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Abstract Introduction: Herpes simplex virus type 1 (HSV1) in combination with genetic susceptibility has
previously been implicated in Alzheimer’s disease (AD) pathogenesis.
Methods: Plasma from 360 AD cases, obtained on average 9.6 years before diagnosis, and their age-
and sex-matched controls, were analyzed for anti-HSV1 immunoglobulin (Ig) G with enzyme-linked
immunosorbent assays (ELISAs). APOE genotype and nine other selected risk genes for AD were
extracted from a genome-wide association study analysis by deCODE genetics, Reykjavik, Iceland.
Results: The interaction between APOEe4 heterozygosity (APOEe2/e4 or €3/e4) and anti-HSV1
IgG carriage increased the risk of AD (OR 4.55, P = .02). A genetic risk score based on the nine
AD risk genes also interacted with anti-HSV1 IgG for the risk of developing AD (OR 2.35, P = .01).
Discussion: The present findings suggest that the APOEe4 allele and other AD genetic risk factors
might potentiate the risk of HSV1-associated AD.
© 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background complex, involving multiple susceptibility genes [3]; how-
ever, the €4 allele of the apolipoprotein E gene (APOE) is
the strongest genetic risk factor for AD. The APOE gene
has three predominant allelic variants: APOEe2, €3 and 4.
Possession of the APOEe4 allele increases the risk of AD
with an odds ratio (OR) of 15 for homozygous carriers
(APOEe4/e4) and threefold for heterozygous carriers
(APOE€2/e4 or €3/e4) [4]. Although APOEeg4 confers an
increased risk of AD, it is not the single cause of the disease.

. . Large-scale genome-wide association studies (GWASs)
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The pathogenesis of Alzheimer’s disease (AD), the lead-
ing cause of major neurocognitive disorders, is still not fully
understood. Sporadic AD is considered a multifactorial dis-
ease, triggered by environmental factors, in addition to ge-
netic predisposition [1,2]. The genetic component in AD is
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(ABCA?), bridging integrator 1 (BINI), sialic acid binding
Ig-like lectin 3 (CD33), Clusterin (CLU), complement
receptor 1 (CRI), ephrin Al (EPHAI), membrane-
spanning 4-domain, subfamily A, member 4E (MS4A4E),
nectin cell adhesion molecule 2 (NECTIN2), and
phosphatidylinositol-binding clathrin assembly protein
(PICALM). One emerging pattern is that many of these
susceptibility genes associate with the complement
system or immune mechanisms related to viral
infections [5-7].

Infectious agents have been proposed as important
environmental factors for AD development, and herpes
simplex virus type 1 (HSV1) is the pathogen most
strongly associated with AD [8—10]. Carriage of HSV1
is highly prevalent, reaching 80% in the adult
population [11]. HSV1 DNA has been detected in the
brains of patients with AD patients and colocalized with
amyloid plaques in particular [12-15]. More recently,
transcriptomic  studies also showed an increased
abundance of HSVI1 in the brains of patients with AD
[16]. In epidemiological studies, both carriage of and
reactivated HSV1 infection doubled the risk of developing
AD [9,10,17]. Moreover, AD risk appears to decrease
after treatment with antiherpetic medications in HSV1-
infected patients [18]. The concept of HSVI-associated
AD is further supported by the discovery that cultured
cells and murine models infected with HSV1 display
similar changes to AD pathology [19-23]. These
observations are consistent with the finding that amyloid
B has antimicrobial activity [22-24]. There are other
suggested AD-associated pathogens, among which
cytomegalovirus (CMV) [25,26], human herpes virus 6
(HHV6) [27], and Chlamydophila pneumoniae (C.
pneumoniae) [28,29] are highlighted here because
they have the common ability to establish latent or
chronic infections within the central nervous system
(CNS).

