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Background: Lattice degeneration and/or retinal breaks, defined as notable peripheral retinal lesions 
(NPRLs), are prone to evolving into rhegmatogenous retinal detachment which can cause severe visual loss. 
However, screening NPRLs is time-consuming and labor-intensive. Therefore, we aimed to develop and 
evaluate a deep learning (DL) system for automated identifying NPRLs based on ultra-widefield fundus 
(UWF) images.
Methods: A total of 5,606 UWF images from 2,566 participants were used to train and verify a DL system. 
All images were classified by 3 experienced ophthalmologists. The reference standard was determined when 
an agreement was achieved among all 3 ophthalmologists, or adjudicated by another retinal specialist if 
disagreements existed. An independent test set of 750 images was applied to verify the performance of 12 DL 
models trained using 4 different DL algorithms (InceptionResNetV2, InceptionV3, ResNet50, and VGG16) 
with 3 preprocessing techniques (original, augmented, and histogram-equalized images). Heatmaps were 
generated to visualize the process of the best DL system in the identification of NPRLs.
Results: In the test set, the best DL system for identifying NPRLs achieved an area under the curve (AUC) 
of 0.999 with a sensitivity and specificity of 98.7% and 99.2%, respectively. The best preprocessing method 
in each algorithm was the application of original image augmentation (average AUC =0.996). The best 
algorithm in each preprocessing method was InceptionResNetV2 (average AUC =0.996). In the test set, 150 
of 154 true-positive cases (97.4%) displayed heatmap visualization in the NPRL regions.
Conclusions: A DL system has high accuracy in identifying NPRLs based on UWF images. This system 
may help to prevent the development of rhegmatogenous retinal detachment by early detection of NPRLs.
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Introduction

Lattice degeneration and retinal breaks are clinically 
significant peripheral retinal lesions that predispose patients 
to the development of rhegmatogenous retinal detachment 
(RRD) (1,2). The prevalence of lattice degeneration is about 
8% in the general population, and 16.9% in myopic patients 
(2,3). Approximately 18.7–29.7% of RRD is associated with 
lattice degeneration (1,4). Retinal breaks are present in 
about 6% of eyes in both clinical and autopsy studies (5,6). 
Remarkably, at least 50% of untreated retinal breaks with 
persistent vitreoretinal traction will lead to RRD (7,8).

RRD is an important cause of visual disability and visual 
loss (9). Despite the advent of sophisticated techniques 
and treatment advances, the prognosis remains poor, with 
42% of patients achieving 20/40 vision, and only 28% if 
the macula is involved (10). Therefore, it is imperative to 
assess the conditions of the peripheral retina as a routine 
ophthalmologic examination, especially for myopic 
patients (8). Furthermore, notable peripheral retinal 
lesions (NPRLs), including lattice degeneration and/or 
retinal breaks, should be monitored regularly by retinal 
specialists, and prophylactic laser photocoagulation should 
be considered at an appropriate time to prevent RRD (8,11).

Screening NPRLs in the peripheral retina requires an 
experienced ophthalmologist to perform a dilated fundus 
examination, which is time-consuming, labor-intensive, and 
substantially impacts the deployment of screening on a large 
scale. In addition, a large amount of research has shown that 
automated image interpretation using deep learning (DL) 
algorithms can efficiently and accurately identify conditions 
such as diabetic retinopathy (DR) (12,13), age-related 
macular degeneration (AMD) (14,15), and glaucoma (16).  
However, most previous studies used traditional fundus 
images with limited visible scope (30° to 60°), which provide 
little information on the peripheral retina.

The emergence of the ultra-widefield fundus (UWF) 
imaging system, covering 200° panoramic images of 
the retina, compensates for the deficiency of traditional 
fundus cameras (17). In particular, the peripheral retina 
can be observed through UWF imaging with a single 
capture without requiring a dark setting, contact lens, or 
pupillary dilation (17). Employment of UWF images in 
conjunction with deep learning algorithms may provide 
accurate identification of NPRLs with significant benefits 
encompassing increased accessibility and affordability for 
high-risk populations. Subsequently, this technology could 
decrease the incidence of RRD through an appropriate 
precautionary intervention. In this study, we aimed to 

develop a DL algorithm to detect NPRLs from UWF 
images and verify its performance in an independent 
dataset. 

