
Continual Learning Through Synaptic Intelligence

Friedemann Zenke#1, Ben Poole#1, Surya Ganguli1

1Stanford University

These authors contributed equally to this work.

Abstract

While deep learning has led to remarkable advances across diverse applications, it struggles in

domains where the data distribution changes over the course of learning. In stark contrast,

biological neural networks continually adapt to changing domains, possibly by leveraging complex

molecular machinery to solve many tasks simultaneously. In this study, we introduce intelligent
synapses that bring some of this biological complexity into artificial neural networks. Each

synapse accumulates task relevant information over time, and exploits this information to rapidly

store new memories without forgetting old ones. We evaluate our approach on continual learning

of classification tasks, and show that it dramatically reduces forgetting while maintaining

computational efficiency.

1 Introduction

Artificial neural networks (ANNs) have become an indispensable asset for applied machine

learning, rivaling human performance in a variety of domain-specific tasks (LeCun et al.,

2015). Although originally inspired by biology (Rosenblatt, 1958; Fukushima & Miyake,

1982), the underlying design principles and learning methods differ substantially from

biological neural networks. For instance, parameters of ANNs are learned on a dataset in the

training phase, and then frozen and used statically on new data in the deployment or recall

phase. To accommodate changes in the data distribution, ANNs typically have to be

retrained on the entire dataset to avoid overfitting and catastrophic forgetting (Choy et al.,

2006; Goodfellow et al., 2013).

On the other hand, biological neural networks exhibit continual learning in which they

acquire new knowledge over a lifetime. It is therefore difficult to draw a clear line between a

learning and recall phase. Somehow, our brains have evolved to learn from non-stationary

data and to update internal memories or beliefs on-the-fly. While it is unknown how this feat

is accomplished in the brain, it seems possible that the unparalleled biological performance

in continual learning could rely on specific features implemented by the underlying

biological wetware that are not currently implemented in ANNs.

Perhaps one of the greatest gaps in the design of modern ANNs versus biological neural

networks lies in the complexity of synapses. In ANNs, individual synapses (weights) are

Correspondence to: Friedemann Zenke < fzenke@stanford.edu>, Ben Poole < poole@cs.stanford.edu>.

Europe PMC Funders Group
Author Manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

Published in final edited form as:
Proc Mach Learn Res. 2017 ; 70: 3987–3995.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

typically described by a single scalar quantity. On the other hand, individual biological

synapses make use of complex molecular machinery that can affect plasticity at different

spatial and temporal scales (Redondo & Morris, 2011). While this complexity has been

surmised to serve memory consolidation (Fusi et al., 2005; Lahiri & Ganguli, 2013; Zenke et

al., 2015; Ziegler et al., 2015; Benna & Fusi, 2016), few studies have illustrated how it

benefits learning in ANNs.

Here we study the role of internal synaptic dynamics to enable ANNs to learn sequences of

classification tasks. While simple, scalar one-dimensional synapses suffer from catastrophic

forgetting, in which the network forgets previously learned tasks when trained on a novel

task, this problem can be largely alleviated by synapses with a more complex three-

dimensional state space. In our model, the synaptic state tracks the past and current

parameter value, and maintains an online estimate of the synapse’s “importance” toward

solving problems encountered in the past. Our importance measure can be computed

efficiently and locally at each synapse during training, and represents the local contribution

of each synapse to the change in the global loss. When the task changes, we consolidate the

important synapses by preventing them from changing in future tasks. Thus learning in

future tasks is mediated primarily by synapses that were unimportant for past tasks, thereby

avoiding catastrophic forgetting of these past tasks.

2 Prior work

The problem of alleviating catastrophic forgetting has been addressed in many previous

studies. These studies can be broadly partitioned into (1) architectural, (2) functional, and

(3) structural approaches.

Architectural approaches to catastrophic forgetting alter the architecture of the network to

reduce interference between tasks without altering the objective function. The simplest form

of architectural regularization is freezing certain weights in the network so that they stay

exactly the same (Razavian et al., 2014). A slightly more relaxed approach reduces the

learning rate for layers shared with the original task while fine-tuning to avoid dramatic

changes in the parameters (Donahue et al., 2014; Yosinski et al., 2014). Approaches using

different nonlinearities like ReLU, MaxOut, and local winner-take-all have been shown to

improve performance on permuted MNIST and sentiment analysis tasks (Srivastava et al.,

2013; Goodfellow et al., 2013). Moreover, injecting noise to sparsify gradients using dropout

also improves performance (Goodfellow et al., 2013). Recent work from Rusu et al. (2016)

proposed more dramatic architectural changes where the entire network for the previous task

is copied and augmented with new features while solving a new task. This entirely prevents

forgetting on earlier tasks, but causes the architectural complexity to grow with the number

of tasks.