It has been hypothesized that concomitant carriage of
several AD-related genes and their subsequent synergistic
interactions might result in a genetic signature, which pre-
disposes a person to HSV1-associated AD [7,30]. In post-
mortem studies, the combination of having APOEe4 and
HSV1 in the brain was more highly associated with AD
than having only one of these factors [15,31]. Previous
research has connected the APOEe4 allele with HSV1 out-
comes [31-34], but no prospective epidemiological survey
of AD has specifically investigated the HSV1-APOEe4
interaction. There are no studies that have examined the
potential interaction between HSV1 and other AD-related
genes. The aim of this study was to investigate interactions
between HSVI1, HSV2, CMV and C. pneumoniae; the
APOE¢4 allele; and nine additional AD risk genes, for the
risk of subsequent AD development.

2. Methods
2.1. Participants and procedure

The nested case-control study was approved by the
Regional Ethical Review Board in Umea, Sweden (09-
190M and 2017/17-31) and is based on the data from
the Medical Biobank in Umea (Northern Sweden Health
and Disease Study [35]). The biobank contains plasma
samples, previously donated during, for example, regular
health checkups. From the biobank, samples from 360 in-
dividuals later diagnosed with AD and 360 matched con-
trols were identified using a computerized procedure.
Their plasma samples, obtained on average 9.6 years
before diagnosis, were extracted for analysis. Controls
were closely matched based on sampling date and age
and exactly matched based on sex and cohort in the Med-
ical Biobank.

2.2. AD diagnosis

Patients with AD were diagnosed at the Memory Clinic
of the University Hospital of Northern Sweden in Umea.
The AD diagnoses were based on the criteria of the Diag-
nostic and Statistical Manual of Mental Disorders, 4th
edition (DSM-1V) [36] and at least one brain imaging
technique. The clinical diagnoses were also compatible
with the NINCDS-ADRDA criteria [37]. Before final
inclusion, an experienced specialist in psychogeriatric
medicine verified the diagnoses. The controls were
confirmed free of major neurocognitive disorder and alive
at the time of diagnosis for their corresponding case. This
procedure has been described extensively in a previous
publication [10].

2.3. Plasma analyses

Plasma was analyzed for presence of anti-HSV IgG,
anti-HSV1 and anti-HSV?2 IgG, anti-CMV IgG, and anti—
C. pneumoniae 1gG with enzyme-linked immunosorbent as-
says (ELISAs). An in-house ELISA was used for the ana-
lyses of anti-HSV IgG and anti-CMV IgG as described in
a previous publication [38]. Commercial ELISA kits were
used to analyze anti-HSV1, anti-HSV2 (HerpeSelect 1,
HerpeSelect 2, FOCUS Diagnostics), and anti—C. pneumo-
niae 1gG (SeropCp™ Quant IgG).

To determine carriage of anti-HSV1, anti-HSV2, or
anti-HSV1+anti-HSV2 IgG, each sample positive for
anti-HSV IgG was further analyzed for anti-HSV2 IgG.
If the sample is positive for anti-HSV2 IgG, additional
analysis was performed for anti-HSV1 IgG, to separate
individuals positive for anti-HSV1 IgG, anti-HSV2 IgG,
or both.
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2.4. Genotyping

Genotyping was performed at deCODE genetics (Reykja-
vik, Iceland) with Illumina genome-wide arrays (Human-
OmniExpress-24). Variants with genotype yield <96 %,
MAF <0.5 %, or failed Hardy-Weinberg test were excluded.

2.5. Statistical analyses

2.5.1. APOE genotype, infections, and the risk of AD
APOE genotype was classified €2/e2, €2/e3, €2/e4, €3/€3,
€3/e4, and e4/e4 based on single nucleotide polymorphisms
(SNPs) 15429358 and rs7412. The impact of APOE genotype
on AD risk was evaluated using conditional logistic regres-
sion with APOE¢€3/e3 as reference. Owing to the small num-
ber (n = 3) of individuals with APOEe2/e2, these three
individuals were included in the group with APOE€2/€3.
To examine possible interactions between anti-HSVI,
anti—-HSV2, anti-CMYV, and anti—C. pneumoniae 1gG posi-
tivity, separately, and APOE genotype, conditional logistic
regression for AD was repeated including the IgG positivity
variables and interaction terms. For the analyses with
interaction terms, APOE genotype was classified using
variables for APOEe4 homozygosity (APOEeg4/e4),
APOEe4 heterozygosity (APOEe2/e4d or ¢€3/e4), and
APOE€2 carriage. Interactions with each of these three
APOE genotype variables were analyzed separately, and sig-
nificant interactions were included in the final models.