Methods

Image collection

The initial UWF images were obtained from individuals 
undergoing routine ophthalmic health evaluation 
between November 2016 and January 2019 at Zhongshan 
Ophthalmic Center and Shenzhen Ophthalmic Hospital 
using an OPTOS nonmydriatic camera and 200° fields 
of view. Patients underwent this examination without 
mydriasis. All images were de-identified prior to transfer to 
study investigators. The study was approved by the Ethics 
Committee of Zhongshan Ophthalmic Center and followed 
the tenets of the Declaration of Helsinki.

Classification and reference standard

The features of NPRLs (lattice degeneration and/or 
retinal breaks) were determined according to the Preferred 
Practice Pattern® Guidelines from the American Academy 
of Ophthalmology Retina/Vitreous Panel (8). The images 
were classified into two categories, NPRLs and non-
NPRLs, according the criteria shown in the Table 1. The 
image quality was included in the classification as follows: 
excellent quality referred to images without any problems; 
adequate quality referred to images with deficiencies in 
focus, illumination or other artifacts, but part of NPRLs 
could still be identified; and poor quality referred to images 
that were insufficient for any interpretation (over one-third 
of the image was obscured). Images of poor quality were 
excluded from the study. 

Training a DL system requires a robust reference 
standard (18,19). For this purpose, all anonymous images 
were independently classified by 3 ophthalmologists who 
had over 5 years of experience in retina specialty. The final 
classification was determined when agreement was achieved 
among the 3 ophthalmologists. Any level of disagreement 
was adjudicated by another retina specialist with 20 years 
of experience in retinal examinations. The process of image 
classification is described in Figure 1.

Imaging preprocessing and DL system development

To obta in  the  bes t  model ,  four  s ta te-of- the-ar t 
convolutional neural network (CNN) architectures, 
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including InceptionResNetV2, InceptionV3, ResNet50, and 
VGG16, were investigated in this study. Their architectural 
characteristics are summarized in Table 2 (20). Weights 

pretrained for ImageNet classification were used to initialize 
the CNN architectures (21).

To determine a suitable preprocessing technique that 

Table 1 Reference standards of notable peripheral retinal lesions

Classification Presence of clinical features

I NPRLs Inclusion of lattice degeneration and/or retinal breaks

Lattice degeneration Sharply demarcated, circumferentially oriented, ovoid or linear patches of the atrophic retina, 
with/without pigmentation, crisscrossing fine white lines, glistening white (frost-like) areas or 
punched out areas of extreme retinal thinning

Retinal breaks The shape of a full-thickness defect in retina including atrophic hole, operculated hole, 
horseshoe tear and retinal dialysis

Lattice degeneration with retinal breaks Including both of the above manifestations 

II Non-NPRLs None of the above manifestations

Excellent quality No problems with image

Adequate quality Some NPRLs could be identified despite image deficiency

Poor quality Insufficient for any interpretation (over one-third of the image was obscured)

NPRLs, notable peripheral retinal lesions, defined as the presence of lattice degeneration and/or retinal breaks.

Training set
N=3,504

Validation set
N=751

Test set
N=750

Poor quality images
N=601

Ultra-widefield fundus images
N=5,606

Qualified images
N=5,005

Training set augmentation
N=17,500

Training DL system Validating DL system Verifying DL system

Validation set augmentation
N=3,750

Classification 
(3 experienced retinal ophthalmologists  

and 1 retinal specialist)

exclude

randomization

Figure 1 Workflow diagram showing the overview of developing a deep learning system to identify notable peripheral retinal lesions (lattice 
degeneration and/or retinal breaks).
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can improve the performance of the DL algorithm, we 
investigated the three following methods:

(I) Original images without any augmentation.
(II) Original images were augmented using brightness 

shift with a factor ranging from 0.8 to 1.6, rotation 
up to 45° and horizontal and vertical flipping 
on both the training set and validation set to 
approximately 5 times the original size.

(III) Histogram equalizations were applied to all images, 
including the test set, to balance the brightness of 
the image. Horizontal flipping, vertical flipping and 
rotation up to 45° were also applied to the training 
set and validation set to increase their size by five 
times.

All image pixel values were normalized to range between 
0 to 1 and the images were resized to 512 by 512. The 
adaptive moment estimation (ADAM) optimizer with an 
initial learning rate of 0.001, beta 1 of 0.9, beta 2 of 0.999, 
fuzz factor of 1e-7 and zero learning rate decay were 
applied. For the VGG16 models, the same optimizer with 
an initial learning rate of 0.0001 was used. Each model was 
trained up to 180 epochs. During the training process, the 
validation loss was evaluated using the validation set after 

each epoch, and was used as a reference for model selection. 
Early stopping was applied, and if the validation loss did not 
improve for 60 consecutive epochs, the training process was 
stopped. The model state where the validation loss was the 
lowest was saved as the final state of the model. 