Functional approaches to catastrophic forgetting add a regularization term to the objective

that penalizes changes in the input-output function of the neural network. In Li & Hoiem

(2016), the predictions of the previous task’s network and the current network are

encouraged to be similar when applied to data from the new task by using a form of

knowledge distillation (Hinton et al., 2014). Similarly, Jung et al. (2016) regularize the ℓ2

Zenke et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

distance between the final hidden activations instead of the knowledge distillation penalty.

Both of these approaches to regularization aim to preserve aspects of the input-output

mapping for the old task by storing or computing additional activations using the old task’s

parameters. This makes the functional approach to catastrophic forgetting computationally

expensive as it requires computing a forward pass through the old task’s network for every

new data point.

The third technique, structural regularization, involves penalties on the parameters that

encourage them to stay close to the parameters for the old task. Recently, Kirkpatrick et al.

(2017) proposed elastic weight consolidation (EWC), a quadratic penalty on the difference

between the parameters for the new and the old task. They used a diagonal weighting

proportional to the diagonal of the Fisher information metric over the old parameters on the

old task. Exactly computing the diagonal of the Fisher requires summing over all possible

output labels and thus has complexity linear in the number of outputs. This limits the

application of this approach to low-dimensional output spaces.

3 Synaptic framework

To tackle the problem of continual learning in neural networks, we sought to build a simple

structural regularizer that could be computed online and implemented locally at each

synapse. Specifically, we aim to endow each individual synapse with a local measure of

“importance” in solving tasks the network has been trained on in the past. When training on

a new task we penalize changes to important parameters to avoid old memories from being

overwritten. To that end, we developed a class of algorithms which keep track of an

importance measure ωk
μ which reflects past credit for improvements of the task objective Lμ

for task μ to individual synapses θk. For brevity we use the term “synapse” synonymously

with the term “parameter”, which includes weights between layers as well as biases.

The process of training a neural network is characterized by a trajectory θ(t) in parameter

space (Fig. 1). The feat of successful training lies in finding learning trajectories for which

the endpoint lies close to a minimum of the loss function L on all tasks. Let us first consider

the change in loss for an infinitesimal parameter update δ(t) at time t.

In this case the change in loss is well approximated by the gradient g = ∂L
∂θ and we can write

L θ t + δ t − L θ t ≈ ∑
k

gk t δk t , (1)

which illustrates that each parameter change δk t = θk′ t contributes the amount gk(t)δk(t) to

the change in total loss.

To compute the change in loss over an entire trajectory through parameter space we have to

sum over all infinitesimal changes. This amounts to computing the path integral of the

gradient vector field along the parameter trajectory from the initial point (at time t0) to the

final point (at time t1):

Zenke et al. Page 3

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

∫
C

g θ t dθ = ∫
t0

t1
g θ t ⋅ θ′ t dt . (2)

As the gradient is a conservative field, the value of the integral is equal to the difference in

loss between the end point and start point: L(θ(t1)) − L(θ(t0)). Crucial to our approach, we

can decompose Eq. 2 as a sum over the individual parameters

∫
tμ − 1

tμ g θ t ⋅ θ′ t dt = ∑
k
∫

tμ − 1
tμ gk θ t θk′ t dt

≡ − ∑
k

ωk
μ .

(3)

The ωk
μ now have an intuitive interpretation as the parameter specific contribution to changes

in the total loss. Note that we have introduced the minus sign in the second line, because we

are typically interested in decreasing the loss.

In practice, we can approximate ωk
μ online as the running sum of the product of the gradient

gk t = ∂L
∂θk

 with the parameter update θk′ t =
∂θk
∂t . For batch gradient descent with an

infinitesimal learning rate, ωk
μ can be directly interpreted as the per-parameter contribution to

changes in the total loss. In most cases the true gradient is approximated by stochastic

gradient descent (SGD), resulting in an approximation that introduces noise into the estimate

of gk. As a direct consequence, the approximated per-parameter importances will typically

overestimate the true value of ωk
μ.

