0.54=92%of the variance in GEBVs is due toMendelian
sampling. Hence, Mendelian sampling is the dominant source
of variance in GEBV with recurrent genomic selection. This
explains the greater relevance of variation among individuals
in the Mendelian sampling variance of their gametes for pop-
ulations undergoing recurrent genomic selection. Allier et al.
(2019b) investigated the relevance of the Bulmer effect in on
the context of hybrid development in plant breeding.

Simulation method

We directly simulated the sĝ of the selection candidates from
the distribution found by Segelke et al. (2014) in dairy cattle,
without simulating the underlying genomes of the selection

Table 1 Percentage increase in the probability to breed a top-ranking genotype, for the unselected
population scenario

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5sÂÞ
p 0.05 0.10a 0.15 0.20

0.5 0 0 0 0
0.2 0 0 1 2
0.1 0 1 3 6
0.05 1 3 6 10
0.01 2 8 17 31
0.005 3 10 25 45
0.001 4 19 48 94

Values are the relative increase (%) in the number of individuals in the offspring generation that are in the top p fraction for GEBV
when parents are selected on Index 5, compared to selection on ordinary GEBV (I1). The top p-fraction was defined based on the
offspring of parents selected on ordinary GEBV.
a This is the value found in dairy cattle (Segelke et al. 2014).
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candidates. Hence, we did not simulate the QTL, SNPs, link-
age disequilibrium, chromosome structure, and recombina-
tion underlying the GEBV. We chose this approach based on
the following reasoning: our simulations should agree as well
as possible with our current knowledge of reality. The central
“parameter” here is the bivariate distribution of GEBV and
gametic variability of individuals. At present, our knowledge
of this distribution is very limited for outbred populations;
the distribution has been quantified only for Holstein Friesian
dairy cattle (Segelke et al. 2014; Bonk et al. 2016). For this
reason, we have mimicked that distribution as closely as
possible.

We chose to mimic this distribution by directly simulating
the gametic variance from a log-normal distribution. Alterna-
tively, we could have simulated a detailed genomic architec-
ture, which would have required many detailed assumptions,
such as the number of QTL and their positions, LD, linkage,
and the distribution of QTL-effects. Since we have very
limited knowledge of these details, we would need to
compare the resulting distribution of sĝ with the available
empirical distribution, to judge whether the detailed sim-
ulations are realistic. If not, we would have needed to tune
the simulations until the distribution of sĝ agrees with the
empirical knowledge. Hence, if done properly, detailed
simulations would have yielded the same bivariate distri-
bution of GEBV and sĝ that we chose to simulate directly,
and, therefore, also the same results, albeit at greater com-
putational cost.

Furthermore, we assumed that the sĝ is known for each
selection candidate. Hence, we assumed that selection can-
didates have accurately phased genotypes, so that the sĝ can
be estimated accurately by simulating a sufficiently large
sample of virtual gametes for each candidate. Phasing errors
will reduce the benefit of selection on sĝ. In livestock popu-
lations, phased genotypes are typically produced as a byprod-
uct of the imputation of missing marker data. The most
important livestock breeds have large genomic reference
populations, strong LD, known pedigree, and genotypic re-
cords on the parents of the selection candidates. Hence, for
such populations phasing is accurate, as illustrated by the
small error rate of imputation (Druet and Georges 2015).
Phasing accuracy may be considerably lower for highly

polymorphic populations with little LD (Bukowicki et al.
2016) and for polyploid species (He et al. 2018).

