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Background. Progress in gene sequencing has paved the way for precise outcome prediction of the heterogeneous disease of
glioblastoma. The aim was to assess the potential of utilizing the lncRNA expression profile for predicting glioblastoma patient
survival. Materials and Methods. Clinical and lncRNA expression data were downloaded from the public database of the cancer
genome atlas. Differentially expressed lncRNAs between glioblastoma and normal brain tissue were screened by bioinformatics
analysis. The samples were randomly separated into the training and testing sets. Univariate Cox regression, least absolute
shrinkage, selection operator regression, and multivariate Cox regression were performed to develop the prediction model with
the training set, which was presented as a forest plot. The performance of the model was validated by discrimination and
calibration analysis in both the training and testing sets. Patient survival between model-predicted low- and high-risk subgroups
was compared in both the training and testing sets. Results. One thousand two hundred and fifty-five differentially expressed
lncRNAs between glioblastoma and normal brain tissues were screened. After univariate Cox regression and the least absolute
shrinkage and selection operator regression, a 12 lncRNA constituted prediction model was developed by multivariate Cox
regression. Of the 12 lncRNAs, 4 lncRNAs were independent risk factors for patient survival. The areas under the receiver
operating characteristic curves of the model for predicting 0.5-, 1-, 1.5-, and 2-year patient survival was 0.788, 0.824, 0.874, and
0.886, respectively in the training set and 0.723, 0.84, 0.816, and 0.773 in the testing set. The calibration curves of the prediction
model fitted well. Significant survival disparity was observed between the model dichotomized low- and high-risk subgroups in
both the training and testing set. Conclusions. LncRNA expression signature can predict glioblastoma patient survival, promising
lncRNA-based survival prediction.

1. Introduction

Glioblastoma (GBM) is the most aggressive diffuse glioma of
astrocytic lineage and is considered a grade IV glioma based
on the WHO classification [1]. As the most common ma-
lignant primary brain tumor, GBM accounts for about 54%
of all gliomas and 16% of all primary brain tumors [2].
Despite progress in the current standard treatment strategy,
including maximal safe resection, followed by radiotherapy
with concomitant and adjuvant Temozolomide (TMZ), the
median survival was only 14.6 months [3]. The high
intertumoral and intratumoral heterogeneity make the

survival of patients with glioblastoma vary greatly [4, 5].
Traditional clinicopathological factors, including histologi-
cal grade, age, and Karnofsky performance status, have failed
to predict the outcome precisely [6]. Advanced sequencing
and microarray technologies have paved the way for un-
derstanding the interpatient response variability for treat-
ment at the gene expression and regulation level. Gene
expression-based molecular signatures have been discovered
and used for identifying new glioblastoma subtypes and
gained better prognostic significance [6, 7].

It is evident that only less than 2% of the genome
encodes proteins and at least 75% is actively transcribed
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into noncoding RNAs [8]. Although some of the noncoding
transcripts are small, most of them surpass 200 nucleotides
in length, and they are therefore cataloged as long non-
coding RNAs (lncRNAs) [9, 10]. It is estimated that the
human genome contains close to 16,000 genes that encode
more than 28,000 distinct lncRNA transcripts [9].
LncRNAs are known to play key roles in a broad range of
biological processes such as cell differentiation, human
diseases, and tumorigenesis [11]. LncRNAs can regulate the
expression levels of oncogenes or tumor suppressors
through various mechanisms, including chromatin mod-
ification, transcriptional control, and post-transcriptional
processing and affect various aspects of cellular homeo-
stasis [9]. The expression pattern of lncRNAs is highly
tissue and cell type-specific, revealing the potential for
accurate molecular cancer subclassification and outcome
prediction [9]. Although an increasing number of lncRNAs
have been characterized, the functions of most lncRNAs are
still unrevealed [12].

