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Abstract

While deep learning has led to remarkable advances across diverse applications, it struggles in 

domains where the data distribution changes over the course of learning. In stark contrast, 

biological neural networks continually adapt to changing domains, possibly by leveraging complex 

molecular machinery to solve many tasks simultaneously. In this study, we introduce intelligent 
synapses that bring some of this biological complexity into artificial neural networks. Each 

synapse accumulates task relevant information over time, and exploits this information to rapidly 

store new memories without forgetting old ones. We evaluate our approach on continual learning 

of classification tasks, and show that it dramatically reduces forgetting while maintaining 

computational efficiency.

1 Introduction

Artificial neural networks (ANNs) have become an indispensable asset for applied machine 

learning, rivaling human performance in a variety of domain-specific tasks (LeCun et al., 

2015). Although originally inspired by biology (Rosenblatt, 1958; Fukushima & Miyake, 

1982), the underlying design principles and learning methods differ substantially from 

biological neural networks. For instance, parameters of ANNs are learned on a dataset in the 

training phase, and then frozen and used statically on new data in the deployment or recall 

phase. To accommodate changes in the data distribution, ANNs typically have to be 

retrained on the entire dataset to avoid overfitting and catastrophic forgetting (Choy et al., 

2006; Goodfellow et al., 2013).

On the other hand, biological neural networks exhibit continual learning in which they 

acquire new knowledge over a lifetime. It is therefore difficult to draw a clear line between a 

learning and recall phase. Somehow, our brains have evolved to learn from non-stationary 

data and to update internal memories or beliefs on-the-fly. While it is unknown how this feat 

is accomplished in the brain, it seems possible that the unparalleled biological performance 

in continual learning could rely on specific features implemented by the underlying 

biological wetware that are not currently implemented in ANNs.

Perhaps one of the greatest gaps in the design of modern ANNs versus biological neural 

networks lies in the complexity of synapses. In ANNs, individual synapses (weights) are 
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typically described by a single scalar quantity. On the other hand, individual biological 

synapses make use of complex molecular machinery that can affect plasticity at different 

spatial and temporal scales (Redondo & Morris, 2011). While this complexity has been 

surmised to serve memory consolidation (Fusi et al., 2005; Lahiri & Ganguli, 2013; Zenke et 

al., 2015; Ziegler et al., 2015; Benna & Fusi, 2016), few studies have illustrated how it 

benefits learning in ANNs.

Here we study the role of internal synaptic dynamics to enable ANNs to learn sequences of 

classification tasks. While simple, scalar one-dimensional synapses suffer from catastrophic 

forgetting, in which the network forgets previously learned tasks when trained on a novel 

task, this problem can be largely alleviated by synapses with a more complex three-

dimensional state space. In our model, the synaptic state tracks the past and current 

parameter value, and maintains an online estimate of the synapse’s “importance” toward 

solving problems encountered in the past. Our importance measure can be computed 

efficiently and locally at each synapse during training, and represents the local contribution 

of each synapse to the change in the global loss. When the task changes, we consolidate the 

important synapses by preventing them from changing in future tasks. Thus learning in 

future tasks is mediated primarily by synapses that were unimportant for past tasks, thereby 

avoiding catastrophic forgetting of these past tasks.

2 Prior work

The problem of alleviating catastrophic forgetting has been addressed in many previous 

studies. These studies can be broadly partitioned into (1) architectural, (2) functional, and 

(3) structural approaches.

Architectural approaches to catastrophic forgetting alter the architecture of the network to 

reduce interference between tasks without altering the objective function. The simplest form 

of architectural regularization is freezing certain weights in the network so that they stay 

exactly the same (Razavian et al., 2014). A slightly more relaxed approach reduces the 

learning rate for layers shared with the original task while fine-tuning to avoid dramatic 

changes in the parameters (Donahue et al., 2014; Yosinski et al., 2014). Approaches using 

different nonlinearities like ReLU, MaxOut, and local winner-take-all have been shown to 

improve performance on permuted MNIST and sentiment analysis tasks (Srivastava et al., 

2013; Goodfellow et al., 2013). Moreover, injecting noise to sparsify gradients using dropout 

also improves performance (Goodfellow et al., 2013). Recent work from Rusu et al. (2016) 

proposed more dramatic architectural changes where the entire network for the previous task 

is copied and augmented with new features while solving a new task. This entirely prevents 

forgetting on earlier tasks, but causes the architectural complexity to grow with the number 

of tasks.