2.5.2. Selection of additional AD risk genes for a genetic
risk score

Nine different genes (ABCA7, BIN1, CD33, CLU, CRI,
EPHAI, MS4A4E, NECTIN2, and PICALM) were selected
after reviewing previous research [1,6,7,39]. All available
SNPs from the selected genes were extracted from the
genome-wide association study data files, resulting in a total
of 126 SNPs (Fig. 1). Each individual SNP had 2 sets of al-
leles, “AA, AG, GG” or “AA, AC and CC.” The frequency of
SNP variants was compared between AD cases and controls.
The variants with a higher frequency among cases were
given a value of 1 (“risk variant for AD”), and the variants
with a lower frequency were subsequently given a value of
0 (“protective variant for AD”). Thus, every individual ob-
tained a value of either 1 or O for each specific SNP. The re-
sulting SNPs with a value of 1 or 0 were then analyzed for
frequency and missing values in groups of cases and controls
separately. Conditional logistic regression for each individ-
ual SNP was performed, with the outcome of AD.

The first selection of SNPs was made based on the
following criteria: the rarest variant had to have a frequency
>5% among cases, missing values should not exceed 10%
among cases or controls, and finally, Pearson’s correlation
between two SNPs from the same gene should be <0.5
because of the risk of multicollinearity. If 2 SNPs originating
from the same gene had a Pearson’s correlation >0.5, the one

with the highest OR for AD was selected. The SNPs which
fulfilled the criteria for the first selection were included in
a gene-specific multivariable conditional logistic regression
for AD with backward elimination (likelihood ratio), that is
separate models were made for each specific gene. The back-
ward elimination (likelihood ratio) algorithm resulted in 1 to
3 SNPs per gene (Supplementary Table 1 in the Supplemen-
tary Appendix).

The final 17 SNPs identified by the gene-specific models
were then integrated into the same non-gene-specific multi-
variable conditional logistic regression for AD and contrib-
uted to the genetic risk score (GRS). To achieve a weighted
value for each individual SNP with regard to AD risk, car-
riers were assigned the value of the adjusted OR for AD
derived from the non—gene-specific multivariable regression
and value 1 for non-carriers. The GRS was calculated by the
weighted value of each SNP being multiplied and then
normalized. A squared normalized version of the GRS was
also calculated to account for potential gene-gene interac-
tions between different SNPs.

2.5.3. GRS of additional AD risk genes, infections and the
risk of AD

Separate conditional logistic regression models were used
to test the GRS and the squared GRS for the risk of AD. An-
alyses were then carried out to examine infection-gene inter-
actions by including IgG positivity variables and interaction
terms of GRS and squared GRS, respectively, with anti—
HSV1 IgG, anti-HSV2 IgG, anti-CMV IgG, and anti—C.
pneumoniae 1gG positivity in separate conditional logistic
models. The interaction between GRS and anti—C. pneumo-
niae 1gG positivity for AD was tested with conditional logistic
regression using GRS divided by its standard deviation instead
of normalized deviation, to investigate the intercept for anti—
C. pneumoniae 1gG positivity at the lowest possible GRS.

To test if the interactions were independent of each other,
we further specified a model including APOE genotype,
GRS and anti-HSV1 IgG positivity as the main effects and
two interaction terms: APOEe4 heterozygosity (APOEe2/
&4 or €3/e4) x anti-HSV1 IgG and GRS x anti-HSV1 IgG.
The same model was repeated including the squared GRS
instead of the GRS.

SPSS Statistics, version 24 (IBM Corporation, Armonk,
NY), was used. A two-sided P value <.05 was regarded as
significant.