How can the knowledge of ωk
μ be exploited to improve continual learning? The problem we

are trying to solve is to minimize the total loss function summed over all tasks, ℒ = ∑μ Lμ,

with the limitation that we do not have access to loss functions of tasks we were training on

in the past. Instead, we only have access to the loss function Lμ for a single task μ at any

given time. Catastrophic forgetting arises when minimizing Lμ inadvertently leads to

substantial increases of the cost on previous tasks Lν with ν < μ (Fig. 1). To avoid

catastrophic forgetting of all previous tasks (ν < μ) while training task μ, we want to avoid

drastic changes to weights which were particularly influential in the past. The importance of

a parameter θk for a single task is determined by two quantities: 1) how much an individual

parameter contributed to a drop in the loss ωk
ν over the entire trajectory of training (cf. Eq. 3)

and 2) how far it moved Δk
ν ≡ θk tν − θk tν − 1 . To avoid large changes to important

parameters, we use a modified cost function Lμ in which we introduced a surrogate loss

which approximates the summed loss functions of previous tasks Lν (ν < μ). Specifically,

we use a quadratic surrogate loss that has the same minimum as the cost function of the

Zenke et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

previous tasks and yields the same ωk
ν over the parameter distance ∆k. In other words, if

learning were to be performed on the surrogate loss instead of the actual loss function, it

would result in the same final parameters and change in loss during training (Fig. 2). For two

tasks this is achieved exactly by the following quadratic surrogate loss

Lμ = Lμ + c∑
k

Ωk
μ θk − θk

2

surrogate loss
(4)

where we have introduced the dimensionless strength parameter c, the reference weight

corresponding to the parameters at the end of the previous task θk = θk tμ − 1 , and the per-

parameter regularization strength:

Ωk
μ = ∑

ν < μ

ωk
ν

Δk
ν 2 + ξ

. (5)

Note that the term in the denominator Δk
ν 2

 ensures that the regularization term carries the

same units as the loss L. For practical reasons we also introduce an additional damping

parameter, ξ, to bound the expression in cases where Δk
ν 0. Finally, c is a strength

parameter which trades off old versus new memories. If the path integral (Eq. 3) is evaluated

precisely, c = 1 would correspond to an equal weighting of old and new memories. However,

due to noise in the evaluation of the path integral (Eq. 3), c typically has to be chosen

smaller than one to compensate. Unless otherwise stated, the ωk are updated continuously

during training, whereas the cumulative importance measures, Ωk
μ , and the reference

weights, θ, are only updated at the end of each task. After updating the Ωk
μ , the ωk are set to

zero. Although our motivation for Eq. 4 as a surrogate loss only holds in the case of two

tasks, we will show empirically that our approach leads to good performance when learning

additional tasks.

To understand how the particular choices of Eqs. 4 and 5 affect learning, let us consider the

example illustrated in Figure 1 in which we learn two tasks. We first train on Task 1. At time

t1 the parameters have approached a local minimum of the Task 1 loss L1. But, the same

parameter configuration is not close to a minimum for Task 2. Consequently, when training

on Task 2 without any additional precautions, the L1 loss may inadvertently increase (Fig. 1,

black trajectory). However, when θ2 “remembers” that it was important to decreasing L1, it

can exploit this knowledge during training on Task 2 by staying close to its current value

(Fig. 1, orange trajectory). While this will almost inevitably result in a decreased

performance on Task 2, this decrease could be negligible, whereas the gain in performance

on both tasks combined can be substantial.

The approach presented here is similar to EWC (Kirkpatrick et al., 2017) in that more

influential parameters are pulled back more strongly towards a reference weight with which

good performance was achieved on previous tasks. However, in contrast to EWC, here we

Zenke et al. Page 5

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

are putting forward a method which computes an importance measure online and along the

entire learning trajectory, whereas EWC relies on a point estimate of the diagonal of the

Fisher information metric at the final parameter values, which has to be computed during a

separate phase at the end of each task.

4 Theoretical analysis of special cases

In the following we illustrate that our general approach recovers sensible Ωk
μ , in the case of a

simple and analytically tractable training scenario. To that end, we analyze what the

parameter specific path integral ωk
μ and its normalized version Ωk

μ (Eq. (5)), correspond to in

terms of the geometry of a simple quadratic error function

E θ = 1
2 θ−θ* TH θ − θ* , (6)

with a minimum at θ* and a Hessian matrix H. Further consider batch gradient descent

dynamics on this error function. In the limit of small discrete time learning rates, this

descent dynamics is described by the continuous time differential equation

τ dθ
dt = − ∂E

∂θ = − H θ−θ* , (7)

where τ is related to the learning rate. If we start from an initial condition θ(0) at time t = 0,

an exact solution to the descent path is given by

θ t = θ* + e
−H t

τ θ 0 − θ* , (8)

yielding the time dependent update direction

θ′ t = dθ
dt = − 1

τ He
−H t

τ θ 0 − θ* . (9)