The magnitude of sĝ and its relationship with the GEBV

In our simulations, we assumed a CV of sĝ of �10% and
independence of sĝ from the GEBV, as found by Segelke
et al. (2014) in a dairy cattle population. The variability of
the gametic GEBV of a parent and its relationship to the level
of the GEBV of the parent will depend on the population
structure. Bernardo (2014) analyzed the variance in GEBV
among double haploids resulting from 45 virtual F1-crosses
of 10 selected inbred lines in maize. He found a triangular
relationship between themean and the variance; double hap-
loids of F1-crosses with an intermediate GEBV level showed
the largest variance, whereas F1-crosses with a high or low
GEBV showed very little variance among their double haploid
offspring. Hence, this contrasts the findings of Segelke et al.
(2014), who found independence of the mean and the vari-
ance in GEBV of offspring. This difference probably originates
at least in part from the population structure, which consisted
of a single panmictic outbred population in Segelke et al.
(2014) and of 10 selected inbred lines in Bernardo (2014).
Selection among inbred lines may create substantial differ-
ences in allele frequency between inbreds of high vs. low
genetic merit. The F1s originating from crosses between oppo-
site extremes will then show the highest heterozygosity, and
thus greater variability in their double haploid offspring
(Bernardo 2014). In contrast, recurrent selection for a highly
polygenic trait in an outbred population generates only small
changes in allele frequency within a generation, so that hetero-
zygosity in parents with extreme GEBV may differ hardly from
the average heterozygosity. The latter would lead to approxi-
mate independence of GEBV and sĝ, as found in dairy cattle.

The variability of the gametic GEBV of a parent will prob-
ably also depend on the method to estimate GEBV. Segelke
et al. (2014) estimated marker effects using SNP-BLUP,
which is equivalent to GBLUP with back solving of SNP-ef-
fects (Hayes et al. 2009). With GBLUP, the sĝ will depend on
the genomic relationship matrix (GRM) used to back-solve
the SNP effects. GRM that (implicitly) assume greater vari-
ance of SNP-effects at loci with lower MAF, such as Van
Raden (2008) method 2, predict large SNP-effects for rare

Table 2 Percentage increase in response to recurrent selection, for the unselected population scenario

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5sÂÞ
p 0.05 0.10a 0.15 0.20

0.5 0.3 0.2 0.2 20.2
0.2 0.1 0.3 0.9 1.6
0.1 0.2 0.6 1.4 2.4
0.05 0.2 0.8 1.7 3.2
0.01 0.3 1.3 3.1 5.8
0.005 0.3 1.4 3.6 7.1
0.001 0.5 2.0 5.2 10.8

Values are the relative increase (%) in the mean GEBV of selected offspring when parents are selected on Index 5, relative to selection
of parents on ordinary GEBV; 100% ½�AIndex5 2 �Acandidates �

½�AIndex1 2 �Acandidates �2 100%.
a
This is the value found in dairy cattle (Segelke et al. 2014).
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alleles (Bouwman et al. 2017), and may therefore yield
higher sĝ than GRM assuming independence of SNP-effect
variance and allele frequency, such as Van Raden (2008)
method 1. Moreover, with GBLUP, the effect of a QTL is dis-
tributed over multiple markers, resulting in many markers of
small effect spread all over the genome. Variable selection
methods in contrast, such as BayesB or Bayesian Lasso
(reviewed in Gianola et al. 2009), attempt to find a limited
number of marker loci of large effect to explain the full ge-
netic variance. One would expect larger sĝ for variable selec-
tion methods than for GBLUP, because the number of
relevant loci is smaller. However, when GBLUP distributes
the effect of a QTL over a limited number of closely linked
marker loci, recombination among these loci will be rare, and
they may contribute equally to the sĝ as a single locus iden-
tified by a variable selection method. Hence, the benefit of
variable selection methods for the detection of individuals
with a high sĝ requires further research.

Variation in the gametic variability among individuals
originates from variation in heterozygosity and linkage
(Bernardo 2014; Segelke et al. 2014; Bonk et al. 2016; Figure
1). Segelke et al. (2014) indeed found that sĝ was smaller in
individuals with higher inbreeding coefficients, but the ped-
igree and genomic inbreeding coefficients explained only
very little of the variance in sĝ (0.25–5.3%). Hence, parents
with a high sĝ cannot be identified accurately based on their
genome-wide inbreeding coefficients. The ability to predict
sĝ may be increased by using a weighted average of locus
specific heterozygosity, the weights being the variance in
GEBV due to the locus. Nevertheless, variation in linkage-
phase among individuals may still contribute the majority
of the variation in sĝ among individuals (Bernardo 2014;
Bonk et al. 2016; e.g., individual A vs. B in Figure 1).