All eligible images were randomly divided into 3 sets, 
with 70% (3,504 images) as a training set, 15% (751 images) 
as a validation set and 15% (750 images) as a test set (with 
no participants overlap among these sets). The images in 
the training and validation sets were used to establish and 
determine the models, respectively. Then, the selected 
model was verified through images in the test set. The 
number of images was augmented to 17,500 in the training 
set and 3,750 in the validation set to improve DL efficiency. 
Table 3 provides further information on each set.

Features of misclassification and heatmaps of positive 
images

Reasons for errors made by the optimal DL system 
were analyzed by checking all the misclassified images. 
Heatmaps were generated using the Gradient weighted 
Class Activation Mapping (Grad-CAM) algorithm for all 

Table 2 Architectural characteristics of convolutional neural networks

Item Size (MB) Parameters Depth*

InceptionResNetV2 215 55,873,736 572

InceptionV3 92 23,851,784 159

ResNet50 98 25,636,712 50

VGG16 528 138,357,544 23

*, depth is the topological depth of the network, including activation layers and batch normalization layers. MB, Mbyte.

Table 3 Proportions of each type of notable peripheral retinal lesions in the training, validation and test datasets

Item Training set, No. (%) Validation set, No. (%) Test set, No. (%)

Lattice degeneration 437 (12.5) 92 (12.3) 100 (13.3)

Retinal breaks 118 (3.4) 23 (3.1) 24 (3.2)

Lattice generation with retinal breaks 150 (4.3) 28 (3.7) 32 (4.3)

NPRLs 705 (20.1) 143 (19.1) 156 (20.8)

Non-NPRLs 2,799 (79.9) 608 (80.9) 594 (79.2)

Total (origin) 3,504 (100.0) 751 (100.0) 750 (100.0)

Total (augmentation)* 17,500 3,750 NA

*, augmentation is approximately 5 times the original size. NPRLs, notable peripheral retinal lesions, defined as the presence of lattice 
degeneration and/or retinal breaks; NA, not applicable. 
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true-positive images and all false-positive images in the test 
set. Grad-CAM calculates the gradient of the output of the 
penultimate convolutional layer (the layer before the fully 
connected layers and is usually the last convolutional layer) 
with respect to each pixel in the input image. Image pixel 
with higher impact on the model’s prediction has heatmap 
color closer to the red spectrum in the Jet color map, while 
those with less impact has color closer to the blue spectrum.

General ophthalmologist comparisons

To evaluate our DL system in the context of screening 
NPRLs, we recruited 2 general ophthalmologists who had 
3 and 5 years of experience respectively in UWF image 
analysis from a physical examination center, and then 
compared the performance of the system with that of general 
ophthalmologists in detecting NPRLs in the test set.

Statistical analyses

The performance of  the DL system and general 
ophthalmologist were evaluated using three critical outcome 
measures: accuracy, sensitivity and specificity. Additionally, 
a receiver operating characteristic (ROC) curve was used to 
evaluate the efficiency of the DL system. The area under 
the curve (AUC) of ROC with 95% confidence intervals 
was also applied to assess the DL system. In the test set, 
unweighted Cohen’s kappa coefficients were employed to 
compare the results of the best DL model and the general 
ophthalmologists to the reference standard respectively. All 
statistical analyses were conducted using python 2.7.15.

Results

A total of 5,606 UWF images from 2,566 participants aged 
15–76 years (mean age 44.7 years, 45.8% female) were 
labeled for NPRLs. After filtering out 601 poor quality 
images due to cataract or artifacts (e.g., arc defects, dust 
spots and serious eyelash images), 5,005 images were used 
to develop the DL system, among which 1,004 images had 
been classified by ophthalmologists as NPRLs and 4,001 
as non-NPRLs (e.g., retinal hemorrhage, exudation and 
epiretinal membrane). 