Now, under gradient descent dynamics, the gradient obeys g = τ dθ
dt , so the ωk

μ in (3) are

computed as the diagonal elements of the matrix

Q = τ∫
0

∞
dt dθ

dt
dθT

dt . (10)

An explicit formula for Q can be given in terms of the eigenbasis of the Hessian H. In

particular, let λα and uα denote the eigenvalues and eigenvectors of H, and let dα = uα ·

(θ(0) − θ*) be the projection of the discrepancy between initial and final parameters onto the

α’th eigenvector. Then inserting (9) into (10), performing the change of basis to the

eigenmodes of H, and doing the integral yields

Zenke et al. Page 6

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Qi j = ∑
αβ

ui
αdα λα λβ

λα + λβ dβu j
β . (11)

Note that as a time-integrated steady state quantity, Q no longer depends on the time

constant τ governing the speed of the descent path.

At first glance, the Q matrix elements depend in a complex manner on both the eigenvectors

and eigenvalues of the Hessian, as well as the initial condition θ(0). To understand this

dependence, let’s first consider averaging Q over random initial conditions θ(0), such that

the collection of discrepancies dα constitute a set of zero mean iid random variables with

variance σ2. Thus we have the average 〈dαdβ〉 = σ2δαβ. Performing this average over Q then

yields

Qi j = 1
2σ2∑

α
ui

α λα u j
β = 1

2σ2Hi j . (12)

Thus remarkably, after averaging over initial conditions, the Q matrix, which is available

simply by correlating parameter updates across pairs of synapses and integrating over time,

reduces to the Hessian, up to a scale factor dictating the discrepancy between initial and final

conditions. Indeed, this scale factor theoretically motivates the normalization in (5); the

denominator in (5), at zero damping, ξ averages to σ2, thereby removing the scale factor σ2

in (12)

However, we are interested in what Qij computes for a single initial condition. There are two

scenarios in which the simple relationship between Q and the Hessian H is preserved

without averaging over initial conditions. First, consider the case when the Hessian is

diagonal, so that ui
α = δαiei where ei is the i’th coordinate vector. Then α and i indices are

interchangeable and the eigenvalues of the Hessian are the diagonal elements of the Hessian:

λi = Hii. Then (11) reduces to

Qi j = δi j di 2Hii ⋅ (13)

Again the normalization in (5), at zero damping, removes the scale of movement in

parameter space (di)2, and so the normalized Q matrix becomes identical to the diagonal

Hessian. In the second scenario, consider the extreme limit where the Hessian is rank 1 so

that λ1 is the only nonzero eigenvalue. Then (11) reduces to

Qi j = 1
2 d1 2ui

1 λ1 u j
1 = 1

2 d1 2Hi j ⋅ (14)

Thus again, the Q matrix reduces to the Hessian, up to a scale factor. The normalized

importances then become the diagonal elements of the non-diagonal but low rank Hessian.

Zenke et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

We note that the low rank Hessian is the interesting case for continual learning; low rank

structure in the error function leaves many directions in synaptic weight space unconstrained

by a given task, leaving open excess capacity for synaptic modification to solve future tasks

without interfering with performance on an old task.

It is important to stress that the path integral for importance is computed by integrating

information along the entire learning trajectory (cf. Fig. 2). For a quadratic loss function, the

Hessian is constant along this trajectory, and so we find a precise relationship between the

importance and the Hessian. But for more general loss functions, where the Hessian varies

along the trajectory, we cannot expect any simple mathematical correspondence between the

importance Ωk
μ and the Hessian at the endpoint of learning, or related measures of parameter

sensitivity (Pascanu & Bengio, 2013; Martens, 2016; Kirkpatrick et al., 2017) at the

endpoint. In practice, however, we find that our importance measure is correlated to

measures based on such endpoint estimates, which may explain their comparable

effectiveness as we will see in the next section.

5 Experiments

We evaluated our approach for continual learning on the split and permuted MNIST (LeCun

et al., 1998; Goodfellow et al., 2013), and split versions of CIFAR-10 and CIFAR-100

(Krizhevsky & Hinton, 2009).