Functional approaches to catastrophic forgetting add a regularization term to the objective 

that penalizes changes in the input-output function of the neural network. In Li & Hoiem 

(2016), the predictions of the previous task’s network and the current network are 

encouraged to be similar when applied to data from the new task by using a form of 

knowledge distillation (Hinton et al., 2014). Similarly, Jung et al. (2016) regularize the ℓ2 
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distance between the final hidden activations instead of the knowledge distillation penalty. 

Both of these approaches to regularization aim to preserve aspects of the input-output 

mapping for the old task by storing or computing additional activations using the old task’s 

parameters. This makes the functional approach to catastrophic forgetting computationally 

expensive as it requires computing a forward pass through the old task’s network for every 

new data point.

The third technique, structural regularization, involves penalties on the parameters that 

encourage them to stay close to the parameters for the old task. Recently, Kirkpatrick et al. 

(2017) proposed elastic weight consolidation (EWC), a quadratic penalty on the difference 

between the parameters for the new and the old task. They used a diagonal weighting 

proportional to the diagonal of the Fisher information metric over the old parameters on the 

old task. Exactly computing the diagonal of the Fisher requires summing over all possible 

output labels and thus has complexity linear in the number of outputs. This limits the 

application of this approach to low-dimensional output spaces.

3 Synaptic framework

To tackle the problem of continual learning in neural networks, we sought to build a simple 

structural regularizer that could be computed online and implemented locally at each 

synapse. Specifically, we aim to endow each individual synapse with a local measure of 

“importance” in solving tasks the network has been trained on in the past. When training on 

a new task we penalize changes to important parameters to avoid old memories from being 

overwritten. To that end, we developed a class of algorithms which keep track of an 

importance measure ωk
μ which reflects past credit for improvements of the task objective Lμ 

for task μ to individual synapses θk. For brevity we use the term “synapse” synonymously 

with the term “parameter”, which includes weights between layers as well as biases.

The process of training a neural network is characterized by a trajectory θ(t) in parameter 

space (Fig. 1). The feat of successful training lies in finding learning trajectories for which 

the endpoint lies close to a minimum of the loss function L on all tasks. Let us first consider 

the change in loss for an infinitesimal parameter update δ(t) at time t.

In this case the change in loss is well approximated by the gradient g = ∂L
∂θ  and we can write

L θ t + δ t − L θ t ≈ ∑
k

gk t δk t , (1)

which illustrates that each parameter change δk t = θk′ t  contributes the amount gk(t)δk(t) to 

the change in total loss.

To compute the change in loss over an entire trajectory through parameter space we have to 

sum over all infinitesimal changes. This amounts to computing the path integral of the 

gradient vector field along the parameter trajectory from the initial point (at time t0) to the 

final point (at time t1):
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∫
C

g θ t dθ = ∫
t0

t1
g θ t ⋅ θ′ t dt . (2)

As the gradient is a conservative field, the value of the integral is equal to the difference in 

loss between the end point and start point: L(θ(t1)) − L(θ(t0)). Crucial to our approach, we 

can decompose Eq. 2 as a sum over the individual parameters

∫
tμ − 1

tμ g θ t ⋅ θ′ t dt = ∑
k
∫

tμ − 1
tμ gk θ t θk′ t dt

≡ − ∑
k

ωk
μ .

(3)

The ωk
μ now have an intuitive interpretation as the parameter specific contribution to changes 

in the total loss. Note that we have introduced the minus sign in the second line, because we 

are typically interested in decreasing the loss.

In practice, we can approximate ωk
μ online as the running sum of the product of the gradient 

gk t = ∂L
∂θk

 with the parameter update θk′ t =
∂θk
∂t . For batch gradient descent with an 

infinitesimal learning rate, ωk
μ can be directly interpreted as the per-parameter contribution to 

changes in the total loss. In most cases the true gradient is approximated by stochastic 

gradient descent (SGD), resulting in an approximation that introduces noise into the estimate 

of gk. As a direct consequence, the approximated per-parameter importances will typically 

overestimate the true value of ωk
μ.