Variation in the recombination rate among individuals
(e.g., Kong et al. 2004) may be an additional source of vari-
ance in gametic variability among individuals. Battagin et al.
(2016) performed simulations to explore the potential of
manipulating recombination rates to increase response to re-
current selection. Figure 3 in Battagin et al. (2016) suggests
that higher recombination rates result in somewhat higher

genetic variance, but do not change the genic variance in the
short term. Hence, whether or not parents with higher re-
combination rates also have greater sĝ cannot be concluded
based on results in Battagin et al. (2016). Our distribution of
sĝ is based on findings of Segelke et al. (2014), who simu-
lated gametes based on the recombination map of dairy cat-
tle. Hence, in these simulations, recombination rates were
the same for all individuals, meaning that our distribution
of sĝ does not include a potential contribution of variation
in the recombination rate among individuals. If higher re-
combination rates indeed go together with greater sĝ, then
there is a synergy between selection for greater Mendelian
sampling variance and the building of optimal genotypes
over generations (see also below).

Hybrid development in plants and the UC: While selection
of parents with variable gametes has received little attention
in the improvement of outbred populations, such as in animal
and tree breeding, it has a long history in the development of
hybrid crosses in plant breeding (e.g., Schnell and Utz 1976;
Bernardo 2014; Lehermeier et al. 2017; Allier et al. 2019a,b;
Becket et al. 2019). Schnell and Utz (1976) proposed the UC,
which is a measure of the short-term improvement that can be
achieved when developing inbreds out of an F1. The UC mea-
sures the mean of the selected inbreds of an F1 parent. With
selection on estimated marker effects (e.g., GEBV), the UC
depends on the mean estimated breeding value of the parents
of the F1, ðÂP1 þ ÂP2Þ=2, on the intensity of selection (i), and
on the SD in estimated genetic values among the inbreds de-
veloped from the F1 (sÂP13 P2

; Zhong and Jannink 2007),

UC ¼ ÂP1 þ ÂP2

2
þ isÂP13P2

Hence, the UC is similar to the indices proposed here (par-
ticularly I6 and I8), but considers inbred line development
rather than response to recurrent selection of single parents
in an outbred population. The UC cannot be used for the selec-
tion of single parents in outbred populations, because the sÂP1P2

is a property of the offspring, which depends also on the

Table 3 Percentage increase in the probability to breed a top-ranking genotype, for the selected
population scenario

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5sÂÞ
p 0.05 0.10a 0.15 0.20

0.5 0 0 0 0
0.2 0 1 2 3
0.1 1 2 4 8
0.05 1 4 10 16
0.01 3 13 29 53
0.005 4 18 42 78
0.001 8 36 89 175

Values are the relative increase (%) in the number of individuals in the offspring generation that are in the top p fraction for GEBV
when parents are selected on Index 5, compared to selection on ordinary GEBV. The top p-fraction was defined based on the offspring
of parents selected on ordinary GEBV.
a This is the value found in dairy cattle (Segelke et al. 2014).
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prospective mate of the selection candidate (the mate is typi-
cally unknown at the time of selection). For this reason, we
developed indices that either ignored the mate (I5,6) or as-
sumed an average mate (I7,8). Both indices yielded very similar
results.

Lehermeier et al. (2017) showed that selection on the UC
is superior over selection on GEBV for the development of
inbreds from biparental crosses. They compared two types of
UC: one based on the SD of estimated genomic values (GEBV)
of the offspring of an F1 (as in the above expression for the
UC), and one based on the SD of the true genetic values
among the offspring of the F1 (i.e., replacing sÂP13 P2

by
sAP13P2; note that sAP13P2 . sÂP13 P2

). Their results show that
selection for a UC based on the true genetic values is superior.
This result arises because selection among the offspring was
based on their true genotypic values in the simulations in
Lehermeier et al. (2017; Christina Lehermeier, personal com-
munication), which requires either known QTL-effects or
field testing of genotypes. In outbred populations, true ge-
netic values are typically unknown, and selection for an index
based on the SD of true genetic effects would overestimate
the value of Mendelian sampling variance for the selection of
parents. For this reason, we proposed indices based on the SD
of the estimated (genomic) breeding values.