5.1 Split MNIST

We first evaluated our algorithm on a split MNIST benchmark. For this benchmark we split

the full MNIST training data set into 5 subsets of consecutive digits. The 5 tasks correspond

to learning to distinguish between two consecutive digits from 0 to 10. We used a small

multi-layer perceptron (MLP) with only two hidden layers consisting of 256 units each with

ReLU nonlinearities, and a standard categorical cross-entropy loss function plus our

consolidation cost term (with damping parameter ξ = 1 × 10−3). To avoid the complication

of crosstalk between digits at the readout layer due to changes in the label distribution

during training, we used a multi-head approach in which the categorical cross entropy loss at

the readout layer was computed only for the digits present in the current task. Finally, we

optimized our network using a minibatch size of 64 and trained for 10 epochs. To achieve

good absolute performance with a smaller number of epochs we used the adaptive optimizer

Adam (Kingma & Ba, 2014) (η = 1 × 10−3, β1 = 0.9, β2 = 0.999). In this benchmark the

optimizer state was reset after training each task.

To evaluate the performance, we computed the average classification accuracy on all

previous tasks as a function of number of tasks trained. We now compare this performance

between networks in which we turn consolidation dynamics on (c = 1) against cases in

which consolidation was off (c = 0). During training of the first task the consolidation

penalty is zero for both cases because there is no past experience that synapses could be

regularized against. When trained on the digits “2” and “3” (Task 2), both the model with

and without consolidation show accuracies close to 1 on Task 2. However, on average the

networks without synaptic consolidation show substantial loss in accuracy on Task 1 (Fig.

Zenke et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

3). In contrast to that, networks with consolidation only undergo minor impairment with

respect to accuracy on Task 1 and the average accuracy for both tasks stays close to 1.

Similarly, when the network has seen all MNIST digits, on average, the accuracy on the first

two tasks, corresponding to the first four digits, has dropped back to chance levels in the

cases without consolidation whereas the model with consolidation only shows minor

degradation in performance on these tasks (Fig. 3).

5.2 Permuted MNIST benchmark

In this benchmark, we randomly permute all MNIST pixels differently for each task. We

trained a MLP with two hidden layers with 2000 ReLUs each and softmax loss. We used

Adam with the same parameters as before. However, here we used ξ = 0.1 and the value for

c = 0.1 was determined via a coarse grid search on a heldout validation set. The mini batch

size was set to 256 and we trained for 20 epochs. In contrast to the split MNIST benchmark

we obtained better results by maintaining the state of the Adam optimizer between tasks.

The final test error was computed on data from the MNIST test set. Performance is

measured by the ability of the network to solve all tasks.

To establish a baseline for comparison we first trained a network without synaptic

consolidation (c = 0) on all tasks sequentially. In this scenario the system exhibits

catastrophic forgetting, i.e. it learns to solve the most recent task, but rapidly forgets about

previous tasks (blue line, Fig. 4). In contrast to that, when enabling synaptic consolidation,

with a sensible choice for c > 0, the same network retains high classification accuracy on

Task 1 while being trained on 9 additional tasks (Fig. 4). Moreover, the network learns to

solve all other tasks with high accuracy and performs only slightly worse than a network

which had trained on all data simultaneously (Fig. 4). Finally, these results were consistent

across training and validation error and comparable to the results reported with EWC

(Kirkpatrick et al., 2017).

To gain a better understanding of the synaptic dynamics during training, we visualized the

pairwise correlations of the ωk
μ across the different tasks μ (Fig. 5b). We found that without

consolidation, the ωk
μ in the second hidden layer are correlated across tasks which is likely to

be the cause of catastrophic forgetting. With consolidation, however, these sets of synapses

contributing to decreasing the loss are largely uncorrelated across tasks, thus avoiding

interference when updating weights to solve new tasks.

5.3 Split CIFAR-10/CIFAR-100 benchmark

To evaluate whether synaptic consolidation dynamics would also prevent catastrophic

forgetting in more complex datasets and larger models, we experimented with a continual

learning task based on CIFAR-10 and CIFAR-100. Specifically, we trained a CNN (4

convolutional, followed by 2 dense layers with dropout; see Appendix for details). We used

the same multi-head setup as in the case of split MNIST using Adam (η = 1 × 10−3, β1 =

0.9, β2 = 0.999, minibatch size 256). First, we trained the network for 60 epochs on the full

CIFAR-10 dataset (Task 1) and sequentially on 5 additional tasks each corresponding to 10

consecutive classes from the CIFAR-100 dataset (Fig. 6). To determine the best c, we

Zenke et al. Page 9

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

performed this experiment for different values in the parameter range 1×10−3 < c < 0.1.

Between tasks the state of the optimizer was reset. Moreover, we obtained values for two

specific control cases. On the one hand we trained the same network with c = 0 on all tasks

consecutively. On the other hand we trained the same network from scratch on each task

individually to assess generalization across tasks. Finally, to assess the magnitude of

statistical fluctuations in accuracy, all runs were repeated n = 5 times.