How can the knowledge of ωk
μ be exploited to improve continual learning? The problem we 

are trying to solve is to minimize the total loss function summed over all tasks, ℒ = ∑μ Lμ, 

with the limitation that we do not have access to loss functions of tasks we were training on 

in the past. Instead, we only have access to the loss function Lμ for a single task μ at any 

given time. Catastrophic forgetting arises when minimizing Lμ inadvertently leads to 

substantial increases of the cost on previous tasks Lν with ν < μ (Fig. 1). To avoid 

catastrophic forgetting of all previous tasks (ν < μ) while training task μ, we want to avoid 

drastic changes to weights which were particularly influential in the past. The importance of 

a parameter θk for a single task is determined by two quantities: 1) how much an individual 

parameter contributed to a drop in the loss ωk
ν over the entire trajectory of training (cf. Eq. 3) 

and 2) how far it moved Δk
ν ≡ θk tν − θk tν − 1 . To avoid large changes to important 

parameters, we use a modified cost function Lμ in which we introduced a surrogate loss 

which approximates the summed loss functions of previous tasks Lν (ν < μ). Specifically, 

we use a quadratic surrogate loss that has the same minimum as the cost function of the 
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previous tasks and yields the same ωk
ν over the parameter distance ∆k. In other words, if 

learning were to be performed on the surrogate loss instead of the actual loss function, it 

would result in the same final parameters and change in loss during training (Fig. 2). For two 

tasks this is achieved exactly by the following quadratic surrogate loss

Lμ = Lμ + c∑
k

Ωk
μ θk − θk

2

surrogate loss
(4)

where we have introduced the dimensionless strength parameter c, the reference weight 

corresponding to the parameters at the end of the previous task θk = θk tμ − 1 , and the per-

parameter regularization strength:

Ωk
μ = ∑

ν < μ

ωk
ν

Δk
ν 2 + ξ

. (5)

Note that the term in the denominator Δk
ν 2

 ensures that the regularization term carries the 

same units as the loss L. For practical reasons we also introduce an additional damping 

parameter, ξ, to bound the expression in cases where Δk
ν 0. Finally, c is a strength 

parameter which trades off old versus new memories. If the path integral (Eq. 3) is evaluated 

precisely, c = 1 would correspond to an equal weighting of old and new memories. However, 

due to noise in the evaluation of the path integral (Eq. 3), c typically has to be chosen 

smaller than one to compensate. Unless otherwise stated, the ωk are updated continuously 

during training, whereas the cumulative importance measures, Ωk
μ , and the reference 

weights, θ, are only updated at the end of each task. After updating the Ωk
μ , the ωk are set to 

zero. Although our motivation for Eq. 4 as a surrogate loss only holds in the case of two 

tasks, we will show empirically that our approach leads to good performance when learning 

additional tasks.

To understand how the particular choices of Eqs. 4 and 5 affect learning, let us consider the 

example illustrated in Figure 1 in which we learn two tasks. We first train on Task 1. At time 

t1 the parameters have approached a local minimum of the Task 1 loss L1. But, the same 

parameter configuration is not close to a minimum for Task 2. Consequently, when training 

on Task 2 without any additional precautions, the L1 loss may inadvertently increase (Fig. 1, 

black trajectory). However, when θ2 “remembers” that it was important to decreasing L1, it 

can exploit this knowledge during training on Task 2 by staying close to its current value 

(Fig. 1, orange trajectory). While this will almost inevitably result in a decreased 

performance on Task 2, this decrease could be negligible, whereas the gain in performance 

on both tasks combined can be substantial.

The approach presented here is similar to EWC (Kirkpatrick et al., 2017) in that more 

influential parameters are pulled back more strongly towards a reference weight with which 

good performance was achieved on previous tasks. However, in contrast to EWC, here we 
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are putting forward a method which computes an importance measure online and along the 

entire learning trajectory, whereas EWC relies on a point estimate of the diagonal of the 

Fisher information metric at the final parameter values, which has to be computed during a 

separate phase at the end of each task.