Inheritance of gametic variability

Here,we have assessed the benefit of selection forsĝ based on
response to a single generation of selection. If the sĝ on the
gametes of an individual is created de novo each generation,
rather than inherited from the parents, then the benefits of
selection for sĝ in a single generation probably also reflect
the benefits over multiple generations. However, when sĝ

is partly inherited, response to selection may change over
generations. Because the sĝ of an individual depends on its
heterozygosity and linkage phase, inheritance of sĝ will de-
pend on the transfer of heterozygosity and linkage phase
from parents to offspring.

It may seem that heterozygosity is not inherited when
mating is random, because a parent transmits only a single
allele (or haplotype) to its offspring while the other allele

originates from the mate. However, while the inbreeding
coefficient is indeed not inherited, heterozygosity is partly
“heritable.” With random mating, 50% of the offspring of a
heterozygous parent are also heterozygous themselves, irre-
spective of the allele frequency in the population. This occurs
because 1

2 pþ 1
2 ð12 pÞ ¼ 1

2. Hence, whenever population al-
lele frequency deviates from 0.5 and mating is random, het-
erozygous parents produce offspring with above-average
heterozygosity, indicating “inheritance” of heterozygosity.
With random mating, the “heritability” of heterozygosity
may be derived by linking heterozygosity in a single
parent and its offspring, similar to parent-offspring regres-
sion for ordinary quantitative traits; Hoffspring ¼ �Hþ
1
2 h

2
hetðHparent 2 �HÞ. Substituting �H ¼ 2pð12 pÞ, Hparent ¼ 1

and Hoffspring ¼ 1
2 and solving for h2het yields

h2het ¼
12 4pð12 pÞ
12 2pð12 pÞ:

(Note that this result is identical to the heritability of a trait
determined entirely by dominance, e.g., Equations 8.3b, 8.4
and 10.1with a=0, d=1 and VE=0 in Falconer andMackay
1996). The h2het is a V-shaped function of allele frequency,
where h2het ¼ 0 when P = 0.5, and h2het/1 when p ap-
proaches 0 or 1. For example, for P = 0.1, it follows
that �H ¼ 0:18 and h2het � 0:78, so that heterozygosity in
the offspring of a heterozygote equals Hoffspr ing ¼
0:18þ 1

23 0:78ð120:18Þ ¼ 0:50, as also shown above.
Hence, offspring of a parent heterozygous for a rare allele
“inherit” almost 50%of the heterozygosity of their parent. This
result suggests that offspring of parents heterozygous for rare
alleles may also inherit part of the sĝ of their parent, which
would increase the benefits of selecting on Index 5 over mul-
tiple generations compared to the values presented here.

Effects of inheritance of the linkage phase are more com-
plex. For closely linked loci, parentswill transmit their linkage
phase to their offspring. However, this does not necessarily
imply inheritance of sĝ. Individual A in Figure 3, for exam-
ple, is in coupling phase and produces an offspring with high
sĝ when mated to individual B. However, individual A itself
has a sĝ of zero. Stochastic simulation will probably be

Table 4 Percentage increase in response to recurrent selection, for the selected population scenario

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5sÂÞ
p 0.05 0.10a 0.15 0.20

0.5 20.2 20.2 0.0 0.0
0.2 0.3 0.6 1.3 2.1
0.1 0.3 0.9 1.9 3.6
0.05 0.3 1.3 2.9 5.2
0.01 0.6 2.2 5.1 9.9
0.005 0.6 2.5 6.2 12.1
0.001 0.8 3.6 9.1 18.2

Values are the relative increase (%) in the mean GEBV of selected offspring when parents are selected on Index 5, relative to selection
of parents on ordinary GEBV; 100% ½�AIndex5 2 �Acandidates �

½�AIndex1 2 �Acandidates �2 100%.
a
This is the value found in dairy cattle (Segelke et al. 2014).
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required to quantify the inheritance of sĝ due to the combi-
nation of linkage and heterozygosity.