We found that after training on all tasks, networks with consolidation showed similar

validation accuracy across all tasks, whereas accuracy in the network without consolidation

showed a clear age dependent decline in which old tasks were solved with lower accuracy

(Fig. 6). Importantly, the performance of networks trained with consolidation was always

better than without consolidation, except on the last task. Finally, when comparing the

performance of networks trained with consolidation on all tasks with networks trained from

scratch only on a single task (Fig. 6; green vs gray), the former either significantly

outperformed the latter or yielded the same validation accuracy, while this trend was

reversed in training accuracy. This suggests that networks without consolidation are more

prone to over fitting. The only exception to that rule was Task 1, CIFAR-10 which is

presumably due to its 10× larger number of examples per class. In summary, we found that

consolidation not only protected old memories from being slowly forgotten over time, but

also allowed networks to generalize better on new tasks with limited data.

6 Discussion

We have shown that the problem of catastrophic forgetting commonly encountered in

continual learning scenarios can be alleviated by allowing individual synapses to estimate

their importance for solving past tasks. Then by penalizing changes to the most important

synapses, novel tasks can be learned with minimal interference to previously learned tasks.

The regularization penalty is similar to EWC as recently introduced by Kirkpatrick et al.

(2017). However, our approach computes the per-synapse consolidation strength in an online

fashion and over the entire learning trajectory in parameter space, whereas for EWC

synaptic importance is computed offline as the Fisher information at the minimum of the

loss for a designated task. Despite this difference, these two approaches yielded similar

performance on the permuted MNIST benchmark which may be due to correlations between

the two different importance measures.

Our approach requires individual synapses to not simply correspond to single scalar synaptic

weights, but rather act as higher dimensional dynamical systems in their own right. Such

higher dimensional state enables each of our synapses to intelligently accumulate task

relevant information during training and retain a memory of previous parameter values.

While we make no claim that biological synapses behave like the intelligent synapses of our

model, a wealth of experimental data in neurobiology suggests that biological synapses act

in much more complex ways than the artificial scalar synapses that dominate current

machine learning models. In essence, whether synaptic changes occur, and whether they are

made permanent, or left to ultimately decay, can be controlled by many different biological

factors. For instance, the induction of synaptic plasticity may depend on the history and the

Zenke et al. Page 10

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

synaptic state of individual synapses (Montgomery & Madison, 2002). Moreover, recent

synaptic changes may decay on the timescale of hours unless specific plasticity related

chemical factors are released. These chemical factors are thought to encode the valence or

novelty of a recent change (Redondo & Morris, 2011). Finally, recent synaptic changes can

be reset by stereotypical neural activity, whereas older synaptic memories become

increasingly insensitive to reversal (Zhou et al., 2003).

Here, we introduced one specific higher dimensional synaptic model to tackle a specific

problem: catastrophic forgetting in continual learning. However, this suggests new directions

of research in which we mirror neurobiology to endow individual synapses with potentially

complex dynamical properties, that can be exploited to intelligently control learning

dynamics in neural networks. In essence, in machine learning, in addition to adding depth to

our networks, we may need to add intelligence to our synapses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors thank Subhaneil Lahiri for helpful discussions. FZ was supported by the SNSF (Swiss National Science
Foundation) and the Wellcome Trust. BP was supported by a Stanford MBC IGERT Fellowship and Stanford
Interdisciplinary Graduate Fellowship. SG was supported by the Burroughs Wellcome, McKnight, Simons and
James S. McDonnell foundations and the Office of Naval Research.

References

Benna, Marcus K; Fusi, Stefano. Computational principles of synaptic memory consolidation. Nat
Neurosci. 2016 Oct.doi: 10.1038/nn.4401

Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long. Neural networks for continuous online learning
and control. IEEE Trans Neural Netw. 2006 Nov; 17(6):1511–1531. DOI: 10.1109/TNN.
2006.881710 [PubMed: 17131665]

Donahue, Jeff; Jia, Yangqing; Vinyals, Oriol; Hoffman, Judy; Zhang, Ning; Tzeng, Eric; Darrell,
Trevor. Decaf: A deep convolutional activation feature for generic visual recognition. International
Conference in Machine Learning (ICML); 2014.

Fukushima, Kunihiko; Miyake, Sei. Neocognitron: A Self-Organizing Neural Network Model for a
Mechanism of Visual Pattern RecognitionCompetition and Cooperation in Neural Nets. Springer;
Berlin, Heidelberg: 1982. 267–285.