3. Results

Our study showed that individuals with the APOE geno-
types €2/e3, €3/e4, and e4/e4 had ORs of 0.38 (P =.02), 3.22
(P <.001), and 19.15 (P < .001), respectively, for devel-
oping AD compared with those with APOE€3/e3 (Table 1).
Carrying APOE¢€2/¢4 did not significantly alter the risk of
developing AD compared with carrying APOEe3/¢3 (OR
1.01, P = .99; Table 1).
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Calculation of genetic risk score by
multiplying the 17 SNPs’ adjusted
ORs, derived from the non-gene-
specific regression model (Table S1

1. n = Number of SNPs . .
g in the Supplementary Appendix)

2. LR= Likelihood ratio

Fig. 1. Flow chart of gene selection and their corresponding single nucleotide polymorphisms.

APOEe2 allele decreased the risk of AD (OR 0.36,

(APOE€2/¢4 or €3/e4) and anti-HSV1 IgG carriage was
associated with increased risk of developing AD (OR 4.55,
P = .02; Table 2), whereas the presence of only one factor
was not (OR 0.83, P = .76 and OR 0.88 P = .73, respec-
tively; Table 2). In the same model, the presence of the

P = .001; Table 2), and APOEe4 homozygosity (APOEe4/
&4) increased the risk (OR 20.48, P <.001; Table 2). There
were no significant interactions between APOFEEe2 carriage
and APOEe4 homozygosity (APOEe4/e4) and anti-HSV1
IgG positivity (data not shown). There were no significant
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Table 1
Basic characteristics

Alzheimer’s disease cases, n = 360

Controls, n = 360 0Odds ratio for AD" (P value)

Group
Age at plasma sampling, years mean = SD 61.2 =56
Age at diagnosis, years mean = SD 70.8 = 6.4
Sex, female n (%) 271 (75.3)
CT brain scans, n (%) 309 (85.8)
MRIs of the brain, n (%) 32 (8.9)
99mT¢ SPECT/'®F FDG-PET brain scans, n (%) 172 (47.8)
Neuropsychological examinations, n (%) 125 (34.7)
Analyses of biomarkers in cerebrospinal fluid, n (%) 34 (9.4)
MMSE at diagnosis, mean = SD 219 = 5.0
APOE genotype
€2/e3", n (%) 12 (3.3)
€2/ed, n (%) 9(2.5)
€3/e3, n (%) 116 (32.2)
e3/ed, n (%) 148 (41.1)
ed/ed, n (%) 67 (18.6)
HSV1 IgG +, n (%) 329 (91.4)
HSV2 IgG +, n (%) 52 (14.4)
CMV IgG +, n (%) 312 (86.7)
C. pneumoniae 1gG +, n (%) 222 (61.7)

612 =5.6
271 (75.3)

51 (14.2) .38 (.02)

13 (3.6) 1.01 (.99)
185 (51.4) Ref

74 (20.6) 3.22 (<.001)

6 (1.7) 19.15 (<.001)

317 (88.1) 1.44 (.14)

46 (12.8) 1.15 (.53)
318 (88.3) .857 (.50)
220 (61.1) 1.03 (.87)

Abbreviations: SD, standard deviation; CT, computed tomography; MRI, magnetic resonance imaging; 99mTe SPECT/FDG-PET, technetium (99"“Tc) exam-
etazime single-photon emission computed tomography/fludeoxyglucose (*°F) positron emission tomography; MMSE, Mini-Mental State Examination; APOE,
apolipoprotein E; HSV, herpes simplex virus; Ig, Immunoglobulin; CMV, cytomegalovirus; C. pneumoniae, Chlamydophila pneumoniae.

“Simple conditional logistic regression. For APOE genotypes: with genotype APOEe3/e3 as reference category.

TAPOEg2/¢2 was not analyzed separately because of the small numbers of individuals carrying this specific genotype (n = 3), and those individuals were

included in the group APOE€2/€3.

associations of anti-HSV?2 IgG, anti-CMV IgG, or anti—C.
pneumoniae positivity in the APOE models and no signifi-
cant interactions with APOE variables (data not shown).