While high gametic variability is desired in the selection of
parents of the next generation of breeding individuals, pro-
ducers in agriculture typically prefer a uniform population.
Hence, parents ofproduction individuals should ideally havea
low gametic variability, and outliers on the bottom end of the
scale are particularly undesirable. Inmost livestock populations,
selection of breeding individuals is separated from the selec-
tion of parents of production animals. In dairy cattle, for
example, selection of breeding bulls is done by breeding
companies, whereas selection of bulls of ordinary cows is
done by farmers. Hence, breeding companies may select bulls
with high gametic variability, while farmers may select the
opposite bulls. Nevertheless, because gametic variability is
partly inherited, selection of breeding individuals with high
gametic variability may increase variability in production
herds in the next generation. When production individuals
are hybrids descending from inbred lines, such as in maize,
there seems to be little room for a conflict between selection of
parents with variable gametes and the uniformity of the
hybrids.

Genotype building and long-term response

Compared to selection on GEBV, selection of parents for
higher Mendelian sampling variance looks one additional
generation ahead, since response is realized only after selec-
tion in the offspring generation. Selectionmethods that aim to
build superior genotypes over multiple generations have a
long history in inbred development from crosses in plant
breeding (Dudley 1984a,b; Bernardo 2014; Daetwyler et al.

2015; Goiffon et al. 2017; Müller et al. 2018), and have also
received some attention in animal breeding (Cole and Van
Raden 2011; Kemper et al. 2012).

Selection methods that consider a single additional gen-
eration, such as I5 and the UC, may seem very different from
those aiming to build an optimum genotype over many gen-
erations. However, selection for higher Mendelian sampling
variance may also be interpreted as a way to select for com-
binations of favorable alleles within gametes, i.e., as an anal-
ogy of genotype building strategies. Figure 1 illustrates that
selection for higher Mendelian sampling variance favors het-
erozygous individuals that are in coupling phase for closely
linked loci, but that may be in repulsion phase for unlinked
loci. While all four individuals in Figure 1 have the same
GEBV, only the heterozygous coupling-phase individual pro-
duces gametes that carry all four favorable alleles. This indi-
vidual also has the highest SD in the GEBV of its gametes.
Hence, selection methods that consider a single additional
generation, such as the indices proposed here, may also ac-
celerate the process of bringing the favorable alleles together.

Genotype building strategies aim to create an optimal
genotype over multiple generations, either from single indi-
viduals (Daetwyler et al. 2015; Müller et al. 2018) or from
multiple individuals (Cole and Van Raden 2011; Kemper
et al. 2012; Goiffon et al. 2017). These studies assumed
marker or QTL-effects to remain constant over generations,
which implies additivity of QTL. Compared to selection on
GEBV, genotype building strategies typically show increased
long-term gain, reduced short term gain, and less loss of ge-
netic diversity. The utility of genotype building strategies for
the improvement of polygenic traits by recurrent selection in

Figure 2 Results of two-stage selection, for the selected population scenario, and for three overall selected proportions (p). Selection in the first stage is
on GEBV (I1), while selection in the second stage is on Index 5. Lines show the superiority (%) of two-stage selection, relative to selection on GEBV, as a
function of the selected proportion in the first stage (p1). Moving from left to right on the x-axis represents increasing preselection. With p1 = 1, there is
no preselection, so that selection is entirely in the second stage on Index 5 and sĝ needs to be computed for all candidates. With P = 0.01, there is no
second stage selection when p1 is also 0.01, so that selection is entirely in the first stage on GEBV. (A) % increase in the probability that offspring are in
the top p fraction. (B) % increase in response to selection. For CVðsĝÞ = 0.1. Note that the x-axis is on a logarithmic scale. Results are averages of 20,000
replicates.
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outbred populations seems to be limited for two reasons.
First, the (apparent) SNP-effects change over generations
due to erosion of LD and relationship information (Habier
et al. 2007) and due to nonadditive genetic effects. For ex-
ample, the presence of directional dominance (d . 0) at a
QTL leads to an apparent negative epistatic interaction be-
tween the favorable alleles of two SNP-loci that are in in-
complete LD with each other and with the QTL (de los
Campos et al. 2019). Such spurious epistasis leads to dimin-
ishing return of selection for the favorable SNP alleles, so that
long-term response falls short of its prediction based on SNP-
effects in the initial generation. Such diminishing return of
selection on SNP-effects is likely to be systematic, because the
wide-spread observation of inbreeding depression and hybrid
vigor suggest that directional dominance is common. Con-
trary to the expectation of Daetwyler et al. (2015), genotype
building strategies probably suffer more from overprediction
than schemes with selection on GEBV, I5 or the UC, because
they consider several generations, whereas selection on GEBV,
I5 or the UC considers only one or two generations. Second, a
reduction in short-term gain may be acceptable in the context
of hybrid development in plants, but probably not for outbred
populations such as in trees or livestock, where the goal is to
create continued genetic progress at the population level and