Reports have revealed that lncRNAs are aberrantly
expressed in glioma tissue to normal tissue and even in GBM
to low-grade gliomas [13]. A variety of lncRNAs have been
reported to participate in glioblastoma proliferation, inva-
sion, migration, radioresistance, and immune exemption,
providing new targets for gene therapy [14, 15]. Further-
more, lncRNAs have also been proposed as predictors for
patient survival [6, 16].

In this study, lncRNAs expression profiles in GBM and
normal tissue and clinical data were downloaded from the
public database of the cancer genome tlas (TCGA). Dif-
ferent lncRNA expression profiles were compared with
bioinformatics analysis. Univariate Cox regression, least
absolute shrinkage and selection operator (LASSO), and
multivariate Cox regression were conducted to screen the
lncRNAs associated with patient survival. A forest plot was
developed based on the results from multivariate Cox
regression, and the performance of the model was
validated.

2. Materials and Methods

2.1. Dataset Preparation. The lncRNAs expression profile
data were downloaded from TCGA (https://cancergenome.
nih.gov/) using the TCGAbiolinks package in R (version 3.6.
0, http://www.r-project.org) [17]. lncRNAs expression levels
were summarized into transcripts per kilobyte million
(TPM) values. The data consisted of 172 samples, of which 5
were normal tissue, and the rest 167 were GBM. The clinical
data were also downloaded from the TCGA database and
matched to the lncRNA expression signatures.The 167 GBM
samples were randomly separated into the training set (120
cases) and the testing set (47 cases).The training set was used
for prediction model development and the testing set was for
model validation.

2.2. Screening the Differentially Expressed lncRNAs. To find
the differentially expressed lncRNAs between GBM and
normal tissue, differentially expressed genes (DEGs) analysis

was conducted using the edgeR package in R. Only lncRNAs
with P< 0.005 and log value of fold of change larger than 2
were defined as significantly expressed lncRNAs and con-
sidered as candidate lncRNAs for further bioinformatics
analysis.

2.3. Development of the Prediction Model. The development
of the prediction model was based on the training set. The
LASSO Cox regression model was used to select the most
prognostic lncRNAs for overall survival (OS). In brief,
univariate Cox regression was conducted to screen the
candidate lncRNAs, and only variates with a P< 0.05 were
enrolled for LASSO regression. Second, LASSO regression
was performed to further diminish the variates for multi-
variate Cox regression. Finally, the variates from LASSO
regression were taken into multivariate regression and the
prediction model was constructed. The prediction model
was demonstrated as a forest plot. The odds ratio (OR) of
each variate and the P value were demonstrated.

2.4. Validation of the Prediction Model. Validation of the
prediction model was conducted by discrimination and
calibration assays in both the training and testing sets. The
predictive accuracy of the lncRNA forest plot was exam-
ined by time-dependent receiver-operating characteristic
(ROC) analysis. The area under the curves (AUCs) at the
different cutoff time was used to measure the predictive
accuracy. Calibration curves were produced by plotting the
observed rates against the forest plot-predicted probabil-
ities. All the patients were subgrouped into the low- and
high-risk subgroups according to the model predicted risks
(the cutoff value for discriminating high- and low-risk
subgroups was the median model predicted risk of the
training set), and survival curves were built and compared
between these groups. Patients were also dichotomized
into subgroups according to the expression levels of
lncRNAs that were independently associated with patient
survival, and survival curves were compared between these
groups.

2.5. Statistical Analysis. All statistical analyses were per-
formed using R (version 3.6.0, http://www.r-project.org).
For univariate and multivariate analysis, Cox regression was
used. The concordance index (C index) was calculated to
evaluate the discrimination capacity of the lncRNAs con-
structed forest plot. Calibration plots were generated to
assess the consistency between the actual outcomes and the
forest plot predicted outcomes. The x-axis represents the
prediction calculated by the forest plot, and the y-axis
represents the actual outcomes. The Kaplan–Meier method
was used to build the survival curves, and the log-rank test
was used to test the difference of the survival curves between
groups. All statistical tests were 2-sided, and P value <0.05
was considered statistically significant. The main packages
used included caret, rms, survival, foreign, timeROC,
glmnet, survminer, pheatmap, ggplot2, and edgeR.
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3. Results