17 different SNPs were identified (Fig. 1) and contributed
to the GRSs (Supplementary Table 1 in the Supplementary
Appendix). Missing values from the final SNPs ranged
from 2.2 to 4.4% for cases and from 2.5 to 3.1% for controls
and were excluded from the analyses. Thus, GRSs were
calculated for 334 of the 360 AD cases and for 346 of the
controls.

The GRS increased the risk of AD (OR 2.64 per standard
deviation, P < .001), as did squared GRS (OR 5.61,

Table 2

P <.001). There was a significant interaction between the
GRS and anti-HSV1 IgG positivity for the risk of devel-
oping AD (OR 2.35, P = .01; Table 2). In this model, GRS
on its own did not significantly increase the risk (OR 1.42,
P = .21; Table 2). The interaction between the squared
GRS and anti-HSV1 IgG positivity with an outcome of
AD was significant (OR 8.20, P = .005). There was also
an interaction between both the GRS and squared GRS
with anti-C. pneumoniae 1gG for AD risk (OR 0.53,
P = .04 and OR 0.13, P = .02). When using GRS divided
by its standard deviation in the interaction model, anti—C.
pneumoniae 1gG was significantly associated with AD risk

Conditional logistic regression of the interaction between APOEe4 heterozygosity/genetic risk score and herpes simplex virus type 1 carriage in the risk of

Alzheimer’s disease development

Model 1, HSV1, and APOE variables

Model 2, HSV1, and genetic risk

score

Model 3, HSV1, APOE variables,
and genetic risk score

Odds 95% confidence Odds  95% confidence P Odds 95% confidence
Independent variables ratio interval Pvalue ratio interval value  ratio interval P value
Anti-HSV1 IgG+ 0.88  0.43-1.85 73 1.91 1.09-3.37 .03 1.31  0.56-3.03 .53
APOE¢2 carriage 036  0.19-0.67 .001 035 17-0.75 .007
APOEée4 homozygosity (APOEe4/e4) 2048  7.14-58.77 <.001 20.80  5.98-72.40 <.001
APOE#e4 heterozygosity 0.83  0.26-2.70 .76 097  0.27-3.46 .96
(APOE€2/e4 or €3/e4)
APOE¢4 heterozygosity 455  1.29-16.06 .02 375  0.95-14.82 .06
x anti-HSV1 IgG+
Genetic risk score 1.42 0.82-2.44 21 1.26  0.55-2.84 .59
Genetic risk score x anti-HSV1 IgG+ 2.35 1.21-4.56 .01 221  0.87-5.63 .10

Abbreviations: APOE, apolipoprotein E; HSV, herpes simplex virus; Ig, immunoglobulin.
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(OR 1.95 P =.04). There were no significant interactions be-
tween the GRS or the squared GRS and anti-HSV2 IgG and
anti-CMV IgG positivity for AD risk (data not shown).

In the combined model with interaction terms of both
APOE¢4 heterozygosity (APOEe2/e4 or €3/e4) with anti—
HSV1 IgG positivity and GRS with anti-HSV1 IgG posi-
tivity, the effect sizes of the interactions were nearly the
same as models that included only one interaction term,
although not significant (OR 3.75, P = .06 and OR 2.21,
P = .10 respectively; Table 2). The effect sizes of the inter-
actions between APOEe4 heterozygosity (APOE€2/e4 or
e3/e4) and anti-HSV1 IgG positivity, and the squared
GRS and anti-HSV1 IgG positivity, were also nearly the
same but not significant in the combined model that
included both interactions of APOEe4 heterozygosity
(APOE€2/e4 or €3/e4) and squared GRS with anti-HSV1
IgG positivity (OR 3.85, P = .05 and OR 5.72, P = .08,
respectively; Table 2).

4. Discussion

In this large nested case-control study, the APOEe4
allele and a GRS based on nine other AD-risk genes inter-
acted with HSV1 for increased risk of developing AD. For
the first time, the host genetic background can here be
shown to interact with HSV1 carriage to increase the risk
for developing AD in a prospective epidemiological mate-
rial. The primary strengths of this study include a large
number of cases with closely matched controls from the
same population, combined with thorough clinical AD
diagnosis.