where the breeding and production populations often overlap
considerably, particularly in ruminants (Daetwyler et al. 2015).

Selection of parents with higher Mendelian sampling var-
iance may be a practical strategy intermediate of selection of
GEBVandgenotypebuilding,particularlywhencombinedwitha
restriction on the increase of average coancestry in the popula-
tion (see also Kemper et al. 2012). The impact of selection of
parents with more variable gametes on the increase in coances-
try (and thus on inbreeding) will depend on the correlation of
sĝ between relatives. While relatives have similar GEBV, it is
unknown at present whether they also have similar sĝ. How-
ever, since relatives share haplotypes and full siblings share
genotypes, they may also show similar sĝ. Nevertheless, com-
pared to selection forGEBV, selection forsĝ will tend to increase
the rate of inbreeding only when the correlation between sĝ of
relatives exceeds that of the GEBV, which seems unlikely.

Shaping the selection candidates

Table 3 and Table 4 show that the benefit of selecting for
greater Mendelian sampling variance increases strongly
when differences insĝ among individuals become larger. This
raises the question whether breeders can create selection
candidates with a high sĝ, by using a specific mating strategy.
Together with selection for, e.g., Index 5, this would speed up

Figure 3 The use of mating to create offspring with greater Mendelian sampling variance on their gametic GEBV. Locus 1 and 2 are closely linked, and
so are locus 3 and 4, while locus 1 and 2 are unlinked to locus 3 and 4. The unlinked loci are separated by //. The favorable allele is indicated by “+.” A
through D indicate four types of parents. Mating within type yields homozygous offspring. Both the mating AxB and CxD create fully heterozygous
offspring. However, only the AxB mating creates an offspring with a large Mendelian sampling variance on its gametic GEBV (see individual A in Figure
1). Mating BxC yields offspring with lower heterozygosity than mating CxD, but those offspring nevertheless have higher Mendelian sampling variance
on their gametic GEBV.
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the process of combining good alleles within individuals,
which would accelerate response over generations. The use
of a mating strategy that maximizes heterozygosity in the
offspring, wheremarker-based heterozygosities are weighted
by the (apparent) effect of the marker, will increase hetero-
zygosity at SNPs that explain the GEBV, and will probably
increase the sĝ in the offspring. Such a mating strategy may
be interpreted as a generalization of the classes of loci method
(Dudley 1984a,b; see above). However, as illustrated in Figure
3, the sĝ in a prospective offspring depends not only on het-
erozygosity in the offspring, but also on linkage and the linkage
phase in the parents (Bonk et al. 2016). In principle, optimum
matings could be identified by simulation, where virtual off-
spring are simulated for all potential matings to estimate their
sĝ. However, this is computationally demanding because the
number of potential matings is large. An analytical approach,
similar to Bonk et al. (2016), would also be possible, but may
be equally computationally demanding. A simple approximate
indicator for promising matings would be valuable here.