4 Theoretical analysis of special cases

In the following we illustrate that our general approach recovers sensible Ωk
μ , in the case of a 

simple and analytically tractable training scenario. To that end, we analyze what the 

parameter specific path integral ωk
μ and its normalized version Ωk

μ (Eq. (5)), correspond to in 

terms of the geometry of a simple quadratic error function

E θ = 1
2 θ−θ* TH θ − θ* , (6)

with a minimum at θ* and a Hessian matrix H. Further consider batch gradient descent 

dynamics on this error function. In the limit of small discrete time learning rates, this 

descent dynamics is described by the continuous time differential equation

τ dθ
dt = − ∂E

∂θ = − H θ−θ* , (7)

where τ is related to the learning rate. If we start from an initial condition θ(0) at time t = 0, 

an exact solution to the descent path is given by

θ t = θ* + e
−H t

τ θ 0 − θ* , (8)

yielding the time dependent update direction

θ′ t = dθ
dt = − 1

τ He
−H t

τ θ 0 − θ* . (9)

Now, under gradient descent dynamics, the gradient obeys g = τ dθ
dt , so the ωk

μ in (3) are 

computed as the diagonal elements of the matrix

Q = τ∫
0

∞
dt dθ

dt
dθT

dt . (10)

An explicit formula for Q can be given in terms of the eigenbasis of the Hessian H. In 

particular, let λα and uα denote the eigenvalues and eigenvectors of H, and let dα = uα · 

(θ(0) − θ*) be the projection of the discrepancy between initial and final parameters onto the 

α’th eigenvector. Then inserting (9) into (10), performing the change of basis to the 

eigenmodes of H, and doing the integral yields
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Qi j = ∑
αβ

ui
αdα λα λβ

λα + λβ dβu j
β . (11)

Note that as a time-integrated steady state quantity, Q no longer depends on the time 

constant τ governing the speed of the descent path.

At first glance, the Q matrix elements depend in a complex manner on both the eigenvectors 

and eigenvalues of the Hessian, as well as the initial condition θ(0). To understand this 

dependence, let’s first consider averaging Q over random initial conditions θ(0), such that 

the collection of discrepancies dα constitute a set of zero mean iid random variables with 

variance σ2. Thus we have the average 〈dαdβ〉 = σ2δαβ. Performing this average over Q then 

yields

Qi j = 1
2σ2∑

α
ui

α λα u j
β = 1

2σ2Hi j . (12)

Thus remarkably, after averaging over initial conditions, the Q matrix, which is available 

simply by correlating parameter updates across pairs of synapses and integrating over time, 

reduces to the Hessian, up to a scale factor dictating the discrepancy between initial and final 

conditions. Indeed, this scale factor theoretically motivates the normalization in (5); the 

denominator in (5), at zero damping, ξ averages to σ2, thereby removing the scale factor σ2 

in (12)

However, we are interested in what Qij computes for a single initial condition. There are two 

scenarios in which the simple relationship between Q and the Hessian H is preserved 

without averaging over initial conditions. First, consider the case when the Hessian is 

diagonal, so that ui
α = δαiei where ei is the i’th coordinate vector. Then α and i indices are 

interchangeable and the eigenvalues of the Hessian are the diagonal elements of the Hessian: 

λi = Hii. Then (11) reduces to

Qi j = δi j di 2Hii ⋅ (13)

Again the normalization in (5), at zero damping, removes the scale of movement in 

parameter space (di)2, and so the normalized Q matrix becomes identical to the diagonal 

Hessian. In the second scenario, consider the extreme limit where the Hessian is rank 1 so 

that λ1 is the only nonzero eigenvalue. Then (11) reduces to

Qi j = 1
2 d1 2ui

1 λ1 u j
1 = 1

2 d1 2Hi j ⋅ (14)

Thus again, the Q matrix reduces to the Hessian, up to a scale factor. The normalized 

importances then become the diagonal elements of the non-diagonal but low rank Hessian. 
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We note that the low rank Hessian is the interesting case for continual learning; low rank 

structure in the error function leaves many directions in synaptic weight space unconstrained 

by a given task, leaving open excess capacity for synaptic modification to solve future tasks 

without interfering with performance on an old task.