Four algorithms (InceptionResNetV2, InceptionV3, 
ResNet50, and VGG16) were used to train models with the 
aforementioned 3 preprocessing methods. Thus, a total of 
12 models were trained. Their performance is presented in 
Figure 2, which indicates that the best algorithm for each 

preprocessing method was InceptionResNetV2 (average 
AUC =0.996), and the best preprocessing approach in each 
algorithm was applying augmentation of original images in 
training and validation sets (average AUC =0.996). Based on 
the optimal preprocessing method, InceptionV3 achieved 
an AUC of 0.997 (95% CI, 0.994–0.999), ResNet50 
achieved an AUC of 0.989 (95% CI, 0.978–0.997), 
InceptionResNetV2 achieved an AUC of 0.999 (95% CI, 
0.997–1.00), and VGG16 achieved 0.998 (95% CI, 0.995–
1.00) in detecting NPRLs (Figure 2), and the accuracies 
were 98.7% (740/750), 97.5% (731/750), 99.1% (743/750) 
and 98.5% (739/750), respectively. Table 4 presents further 
information describing the performance of these 4 DL 
algorithms.

The performance of the best DL model and general 
ophthalmologists in detecting NPRLs is shown in Table 5. 
The general ophthalmologist with 5 years of experience had 
a 93.6% sensitivity and a 98.7% specificity, and the general 
ophthalmologist with 3 years of experience had an 85.9% 
sensitivity and a 96.8% specificity, while the best model 
had a 98.7% sensitivity and a 99.2% specificity. Compared 
with the reference standard, the unweighted Cohen’s kappa 
coefficients were 0.927 (95% CI, 0.893–0.960), 0.833 (95% 
CI, 0.783–0.883) and 0.972 (95% CI, 0.951–0.993) for 
the 5-year experience general ophthalmologist, the 3-year 
experience general ophthalmologist and the DL model, 
respectively.

To analyze errors made by the optimal DL system, we 
checked all misclassified images. Among these images, 
2 (29%) were NPRL images misclassified as non-
NPRLs (Figure 3), and 5 (71%) were non-NPRL images 
misclassified as NPRLs (Figure 4). In addition, of all 154 
true-positive NPRL images in the test set, 150 (97.4%) 
displayed heatmap visualization of NPRLs (Figure 5). Of the 
5 false-positive NPRL images, all showed redder regions 
in areas that were partly similar to lattice degeneration. 
Among these images, 2 (40%) showed heatmap visualization 
of a retinal pigmented nevus, 1 (20%) showed highlighted 
regions with peripheral retinal hyperpigmentation, and 
the remaining 2 (40%) presented heatmap regions with 
proliferative vitreous membrane (Figure 4).

Discussion 

With the utilization of color fundus photographs, DL 
systems have achieved unprecedented success in detecting 
many retinal diseases (22-24). However, most of these 
studies focused on lesions that appear in the posterior pole 



Li et al. Deep learning for identifying NPRLs

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(22):618 | http://dx.doi.org/10.21037/atm.2019.11.28

Page 6 of 11

area of the retina. In this study, by focusing on peripheral 
retina, we successfully established DL systems based on 
UWF images with high accuracy in detecting NPRLs. The 
AUC of the best DL system achieved 0.999 with 98.7% 
sensitivity and 99.2% specificity. Based on these results, 
the DL system exhibited a remarkable performance in 
discerning NPRLs. Moreover, the performance of the DL 
system is better than both 5- and 3-year experience general 
ophthalmologists (Table 5). The agreement between the 
system and the reference standard is higher than that of 
the general ophthalmologists according to the unweighted 
Cohen’s kappa coefficients. It further validates the 
effectiveness of our DL system and indicates that the system 
could be used as a potential screening tool. To the best of 
our knowledge, this study was the first to use DL to detect 

NPRLs based on a large number of UWF images. 
In our study, to obtain the most accurate DL system, 12 

models established by 4 different algorithms were assessed 
using 3 types of preprocessed UWF images. According 
to the results shown in Figure 2, the best preprocessing 
method is applying brightness, rotation, mirror flipping 
augmentation to approximately 5 times the original size in 
training and validation sets. Hwang et al. (25) also showed 
that the application of augmented images in the training 
and validation sets can enhance the performance of DL 
models in the detection of AMD. A possible explanation is 
that augmentation turns each image into several images of 
various conditions, therefore the sample size is increased, 
which enables the generalization of the DL system to unseen 
data. In addition, the accuracy of the DL system built using 
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Figure 2 The test set performance for the detection of notable peripheral retinal lesions. Method 1 uses original images, method 2 uses 
augmented images, method 3 uses augmented histogram-equalized images.
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augmented histogram-equalized images is slightly lower 
than that of the systems built using augmented original 
images. Although histogram equalization can equalize the 
brightness of images and increase clarity, some information 
may be altered during this process. Consequently, the 
performance of the DL systems using histogram-equalized 
images is not as good as the performance of systems based 
on augmented original images.