Genotypic value vs. breeding value

We have considered an additive model. This makes sense
when the objective is to increase response to recurrent selec-
tion, because the average effect of nonadditive interactions is
included in the additive genetic effect, while the remaining
dominance and epistatic deviations do not contribute to re-
sponse to recurrent selection in the short term (Falconer and
Mackay 1996). Also when interest is in breeding a top-rank-
ing individual to be used as parent in an outbred population,
such as sire selection in dairy cattle, the use of an additive
model makes sense because the relevant criterion is the breed-
ing value of the sire, not its genotypic value. However, when the
objective is to breed a top-ranking genotype for clonal repro-
duction, such as in maize, interest is in the full genotypic value,
including effects due to dominance and epistasis. Estimation of
theMendelian sampling variance on the genotypic value of pro-
spective offspring, rather than on the gametic GEBV of the can-
didate, requires the simulation of offspring genotypes of
potential mating pairs rather than gametes of single selection
candidates (Bonk et al. 2016). This substantially increases com-
putational requirements because the number of potential
mating pairs is much larger than the number of selection
candidates. When nonadditive genetic effects are small to
moderate in size, we expect that computational requirements
can be reduced substantially by selecting in three stages: a first
selection on GEBV, a second selection on Index 5, and a final
selection on an adjusted version of Index 7, in which the ad-
ditiveMendelian SD onGEBV is replaced by the corresponding
SD of the full genotypic value of the prospective offspring.

Conclusion

Breeders can increase the probability of breeding a top-rank-
ing genotype and response to recurrent selection by selecting
parents on an index of the GEBV and the gametic variability
of selection candidates. Benefits depend strongly on the

variation in gametic variability, and may thus differ consid-
erably among populations. Response to multiple generations
of selection, and the inheritance of the gametic variability,
need further study.
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Appendix A

Empirical Indices

Tofind empirical linear selection indices of Â andsĝ, we used regression of the success of offspring on the information sources in
the index,

yoff ¼ b1Âþ b2sĝ þ e

where yoff is a measure of the success of the offspring of a sire, Â the GEBV of the sire, sĝ the SD among the GEBVs of the
gametes of the sire, and b1 and b2 the corresponding regression coefficients. For simplicity, we simulated selection in males
only. As measures of success of the offspring of a sire, we used: (i) the fraction of offspring of the sire that ranked in the top p
proportion of GEBVs in the offspring generation ðypÞ, (ii) the mean GEBV of the selected offspring of the sire ðy�AÞ, and (iii) the
contribution of a sire to the mean of all selected offspring in the next generation ðyc ¼ ypy�AÞ. The yc was motivated by the idea
that a poor sire might have very few selected offspring, but those offspring must nevertheless have had reasonably high GEBV
otherwise they would not have been selected. Use of y�A might result in selection of such sires, while yc would punish such sires.

Regression coefficients b1 and b2 were estimated from simulated data. Each of a total of 105 sires was mated to 100 dams,
each dam producing a single offspring. GEBV of sires and dams were drawn from a normal distribution, and gametic variances
from a log-normal distribution. Subsequently, gametic GEBV of parents were drawn from ĝi � N

�
1
2 Âi;s

2
ĝi

�
. GEBV of the off-

spring were the sum of the gametic GEBV of the sire and dam. In the offspring generation, individuals were selected on GEBV
with selected proportion p. Then, yp, y�A and yc were calculated for each sire, and the corresponding regression coefficients b1
and b2 were estimated by least squares (Table A1, Table A2, Table A3). Because regression coefficientsmay depend both on the
sĝ and on the selected proportion, theywere estimated separately for each scenario. Finally, the standardizedweight onsĝ was
calculated as

fb̂p; b̂�A; b̂cg ¼ b̂2
b̂1

:

Table A1 Empirical regression coefficients for the fraction of offspring of the sire that ranked in
the top p proportion of GEBVs in the offspring generation (b̂p)

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5Þ
p 0.05 0.10 0.15 0.20

0.5 0.00 0.00 0.00 0.00
0.2 0.84 0.84 0.84 0.83
0.1 1.25 1.28 1.30 1.32
0.05 1.73 1.67 1.72 1.69
0.01 2.56 2.29 2.50 2.57
0.005 3.05 2.51 2.71 2.81
0.001 3.43 3.11 3.21 3.55

Table A2 Empirical regression coefficients for the mean GEBV of the selected offspring of the
sire (b̂�A)

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5Þ
p 0.05 0.10a 0.15 0.20

p 0.05 0.10a 0.15 0.20
0.5 2.43 2.31 2.38 2.35
0.2 3.36 3.46 3.46 3.41
0.1 3.63 3.05 2.96 2.90
0.05 2.86 2.87 2.80 2.76
0.01 3.20 3.10 3.06 3.04
0.005 3.37 3.06 3.23 3.21
0.001 3.58 3.58 3.39 3.78
a This is the value found in dairy cattle Segelke et al. (2014).
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Appendix B