It is important to stress that the path integral for importance is computed by integrating 

information along the entire learning trajectory (cf. Fig. 2). For a quadratic loss function, the 

Hessian is constant along this trajectory, and so we find a precise relationship between the 

importance and the Hessian. But for more general loss functions, where the Hessian varies 

along the trajectory, we cannot expect any simple mathematical correspondence between the 

importance Ωk
μ and the Hessian at the endpoint of learning, or related measures of parameter 

sensitivity (Pascanu & Bengio, 2013; Martens, 2016; Kirkpatrick et al., 2017) at the 

endpoint. In practice, however, we find that our importance measure is correlated to 

measures based on such endpoint estimates, which may explain their comparable 

effectiveness as we will see in the next section.

5 Experiments

We evaluated our approach for continual learning on the split and permuted MNIST (LeCun 

et al., 1998; Goodfellow et al., 2013), and split versions of CIFAR-10 and CIFAR-100 

(Krizhevsky & Hinton, 2009).

5.1 Split MNIST

We first evaluated our algorithm on a split MNIST benchmark. For this benchmark we split 

the full MNIST training data set into 5 subsets of consecutive digits. The 5 tasks correspond 

to learning to distinguish between two consecutive digits from 0 to 10. We used a small 

multi-layer perceptron (MLP) with only two hidden layers consisting of 256 units each with 

ReLU nonlinearities, and a standard categorical cross-entropy loss function plus our 

consolidation cost term (with damping parameter ξ = 1 × 10−3). To avoid the complication 

of crosstalk between digits at the readout layer due to changes in the label distribution 

during training, we used a multi-head approach in which the categorical cross entropy loss at 

the readout layer was computed only for the digits present in the current task. Finally, we 

optimized our network using a minibatch size of 64 and trained for 10 epochs. To achieve 

good absolute performance with a smaller number of epochs we used the adaptive optimizer 

Adam (Kingma & Ba, 2014) (η = 1 × 10−3, β1 = 0.9, β2 = 0.999). In this benchmark the 

optimizer state was reset after training each task.

To evaluate the performance, we computed the average classification accuracy on all 

previous tasks as a function of number of tasks trained. We now compare this performance 

between networks in which we turn consolidation dynamics on (c = 1) against cases in 

which consolidation was off (c = 0). During training of the first task the consolidation 

penalty is zero for both cases because there is no past experience that synapses could be 

regularized against. When trained on the digits “2” and “3” (Task 2), both the model with 

and without consolidation show accuracies close to 1 on Task 2. However, on average the 

networks without synaptic consolidation show substantial loss in accuracy on Task 1 (Fig. 
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3). In contrast to that, networks with consolidation only undergo minor impairment with 

respect to accuracy on Task 1 and the average accuracy for both tasks stays close to 1. 

Similarly, when the network has seen all MNIST digits, on average, the accuracy on the first 

two tasks, corresponding to the first four digits, has dropped back to chance levels in the 

cases without consolidation whereas the model with consolidation only shows minor 

degradation in performance on these tasks (Fig. 3).

5.2 Permuted MNIST benchmark

In this benchmark, we randomly permute all MNIST pixels differently for each task. We 

trained a MLP with two hidden layers with 2000 ReLUs each and softmax loss. We used 

Adam with the same parameters as before. However, here we used ξ = 0.1 and the value for 

c = 0.1 was determined via a coarse grid search on a heldout validation set. The mini batch 

size was set to 256 and we trained for 20 epochs. In contrast to the split MNIST benchmark 

we obtained better results by maintaining the state of the Adam optimizer between tasks. 

The final test error was computed on data from the MNIST test set. Performance is 

measured by the ability of the network to solve all tasks.

To establish a baseline for comparison we first trained a network without synaptic 

consolidation (c = 0) on all tasks sequentially. In this scenario the system exhibits 

catastrophic forgetting, i.e. it learns to solve the most recent task, but rapidly forgets about 

previous tasks (blue line, Fig. 4). In contrast to that, when enabling synaptic consolidation, 

with a sensible choice for c > 0, the same network retains high classification accuracy on 

Task 1 while being trained on 9 additional tasks (Fig. 4). Moreover, the network learns to 

solve all other tasks with high accuracy and performs only slightly worse than a network 

which had trained on all data simultaneously (Fig. 4). Finally, these results were consistent 

across training and validation error and comparable to the results reported with EWC 

(Kirkpatrick et al., 2017).