3.1. Differentially Expressed lncRNAs between GBM and
Normal Brain Tissue. DGEs analysis revealed that, of the
8225 genes enrolled for differentially expression analysis,
1255 lncRNAs were differentially expressed between GBM
and the normal brain tissues. Of the 1255 differentially
expressed lncRNAs, 591 were upregulated and the rest 664
were downregulated. The top 50 differentially expressed
lncRNAs were demonstrated in Figure 1. Distribution of all
the differentially expressed lncRNAs was shown in Figure 2.

3.2. Development of the Prediction Model. Univariate Cox
regression revealed that 132 lncRNAs were significantly as-
sociated with patient survival. These lncRNAs were enrolled in
LASSO Cox regression, and 12 lncRNAs were selected into the
multivariate Cox regression. LASSO coefficient profiles of the
132 lncRNAs are presented in Figure 3(a). The tuning pa-
rameter (λ) selection in the LASSO model used 10-fold cross-
validation via minimum criteria (Figure 3(b)). The results of
multivariate Cox regression was demonstrated in Figure 4. Of
the 12 lncRNAs enrolled in the prediction model, 4 lncRNAs
were independent risk factors for patient survival, including
AC005632.4.ENSG00000273956.lincRNA, AC021594.1.ENS-
G00000266924.lincRNA, MIRLET7DHG.ENSG00000230262.
lincRNA, and OSMR.AS1.ENSG00000249740.lincRNA.

3.3. Validation of the Prediction Model. Validation of the
prediction model was conducted with discrimination and
calibration assay. The risk probability of each patient was
calculated according to the prediction model, and the ROCs
were built for assessing the accuracy of the prediction model.
As Figure 5(a) showed, the AUC of the model for predicting
the 0.5-, 1-, 1.5-, and 2-year survival was 0.788, 0.824, 0.874,
and 0.886, respectively, in the training set and 0.723, 0.840,
0.816, and 0.773 in the testing set, demonstrating a rea-
sonable prediction accuracy. The C-index of the prediction
model was 0.743 (95% CI 0.716–0.77) in the training set and
0.707 (95% CI 0.670–0.745) in the testing set.The calibration
curves for the prediction of survival demonstrated accept-
able agreement between the prediction and observation in
the primary cohort (Figure 6). All the patients were sub-
grouped into the high and low-risk groups, and the survival
curves were built and compared (Figures 7(a) and 7(d)). The
high-risk group showed a significant poor survival status
than the low-risk group in both the training (Figure 7(a),
P< 0.001) and testing group (Figure 7(c), P � 0.002), im-
plying the significance of our model in clinical practice for
discriminating the risks for survival. A comparison of risk
score with patient survival status and risk score distribution
among GBM patients are shown in Figures 7(b) and 7(c) for
the training set, and Figures 7(e)–7(f ) for the testing set.

3.4. Survival Analysis between High and Low Expression
lncRNAs Subgroups That Related to Overall Survival.
Patients were categorized into low and high expression
subgroups according to the expression level of lncRNA

that were independent risk factors for overall survival.
Survival curves of the high and low expression subgroups
for each lncRNA were constructed and compared. As
shown in Figure 8, survival was significantly different
between the high and low expression subgroups catego-
rized by AC005632.4.ENSG00000273956.lincRNA,
AC021594.1.ENSG00000266924.lincRNA, and OSMR.
AS1.ENSG00000249740.lincRNA.

4. Discussion

The high heterogeneity of GBM results in the great variance
of patient outcome, thus making an accurate prediction of
the prognosis of a certain patient with clinical and patho-
logical findings seem unreliable. New advances in gene
sequencing make precise medicine and prediction promis-
ing. In this study, we compared the lncRNA expression
profiles between GBM and normal brain tissues and found a
12 lncRNA expression profile could predict the patient
outcome effectively. These results approved the potential of
lncRNA expression in precision diagnosis and prediction.