The present results are in accordance with the recent find-
ings of an interaction between APOFEe4 and HSV for
episodic memory decline [40]. Thus, an interaction between
APOEe4 and HSV in AD development has been demon-
strated in two large independent prospective epidemiolog-
ical studies. The findings show that genetic background is
important for the development of HSV1-associated AD.
This corresponds with AD as a multifactorial disease, caused
by genetic susceptibility in combination with environmental
factors [1,2,7,16,30]. One plausible explanation could be
that AD development with amyloid deposition is fueled by
persistent and low-grade infection in the CNS over long pe-
riods of time. Host genetics might contribute to loss of
immunological control over persistent infections, allowing
the CNS entry and/or a shift from a protective (innate) im-
mune response to neuropathological processes [16,23].
The squared GRS was associated with increased risk of
AD, with a higher estimated risk effect than the non-squared
GRS. This might indicate that there are gene-gene interac-
tions between different risk genes, where concomitant car-
riage of many risk variants results in a genetic pattern
which further increases the risk of HSV1-associated AD
by multiplicative effects [7,30].

Interestingly, the GRS also interacted with anti—C. pneu-
moniae 1gG in regard to the risk of developing AD,

although the correlation had the opposite direction
compared with HSV1, meaning that with a low GRS, C.
pneumoniae carriage was associated with increased AD
risk. This might indicate that C. pneumoniae could be
contributing to AD risk in those individuals with the lowest
genetic risk of HSV1-associated AD. This may also imply
heterogeneity in AD pathogenesis and that the disease is
multifactorial. In contrast, anti-HSV2 IgG or anti-CMV
IgG did not interact with the APOEe4 allele, nor the
GRS for AD risk.

For the present study, we selected nine genes consis-
tently linked to the risk of AD from several studies for
the calculation of the GRS [1,6,7,39]. This enabled inves-
tigation of their combined effect on AD. Nonetheless, this
makes the contributing effects of individual genes indis-
tinguishable from each other. This strategy was chosen
because of the limited statistical power of the material.
However, many other AD significant genes could also
be worth investigating for their potential interactions
with HSV1. The lack of desirable statistical power was
also apparent when including the two interaction terms
of APOEe4 heterozygosity (APOE€2/e4 or €3/e4) with
HSV1 carriage and GRS with HSV1 carriage simulta-
neously in the models. While not significant, the ORs of
the interactions were almost unaffected when included
in the same model. Still, this could indicate that the ef-
fects of APOEe4 and other risk genes are independent
of each other.

In conclusion, the interaction between APOE¢4 heterozy-
gosity (APOE€2/e4 or €3/e4) and HSV1 carriage increased
the risk of AD by approximately fivefold, whereas the pres-
ence of only one factor did not. A calculated GRS, based on
nine additional risk genes, also interacted with anti-HSV1
IgG for increased risk of subsequent AD. The present find-
ings suggest that the APOEe4 allele and other AD genetic
risk factors might potentiate the risk of developing HSV1-
associated AD. This could provide new insights into the
possible mechanisms involved in the development of AD.
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RESEARCH IN CONTEXT

1. Systematic review: PubMed was used to search for
previously published work. Alzheimer’s disease
(AD) is considered a multifactorial disease, triggered
by genetic and environmental factors. A growing
body of evidence indicates a potential role of herpes
simplex virus type 1 (HSV1) in AD pathogenesis.
Previous research has connected HSV1 outcomes
with apolipoprotein Ee4 (APOEe4). However, no
prospective epidemiological study has investigated
the HSV1-APOE¢4 interaction for AD risk.

2. Interpretation: Our findings show that host genetic
background interacts with HSV1 carriage to increase
the risk of subsequent AD, consistent with our earlier
findings concerning HSV and APOEe4 in episodic
memory decline.

3. Future directions: Interventional studies with anti-
viral agents are needed to prove the causal effect of
herpes viruses in AD. Our results provide a founda-
tion for future trials to target individuals carrying
HSV1 in combination with certain genetic traits,
thereby promoting a more individualized approach
for treatment or prevention of AD.
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