To gain a better understanding of the synaptic dynamics during training, we visualized the 

pairwise correlations of the ωk
μ across the different tasks μ (Fig. 5b). We found that without 

consolidation, the ωk
μ in the second hidden layer are correlated across tasks which is likely to 

be the cause of catastrophic forgetting. With consolidation, however, these sets of synapses 

contributing to decreasing the loss are largely uncorrelated across tasks, thus avoiding 

interference when updating weights to solve new tasks.

5.3 Split CIFAR-10/CIFAR-100 benchmark

To evaluate whether synaptic consolidation dynamics would also prevent catastrophic 

forgetting in more complex datasets and larger models, we experimented with a continual 

learning task based on CIFAR-10 and CIFAR-100. Specifically, we trained a CNN (4 

convolutional, followed by 2 dense layers with dropout; see Appendix for details). We used 

the same multi-head setup as in the case of split MNIST using Adam (η = 1 × 10−3, β1 = 

0.9, β2 = 0.999, minibatch size 256). First, we trained the network for 60 epochs on the full 

CIFAR-10 dataset (Task 1) and sequentially on 5 additional tasks each corresponding to 10 

consecutive classes from the CIFAR-100 dataset (Fig. 6). To determine the best c, we 
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performed this experiment for different values in the parameter range 1×10−3 < c < 0.1. 

Between tasks the state of the optimizer was reset. Moreover, we obtained values for two 

specific control cases. On the one hand we trained the same network with c = 0 on all tasks 

consecutively. On the other hand we trained the same network from scratch on each task 

individually to assess generalization across tasks. Finally, to assess the magnitude of 

statistical fluctuations in accuracy, all runs were repeated n = 5 times.

We found that after training on all tasks, networks with consolidation showed similar 

validation accuracy across all tasks, whereas accuracy in the network without consolidation 

showed a clear age dependent decline in which old tasks were solved with lower accuracy 

(Fig. 6). Importantly, the performance of networks trained with consolidation was always 

better than without consolidation, except on the last task. Finally, when comparing the 

performance of networks trained with consolidation on all tasks with networks trained from 

scratch only on a single task (Fig. 6; green vs gray), the former either significantly 

outperformed the latter or yielded the same validation accuracy, while this trend was 

reversed in training accuracy. This suggests that networks without consolidation are more 

prone to over fitting. The only exception to that rule was Task 1, CIFAR-10 which is 

presumably due to its 10× larger number of examples per class. In summary, we found that 

consolidation not only protected old memories from being slowly forgotten over time, but 

also allowed networks to generalize better on new tasks with limited data.

6 Discussion

We have shown that the problem of catastrophic forgetting commonly encountered in 

continual learning scenarios can be alleviated by allowing individual synapses to estimate 

their importance for solving past tasks. Then by penalizing changes to the most important 

synapses, novel tasks can be learned with minimal interference to previously learned tasks.

The regularization penalty is similar to EWC as recently introduced by Kirkpatrick et al. 

(2017). However, our approach computes the per-synapse consolidation strength in an online 

fashion and over the entire learning trajectory in parameter space, whereas for EWC 

synaptic importance is computed offline as the Fisher information at the minimum of the 

loss for a designated task. Despite this difference, these two approaches yielded similar 

performance on the permuted MNIST benchmark which may be due to correlations between 

the two different importance measures.

Our approach requires individual synapses to not simply correspond to single scalar synaptic 

weights, but rather act as higher dimensional dynamical systems in their own right. Such 

higher dimensional state enables each of our synapses to intelligently accumulate task 

relevant information during training and retain a memory of previous parameter values. 

While we make no claim that biological synapses behave like the intelligent synapses of our 

model, a wealth of experimental data in neurobiology suggests that biological synapses act 

in much more complex ways than the artificial scalar synapses that dominate current 

machine learning models. In essence, whether synaptic changes occur, and whether they are 

made permanent, or left to ultimately decay, can be controlled by many different biological 

factors. For instance, the induction of synaptic plasticity may depend on the history and the 
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synaptic state of individual synapses (Montgomery & Madison, 2002). Moreover, recent 

synaptic changes may decay on the timescale of hours unless specific plasticity related 

chemical factors are released. These chemical factors are thought to encode the valence or 

novelty of a recent change (Redondo & Morris, 2011). Finally, recent synaptic changes can 

be reset by stereotypical neural activity, whereas older synaptic memories become 

increasingly insensitive to reversal (Zhou et al., 2003).