Fusi, Stefano; Drew, Patrick J; Abbott, Larry F. Cascade models of synaptically stored memories.
Neuron. 2005 Feb; 45(4):599–611. DOI: 10.1016/j.neuron.2005.02.001 [PubMed: 15721245]

Goodfellow, Ian J; Mirza, Mehdi; Xiao, Da; Courville, Aaron; Bengio, Yoshua. An Empirical
Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks. arXiv:1312.6211 [cs,
stat]. 2013 Dec.

Hinton, Geoffrey; Vinyals, Oriol; Dean, Jeff. Distilling the knowledge in a neural network. NIPS Deep
Learning and Representation Learning Workshop; 2014.

Jung, Heechul; Ju, Jeongwoo; Jung, Minju; Kim, Junmo. Less-forgetting Learning in Deep Neural
Networks. arXiv:1607.00122 [cs]. 2016 Jul.

Kingma, Diederik. Ba Jimmy. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs].
2014 Dec.

Kirkpatrick, James; Pascanu, Razvan; Rabinowitz, Neil; Veness, Joel; Desjardins, Guillaume; Rusu,
Andrei A; Milan, Kieran; Quan, John; Ramalho, Tiago; Grabska-Barwinska, Agnieszka; Hassabis,

Zenke et al. Page 11

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Demis; , et al. Overcoming catastrophic forgetting in neural networks. PNAS. 2017 Mar.doi:
10.1073/pnas.1611835114

Krizhevsky, Alex; Hinton, Geoffrey. Learning multiple layers of features from tiny images. 2009

Lahiri, Subhaneil; Ganguli, Surya. A memory frontier for complex synapsesAdvances in Neural
Information Processing Systems. Vol. 26. Tahoe, USA: Curran Associates, Inc; 2013. 1034–1042.

LeCun, Yann; Cortes, Corinna; Burges, Christopher JC. The MNIST database of handwritten digits.
1998

LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey. Deep learning. Nature. 2015 May; 521(7553):436–
444. DOI: 10.1038/nature14539 [PubMed: 26017442]

Li, Zhizhong; Hoiem, Derek. Learning without forgetting. European Conference on Computer Vision;
Springer; 2016. 614–629.

Martens, James. PhD thesis; University of Toronto: 2016. Second-order optimization for neural
networks.

Martens, James; Sutskever, Ilya; Swersky, Kevin. Estimating the hessian by back-propagating
curvature. arXiv:1206.6464. 2012

Montgomery, Johanna M; Madison, Daniel V. State-Dependent Heterogeneity in Synaptic Depression
between Pyramidal Cell Pairs. Neuron. 2002 Feb; 33(5):765–777. DOI: 10.1016/
S0896-6273(02)00606-2 [PubMed: 11879653]

Pascanu, Razvan; Bengio, Yoshua. Revisiting natural gradient for deep networks. arXiv:1301.3584.
2013

Razavian, Ali Sharif; Azizpour, Hossein; Sullivan, Josephine; Carlsson, Stefan. Cnn features off-
theshelf: an astounding baseline for recognition. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops; 2014. 806–813.

Redondo, Roger L; Morris, Richard GM. Making memories last: the synaptic tagging and capture
hypothesis. Nat Rev Neurosci. 2011 Jan; 12(1):17–30. DOI: 10.1038/nrn2963 [PubMed:
21170072]

Rosenblatt, Frank. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological review. 1958; 65(6):386. [PubMed: 13602029]

Rusu, Andrei A; Rabinowitz, Neil C; Desjardins, Guillaume; Soyer, Hubert; Kirkpatrick, James;
Kavukcuoglu, Koray; Pascanu, Razvan; Hadsell, Raia. Progressive Neural Networks. arXiv:
1606.04671 [cs]. 2016 Jun.

Srivastava, Rupesh K, Masci, Jonathan; Kazerounian, Sohrob; Gomez, Faustino; Schmidhuber,
Juergen. Compete to ComputeAdvances in Neural Information Processing Systems. Burges, CJC,
Bottou, L, Welling, M, Ghahramani, Z, Weinberger, KQ, editors. Vol. 26. Curran Associates, Inc;
2013. 2310–2318.

Yosinski, Jason; Clune, Jeff; Bengio, Yoshua; Lipson, Hod. How transferable are features in deep
neural networks? Advances in neural information processing systems. 2014:3320–3328.