InceptionResNetV2 is the best DL algorithms in 
detecting NPRLs when compared to other ones. Among 
all the models, InceptionResNetV2 has the most layers  

(Table 2). Therefore, it can represent a more complex 
relationship between the input (UWF image) and output 
(the label we attempt to predict). Normally, a larger 
network is more prone to overfitting. Nevertheless, 
InceptionResNetV2 reduces this tendency by mimicking 
the skip connections from Residual Network (ResNet). We 
also speculate that InceptionResNetV2 performs well on 
the task because NPRLs manifest in a wide variety of forms 
and patterns, which could appear similar to other lesions at 
times, and as a result, require a larger network to capture 
the complexity.

Table 4 Performance of four DL algorithms trained by three preprocessing methods in the test set

Item
NPRLs

Sensitivity (95% CI), % Specificity (95% CI), % Accuracy (95% CI), %

Method 1

Inception V3 90.4 (85.5–95.3) 96.0 (94.4–97.6) 94.8 (93.2–96.4)

ResNet50 37.2 (24.8–49.6) 97.5 (96.2–98.8) 84.9 (82.1–87.7)

InceptionResNetV2 98.1 (95.9–100) 97.0 (95.6–98.4) 97.2 (96.0–98.4)

VGG16 95.5 (92.2–98.8) 94.8 (93.0–96.6) 94.9 (93.3–96.5)

Method 2

Inception V3 98.7 (96.9–100) 98.7 (97.8–99.6) 98.7 (97.9–99.5)

ResNet50 96.8 (94.0–99.6) 97.6 (96.4–98.8) 97.5 (96.4–98.6)

InceptionResNetV2 98.7 (96.9–100) 99.2 (98.5–99.9) 99.1 (98.4–99.8)

VGG16 97.4 (94.9–99.9) 98.8 (97.9–99.7) 98.5 (97.6–99.4)

Method 3

Inception V3 84.0 (77.7–90.3) 98.5 (97.5–99.5) 95.5 (94.0–97.0)

ResNet50 71.8 (63.5–80.1) 98.1 (97.0–99.2) 92.7 (90.8–94.6)

InceptionResNetV2 93.6 (89.6–97.6) 98.8 (97.9–99.7) 97.7 (96.6–98.8)

VGG16 92.9 (88.7–97.1) 97.3 (96.0–98.6) 96.4 (95.0–97.8)

Method 1, training based on original images; Method 2, training based on augmented original images; Method 3, training based on 
augmented histogram-equalized images. DL, deep learning system; NPRLs, notable peripheral retinal lesions, defined as the presence of 
lattice degeneration and/or retinal breaks; CI, confidence interval.

Table 5 The performance of the deep learning system vs. general ophthalmologists in detecting notable peripheral retinal lesions

Item Sensitivity (95% CI), % Specificity (95% CI), % Accuracy (95% CI), %

Ophthalmologist A 93.6 (89.6–97.6) 98.7 (97.8–99.6) 97.6 (96.5–98.7)

Ophthalmologist B 85.9 (80.0–91.8) 96.8 (95.4–98.2) 94.5 (92.8–96.2)

Deep learning system 98.7 (96.9–100) 99.2 (98.5–99.9) 99.1 (98.4–99.8)

CI, confidence intervals; A, the general ophthalmologist with 5-year working experience in physical examination center; B, the general 
ophthalmologist with 3-year working experience in physical examination center.
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DL systems are often regarded as a “black box” because 
they utilize millions of image features to identify diseases. 
Although various high-accuracy DL systems have been 
developed for the automated classification of retinopathies, 
the rationale for the outputs generated by these systems is 

unclear to clinicians. In an attempt to explain this rationale, 
our study visualized the DL systems in the detection of 
NPRLs, with heatmaps generated for all true-positive 
images and all false-positive images. Lesions typically 
seen in NPRLs were identified as the important regions 

Figure 3 Ultra-widefield fundus images showing false-negative cases. (A) Lattice degeneration on the bottom right, partly coved by 
eyelashes; (B) lattice degeneration with small atrophic holes on the bottom left, partly coved by eyelashes.