It has been increasingly recognized that lncRNAs are
important components in regulating gene expression, thus
affecting vital physiological and pathological processes such
as tumor biology. In this study, we firstly compared lncRNA
expression profiles in GBM and normal brain tissues with
the public database of TCGA. A total of 1255 differentially
expressed lncRNAs were selected from 8225 genes detected
(Figures 1 and 2). The differentially expressed lncRNAs were
selected for outcome prediction for patients with GBM.

Traditionally, the determination of prognosis of this
disease was mainly based on the histological classification
combined with patient age and tumor size and location [18].
These factors have all been defined as indicators of patient
survival and treatment outcome, but these factors have failed
to predict the outcome precisely [6]. Survival variability has
been observed in cases of glioblastoma with similar clinical
and histological features [6]. Characterization of specific
genetic alterations using advanced sequencing and micro-
array technologies have resulted in gene expression-based
molecular signatures, and these signatures have unraveled
better prognostic significance [6, 7]. Epidermal growth
factor receptor amplification, IDH1 mutation, and 1p/19q
loss of heterozygosity could segregate distinct molecular
subgroups and predict the outcome more precisely than
pathological types [6]. Hypermethylation of the MGMT
promoter leads to lower expression levels of MGMT, which
sensitizes GBM tumors to chemotherapeutic treatment and
thus predict a significantly better patient outcome [19]. The
high miR-10b level has been observed to confer a poor
survival for GBM patients [20]. A ten miRNA expression
signature has been proposed for predicting the overall
survival in GBM patients [21]. In this study, we proposed a
12 lncRNA expression signatures to predict the overall
survival for GBM patients, and the prediction model
demonstrated reasonable accuracy and calibration proper-
ties. Distinct survivals were observed between our model
discriminated high- and low-risk subgroups. Our results
further indicated the role of lncRNAs in glioblastoma
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progression, thus opening the door for the functional study
of lncRNAs in GBM.

A total of 12 lncRNAs expression was enrolled in our
final prediction model. Of the 12 lncRNAs, 2 were protective
lncRNAs, and the rest 10 were risk lncRNAs for patient
survival. Four lncRNAs were independent factors with pa-
tient survival, and all of them were risk factors. The 4 in-
dependent risk factors for patient survival were
AC005632.4.ENSG00000273956.lincRNA, AC021594.1.EN
SG00000266924.lincRNA, MIRLET7DHG.ENSG00000230

262.lincRNA, and OSMR.AS1.ENSG00000249740.lincRNA.
As lncRNAs evolve more quickly than protein-coding
RNAs, functional prediction by genomic comparison is
difficult. Besides, a lack of collateral information also
hampers lncRNA function prediction. In spite of many
efforts, the lncRNAs with known function remains scarce,
and efficient prediction of lncRNA functions is still a
considerable challenge [22].