Here, we introduced one specific higher dimensional synaptic model to tackle a specific 

problem: catastrophic forgetting in continual learning. However, this suggests new directions 

of research in which we mirror neurobiology to endow individual synapses with potentially 

complex dynamical properties, that can be exploited to intelligently control learning 

dynamics in neural networks. In essence, in machine learning, in addition to adding depth to 

our networks, we may need to add intelligence to our synapses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of parameter space trajectories and catastrophic forgetting. Solid lines 

correspond to parameter trajectories during training. Left and right panels correspond to the 

different loss functions defined by different tasks (Task 1 and Task 2). The value of each loss 

function Lμ is shown as a heat map. Gradient descent learning on Task 1 induces a motion in 

parameter space from from θ(t0) to θ(t1). Subsequent gradient descent dynamics on Task 2 

yields a motion in parameter space from θ(t1) to θ(t2). This final point minimizes the loss on 

Task 2 at the expense of significantly increasing the loss on Task 1, thereby leading to 

catastrophic forgetting of Task 1. However, there does exist an alternate point θ(t2), labelled 

in orange, that achieves a small loss for both tasks. In the following we show how to find this 

alternate point by determining that the component θ2 was more important for solving Task 1 

than θ1 and then preventing θ2 from changing much while solving Task 2. This leads to an 

online approach to avoiding catastrophic forgetting by consolidating changes in parameters 

that were important for solving past tasks, while allowing only the unimportant parameters 

to learn to solve future tasks.
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Figure 2. 
Schematic illustration of surrogate loss after learning one task. Consider some loss function 

defined by Task 1 (black). The quadratic surrogate loss (green) is chosen to precisely match 

3 aspects of the descent dynamics on the original loss function: the total drop in the loss 

function L(θ(0)) − L(θ(T)), the total net motion in parameter space θ(0) − θ(T), and 

achieving a minimum at the endpoint θ(T). These 3 conditions uniquely determine the 

surrogate quadratic loss that summarizes the descent trajectory on the original loss. Note that 

this surrogate loss is different from a quadratic approximation defined by the Hessian at the 

minimum (purple dashed line).
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Figure 3. 
Mean classification accuracy for the split MNIST benchmark as a function of the number of 

tasks. The first five panels show classification accuracy on the five tasks consisting of two 

MNIST digits each as a function of number of consecutive tasks. The rightmost panel shows 

the average accuracy, which is computed as the average over task accuracies for past tasks ν 
with ν < μ where μ is given by the number of tasks on the x-axis. Note that in this setup with 

multiple binary readout heads, an accuracy of 0.5 corresponds to chance level. Error bars 

correspond to SEM (n=10).
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Figure 4. 
Average classification accuracy over all learned tasks from the permuted MNIST benchmark 

as a function of number of tasks. Our approach (blue) and EWC (gray, extracted and 

replotted from Kirkpatrick et al. (2017)) maintain high accuracy as the number of tasks 

increase. SGD (green) and SGD with dropout of 0.5 on the hidden layers (red) perform far 

worse. The top panel is a zoom-in on the upper part of the graph with the initial training 

accuracy on a single task (dotted line) and the training accuracy of the same network when 

trained on all tasks simultaneously (black arrow).
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Figure 5. 

Correlation matrices of weight importances, ωk
μ, for each task μ on permuted MNIST. For 

both normal fine-tuning (c = 0, top) and consolidation (c = 0.1, bottom), the first layer 

weight importances (left) are uncorrelated between tasks since the permuted MNIST 

datasets are uncorrelated at the input layer. However, the second layer importances (right) 

become more correlated as more tasks are learned with fine-tuning. In contrast, 

consolidation prevents strong correlations in the ωk
μ, consistent with the notion of different 

weights being used to solve new tasks.
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Figure 6. 
Validation accuracy on the split CIFAR-10/100 benchmark. Blue: Validation error, without 

consolidation (c = 0). Green: Validation error, with consolidation (c = 0.1). Gray: Network 

without consolidation trained from scratch on the single task only. Chance-level in this 

benchmark is 0.1. Error bars correspond to SD (n=5).
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