A B

Figure 4 Ultra-widefield fundus images and corresponding heatmaps showing typical false-positive cases. (A) Retinal pigmented nevus 
shown on the left of A1 is the reddest region displayed in heatmap A2; (B) Dense retinal hyperpigmentation manifested on the bottom right 
of B1 is the reddest region visualized in heatmap B2; (C) proliferative vitreous membrane presented on the bottom left of C1 is the reddest 
region shown in heatmap C2.

A1 B1 C1

A2 B2 C2
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in 150 of 154 true-positive NPRL images (Figure 5),  
which further substantiates the validity of this DL system. 
Similarly, Kermany et al. (26) used the occlusion test 
to identify the areas of greatest importance used by the 
DL model in assigning a diagnosis of AMD. This test 
successfully identified the most clinically significant regions 
of pathology in 94.7% of images. In addition, Keel et al. (27)  
created heatmaps highlighting localized landmarks on 
images of DR and glaucoma, with an accuracy of 90% and 
96%, respectively.

A l though  our  DL sy s t em had  h igh  accuracy, 
misclassification still existed. To analyze errors made by the 
best DL system, we checked all the misclassified images 
carefully. In the false-negative group, only 2 images were 
misclassified due to lesions that were unclear and partly 
covered by eyelashes (Figure 3). In all 5 false-positive NPRL 
images, the heatmap appeared in an area that was similar 
to lattice degeneration (Figure 4). Increasing the number 
of these error-prone images in the training set could 
potentially minimize both false-positive and false-negative 
results.

Due to the high sensitivity, our DL system can 

be qualified for serving two purposes in the clinic: 
first, screening NPRLs as part of ophthalmic health 
evaluations in organizations such as physical examination 
centers or community hospitals which lack professional 
ophthalmologists; second, detecting peripheral RRD 
precursors in patients who cannot tolerate a dilated fundus 
examination, such as those with shallow anterior chamber 
angles. If a patient with a positive result is identified by 
the DL algorithm, then that patient can be referred to 
a retinal specialist to further determine whether retinal 
traction is involved in NPRLs or whether prophylactic 
treatment should be conducted for the prevention of RRD, 
and to validate the follow-up time. In addition, screeners 
could educate patients with positive findings on symptoms 
that might be early warning signs of RRD, such as flashes, 
peripheral visual field loss, increased floaters and decreased 
visual acuity. Moreover, these patients would be advised to 
contact their ophthalmologist promptly if they have any 
of these symptoms. Ideally, our system can improve early 
detection and timely treatment of RRD.

Our study has several limitations. First, we used two-
dimensional images lacking stereoscopic qualities rather 

Figure 5 Ultra-widefield fundus images and corresponding heatmaps showing typical true-positive cases. (A) Lattice degeneration shown in A1 
corresponds to the highlighted regions displayed in heatmap A2; (B) retinal breaks manifested in the B1 are the highlighted regions visualized in 
heatmap B2; (C) both lattice degeneration and retinal breaks presented in the C1 are the highlighted regions shown in heatmap C2.

A1 B1 C1

A2 B2 C2
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than three-dimensional images to train the DL system, 
thus making the identification of elevated lesions such as 
retinal traction involving NPRLs challenging. Second, the 
lattice degeneration and retinal breaks were not classified 
independently. Establishing a DL system to precisely 
differentiate retinal breaks from lattice degeneration was 
difficult due to the small retinal breaks that often emerged 
within lattice degeneration. Therefore, our current system 
mainly applies to screen people with dangerous RRD 
precursors in the peripheral retina and then refer them to 
ophthalmologists in a timely manner. Future improvement 
of the system will help to distinguish the specific types 
of these precursors. Third, although UWF imaging can 
capture the largest retinal view compared to other existing 
technologies, this method still does not cover the whole 
retina. Hence our DL system may miss a few NPRLs 
diagnoses which are not captured by the UWF imaging. 
Moreover, a missed diagnosis would occur if NPRLs 
appear in an obscured area of the image. A multi-center 
study with large sample sizes is needed to investigate the 
generalizability of the DL system for detecting NPRLs.

In summary, our DL system is able to achieve high 
sensitivity and specificity for identifying NPRLs using UWF 
images. Future studies will be dedicated to investigating the 
feasibility of using this algorithm as a screening approach to 
detect NPRLs in different clinical settings.
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