Theoretical Linear Indices

To facilitate presentation of the derivations of the indices, the order of indices here differs from the main text.
Index 7 is a linear combination of the GEBV of the candidate and the within-family SD in GEBV of its offspring,

I ¼ b1Âþ b2sbMS;

and serves to predict the probability that an offspring of the candidate ranks in the top p fraction of GEBV in the offspring
generation. The goal is to find b1 and b2 so that I is proportional to this probability. Assuming an approximate normal
distribution of the GEBV of the offspring of a candidate, the probability that an offspring of a certain candidate is selected
follows from

P � F
2ðtp2 bAoff Þ

s

0@ 1A;

where tp is the threshold value for the top p fraction of GEBV in the offspring generation, Âoff is the mean GEBV of the offspring
of this candidate, and s is the SD in the GEBV of the offspring of this candidate. To find b1 and b2, we linearized this probability
in Â and sbMS using partial derivatives. To obtain a single value for b1 and b2, rather than a value specific for each candidate,
those partial derivatives are calculated using population averages (i.e., P is substituted by p). This yields

b1 ¼ @p
@Â

¼ @p
@xp

@xp

@Âoff

@Âoff

@Â
;

where xp ¼
2ðtp 2 Âoff Þ

s
, and

b2 ¼ @p
@sbMS

¼ @p
@xp

@xp
@s

@s

@sbMS
:

Using
@p
@xp

¼ zp, which is the standard normal density at xp,
@xp

@Âoff

¼ 1
s

and
@Âoff

@Â
¼ 1

2
yields

b1 ¼ zp
2s

:

Using
@xp
@s

¼ ðt2 Âoff Þ
s2 , and

@s

@sbMS

� 1 yields

b2 ¼ zp
ðt2 Âoff Þ

s2 :

Table A3 Empirical regression coefficients for the contribution of a sire to the mean of all
selected offspring in the next generation (b̂c)

CV of the SD of gametic GEBV ðSDðsĝÞ=0:5Þ
p 0.05 0.10a 0.15 0.20

0.5 0.86 0.79 0.82 0.81
0.2 1.11 1.12 1.11 1.11
0.1 1.41 1.42 1.45 1.50
0.05 1.83 1.77 1.82 1.81
0.01 2.62 2.34 2.55 2.65
0.005 3.08 2.54 2.75 2.87
0.001 3.43 3.17 3.24 3.58
a This is the value found in dairy cattle Segelke et al. (2014).
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When the candidate hasmultiplemates, the use of @s
@sbMS

� 1 ignores the contribution of variation in GEBV among thosemates to

the within-family variance. However, as soon as selection is reasonably strong (say p , 0.1), variation in GEBV among the
mates will be small (see Discussion), so that the error will be small.

Dividing b1 and b2 by zp
2s yields

I ¼ Âþ 2
t2 Â
� �

s
sbMS;

where ðt2 ÂÞ
s is the standardized truncation point in the offspring of the candidate. Substituting this term by corresponding

population parameter, i.e., using ðt2 ÂÞ
s ¼ xp; yields Index 7,

I7 ¼ Âþ 2xpsbMS:

Index 5 is obtained by expressing sbMS in Equation 7 as a linear function of sĝ. Linearizing sbMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sĝ

2 þ 0:25
q

using a first-order
Taylor-series yields sbMS � 1=O2þ ðsĝ 2sĝÞ=O2. Substitution into Index 7 and dropping constants yields Index 5,

I5 ¼ Âþ
ffiffiffi
2

p
xpsĝ:

Index 8 predicts the mean GEBV of the selected offspring of a candidate, which is the sum of the mean offspring GEBV before
selection and the within-family selection differential,

I ¼ Âþ Âmate

2
þ ipsbMS:

Dropping the constant Âmate and multiplying by two yields Index 8,

I8 ¼ Âþ 2ipsbMS:

Index 6 is obtained by substituting the Taylor-series approximation used for Index 5 into Index 8, and dropping constants,

I6 ¼ Âþ
ffiffiffi
2

p
ipsĝ:
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