Zenke, Friedemann; Agnes, Everton J; Gerstner, Wulfram. Diverse synaptic plasticity mechanisms
orchestrated to form and retrieve memories in spiking neural networks. Nat Commun. 2015 Apr.
6doi: 10.1038/ncomms7922

Zhou, Qiang; Tao, Huizhong W; Poo, Mu-Ming. Reversal and Stabilization of Synaptic Modifications
in a Developing Visual System. Science. 2003 Jun; 300(5627):1953–1957. DOI: 10.1126/science.
1082212 [PubMed: 12817152]

Ziegler, Lorric; Zenke, Friedemann; Kastner, David B; Gerstner, Wulfram. Synaptic Consolidation:
From Synapses to Behavioral Modeling. J Neurosci. 2015 Jan; 35(3):1319–1334. DOI: 10.1523/
JNEUROSCI.3989-14.2015 [PubMed: 25609644]

Zenke et al. Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 1.
Schematic illustration of parameter space trajectories and catastrophic forgetting. Solid lines

correspond to parameter trajectories during training. Left and right panels correspond to the

different loss functions defined by different tasks (Task 1 and Task 2). The value of each loss

function Lμ is shown as a heat map. Gradient descent learning on Task 1 induces a motion in

parameter space from from θ(t0) to θ(t1). Subsequent gradient descent dynamics on Task 2

yields a motion in parameter space from θ(t1) to θ(t2). This final point minimizes the loss on

Task 2 at the expense of significantly increasing the loss on Task 1, thereby leading to

catastrophic forgetting of Task 1. However, there does exist an alternate point θ(t2), labelled

in orange, that achieves a small loss for both tasks. In the following we show how to find this

alternate point by determining that the component θ2 was more important for solving Task 1

than θ1 and then preventing θ2 from changing much while solving Task 2. This leads to an

online approach to avoiding catastrophic forgetting by consolidating changes in parameters

that were important for solving past tasks, while allowing only the unimportant parameters

to learn to solve future tasks.

Zenke et al. Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 2.
Schematic illustration of surrogate loss after learning one task. Consider some loss function

defined by Task 1 (black). The quadratic surrogate loss (green) is chosen to precisely match

3 aspects of the descent dynamics on the original loss function: the total drop in the loss

function L(θ(0)) − L(θ(T)), the total net motion in parameter space θ(0) − θ(T), and

achieving a minimum at the endpoint θ(T). These 3 conditions uniquely determine the

surrogate quadratic loss that summarizes the descent trajectory on the original loss. Note that

this surrogate loss is different from a quadratic approximation defined by the Hessian at the

minimum (purple dashed line).

Zenke et al. Page 14

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 3.
Mean classification accuracy for the split MNIST benchmark as a function of the number of

tasks. The first five panels show classification accuracy on the five tasks consisting of two

MNIST digits each as a function of number of consecutive tasks. The rightmost panel shows

the average accuracy, which is computed as the average over task accuracies for past tasks ν
with ν < μ where μ is given by the number of tasks on the x-axis. Note that in this setup with

multiple binary readout heads, an accuracy of 0.5 corresponds to chance level. Error bars

correspond to SEM (n=10).

Zenke et al. Page 15

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 4.
Average classification accuracy over all learned tasks from the permuted MNIST benchmark

as a function of number of tasks. Our approach (blue) and EWC (gray, extracted and

replotted from Kirkpatrick et al. (2017)) maintain high accuracy as the number of tasks

increase. SGD (green) and SGD with dropout of 0.5 on the hidden layers (red) perform far

worse. The top panel is a zoom-in on the upper part of the graph with the initial training

accuracy on a single task (dotted line) and the training accuracy of the same network when

trained on all tasks simultaneously (black arrow).

Zenke et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 5.

Correlation matrices of weight importances, ωk
μ, for each task μ on permuted MNIST. For

both normal fine-tuning (c = 0, top) and consolidation (c = 0.1, bottom), the first layer

weight importances (left) are uncorrelated between tasks since the permuted MNIST

datasets are uncorrelated at the input layer. However, the second layer importances (right)

become more correlated as more tasks are learned with fine-tuning. In contrast,

consolidation prevents strong correlations in the ωk
μ, consistent with the notion of different

weights being used to solve new tasks.

Zenke et al. Page 17

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 6.
Validation accuracy on the split CIFAR-10/100 benchmark. Blue: Validation error, without

consolidation (c = 0). Green: Validation error, with consolidation (c = 0.1). Gray: Network

without consolidation trained from scratch on the single task only. Chance-level in this

benchmark is 0.1. Error bars correspond to SD (n=5).

Zenke et al. Page 18

Proc Mach Learn Res. Author manuscript; available in PMC 2020 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

	Abstract
	Introduction
	Prior work
	Synaptic framework
	Theoretical analysis of special cases
	Experiments
	Split MNIST
	Permuted MNIST benchmark
	Split CIFAR-10/CIFAR-100 benchmark

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