AC005632.4.ENSG00000273956.lincRNA, AC021594.
1.ENSG00000266924.lincRNA, and MIRLET7DHG.ENS-
G00000230262.lincRNA were novel lncRNAs without
functional analysis. OSMR.AS1.ENSG00000249740.
lincRNA encodes antisense RNA of oncostatin M receptor
(OSMR), inhibiting its transcription and OSM signaling.
Oncostatin M (OSM) is a multifunctional cytokine that
serves several physiological and pathological functions. At
the molecular level, OSM can directly or indirectly partic-
ipate in tumorigenesis and insulin resistance development
[23]. Although OSM was initially found to be anti-
proliferative in tumors, numerous tumorigenic roles for
OSM have been reported in a variety of cancers [23]. In
cervical carcinoma, OSM exerts several promalignant effects,
including a proangiogenic phenotype and increased cell
migration and invasiveness [24]. Furthermore, OSM induces
M2 polarization of macrophages in the hypoxic tumor
microenvironment and promotes tumor growth and me-
tastasis in breast tumors [25]. In glioblastoma, OSM can
cease tumor proliferation and instigate astrocytal differen-
tiation by arresting cell cycle in G1 phase [26]. In another
study, Natesh et al. found OSM-mediated signaling con-
tributes to aggressive nature associated with mesenchymal
features via STAT3 signaling in glioma cells [27]. Consistent
with this result, bioinformatics analysis revealed that high
OSMR expression indicated poor survival for glioblastoma
patients [28]. In a more recent study, OSMR was found to
contribute to local immune response and extracellular
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Figure 1: Heatmap showed the top 50 differentially expressed lncRNAs between GBM and normal brain tissue.
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Figure 2: Volcano plot showed the differentially expressed
lncRNAs between GBM and normal brain tissues. Black dots: not
differentially expressed lncRNAs, Green dots: downregulated
lncRNAs with expression level P< 0.05 and fold of change >2 and
red dots: upregulated lncRNAs with expression level P< 0.05 and
fold of change >2.
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matrix progress in GBM and was an independent predictive
factor for progressive malignancy and prognostic marker in
the response prediction to radiotherapy and chemotherapy
[29]. In this study, we found the antisense RNA of OSM was
an independent risk factor for patient survival. All these
results indicate the key role of OSM signaling in glioma
progression and invasion, despite some contradictions of
these studies. A full illustration of the regulation mechanism

of this pathway in glioblastoma is needed in the future.
Further functional studies with these novel lncRNAs
screened in our study are empirical to fully elucidate the
underlying mechanisms of how these lncRNAs determine
patient survival.

The 12 lncRNA signature identified in this study clas-
sifies patients successfully into low-risk and high-risk
groups. This may help clinicians to identify patients
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Figure 3: Feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. LASSO
coefficient profiles of the 132 differentially expressed lncRNAs (a). The tuning parameter (λ) selection in the LASSO model used 10-fold
cross-validation via minimum criteria (b). A coefficient profile plot was produced against the log (λ) sequence.The vertical lines were drawn
at the value of the minimum and minimum+1 standard error selected using 10-fold cross-validation, where optimal λ resulted in 12
nonzero coefficients.
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Figure 5: Performance of the prediction model. Receiver-operating characteristic curves (ROCs) for the model in predicting the 0.5-, 1-,
1.5-, and 2-year survival were built, and the prediction accuracy was demonstrated with areas under the curves (AUCs) in the training (a)
and testing set (b).
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Figure 6: Continued.
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Figure 6: Calibration plots of the model for predicting 0.5- (a), 1- (b), 1.5- (c), and 2-year (d) survival in the training set. Calibration plots of
the model for predicting 0.5- (e), 1- (f ), 1.5- (g), and 2-year (h) survival in the testing set.
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belonging to the high-risk group for more effective adjuvant
therapy in addition to the standard treatment protocol. We
also found that the 4 lncRNAs were independent predictors
of GBM patient survival. Further studies are needed to
elucidate the function of these lncRNAs.

5. Limitations

This study has some limitations. First, only the expression
profile of lncRNAs was enrolled in analysis, and other de-
fined risk factors for survival were omitted, such as oper-
ation, chemotherapy, and pathological grade. Second, only
data from TGCA were enrolled in this study, other cohorts
were needed for external validation before the model could
be used in clinical practice. Third, only 5 normal brain
tissues were analyzed in this study, which may induce bias in
determining the DEGs.

6. Conclusions

In conclusion, we have developed a 12 lncRNA signature
models that can predict GBM patient survival. This result
will inspire the research of lncRNAs for understanding the
mechanism of GBM genesis and progression. Expression
and function analysis of lncRNAs will aid precise diagnosis
and outcome prediction for this highly heterogeneous
disease.
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