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ABSTRACT With up to millions of nearly neutral polymorphisms now being routinely sampled in
population-genomic surveys, it is possible to estimate the site-frequency spectrum of such sites with high
precision. Each frequency class reflects a mixture of potentially unique demographic histories, which can be
revealed using theory for the probability distributions of the starting and ending points of branch segments
over all possible coalescence trees. Such distributions are completely independent of past population
history, which only influences the segment lengths, providing the basis for estimating average population
sizes separating tree-wide coalescence events. The history of population-size change experienced by a
sample of polymorphisms can then be dissected in a model-flexible fashion, and extension of this theory
allows estimation of the mean and full distribution of long-term effective population sizes and ages of alleles
of specific frequencies. Here, we outline the basic theory underlying the conceptual approach, develop and
test an efficient statistical procedure for parameter estimation, and apply this to multiple population-
genomic datasets for the microcrustacean Daphnia pulex.
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Because polymorphisms with different allele frequencies arise at differ-
ent average times in the past, information on the amount of variation
associated with different allele-frequency classes in a population sample
can provide insight into the history of population-size change. This is
especially true for neutral variants, whose temporal dynamics depend
only on stochastic sampling effects. This simple idea has led to the
development of several technical and computationally demanding
approaches for estimating historical changes in the sizes of populations,
either from patterns of segregating variation at the single-nucleotide
level or from information on linkage disequilibriumbetween nucleotide
sites (Strimmer and Pybus 2001; Hayes et al. 2003; Tenesa et al. 2007;
Gutenkunst et al. 2009; Li and Durbin 2011; Bhaskar et al. 2015; Liu
and Fu 2015; Gattepaille et al. 2016; Weissman and Hallatschek 2017).
All of these methods make numerous assumptions, some of which can

be difficult to validate (e.g., the negligible influence of nonneutral sites),
are almost certainly violated (e.g., linearity of the relationship between
the recombination rate and physical distance betwen sites), and/or re-
quire information that is not available for most species (e.g., the iden-
tification of derived vs. ancestral alleles). Moreover, it remains to be
seen whether simpler, more intuitive approaches might yield results
that perform to a comparable (or even greater) degree of accuracy.

The approach taken here is conceptually straight-forward, the main
biological assumptions being that the sites underlying the analysis have
evolved in a neutral fashion for a considerable number of generations
(roughly speaking, for at least four times the current effectivepopulation
size, which is the expected coalescence time to common ancestry under
current conditions), and that there be no substantial population struc-
ture.All aspectsof theanalysis arebasedon samples of the site-frequency
spectrum (SFS) for such sites. Letting n be the number of sampled
haploid genomes (typically twice the number of individuals in a sample
from a diploid population), the number of polymorphic genomic sites
with r copies of the derived allele is denotedGr , where r ¼ 1 to ðn2 1Þ:
The number of monomorphic sites is G0, and the SFS is defined as
Gr=G; where G is the total number of monomorphic and polymorphic
sites evaluated across the genome. In the following, a mutation in class
r will be referred to as rth order, with r ¼ 1 denoting singletons, r ¼ 2
doubletons, etc.

The methods that follow, which adhere to the theory utilized in the
stairway method of Liu and Fu (2015), are based on three principles.
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First, the frequencies of sites residing within different classes are func-
tions of the historical pattern of effective population size (Ne) – all other
things being equal, increases in Ne elevate the probability of an allele
residing in a particular polymorphic state, but the relative frequency
also depends on the sequence of Ne experienced by all other allelic
classes. Second, the SFS for neutral sites scales with the mutation rate
per site per generation (u) (Kimura 1983), so if quantitative informa-
tion on Ne is desired, an estimate of u is required. Third, the frequency
of a mutation provides information on its age – under the process of
neutral drift, the time for a new mutation to reach a frequency class is a
monotonic function of the frequency, although there is considerable
noise around the expectation.

The goal here is to use these principles to determine the long-term
series of effective population sizes most compatible with the SFS, and
given the measures of interval-specific Ne to estimate the temporal
history of past population-size changes experienced by segregating
polymorphisms. We present analytical solutions for a broad set of
genealogical features of a sample that are independent of the demo-
graphic history, and use this theory to develop estimators for the av-
erage age of single-nucleotide polymorphisms within each frequency
class and the averageNe experienced during their history. These results
are worked out for the case of the unfolded SFS, and extended to
the folded SFS, which summarizes the incidence of the minor-allele
frequency classes, as investigators only rarely know which allele segre-
gating at a locus is derived. A computationally efficient method for
estimating such parameters is presented, validated with comparisons
to computer-simulated data, and applied to large population-genomic
data sets of Daphnia pulex.

THEORY
The Kingman (1982) coalescent provides the theoretical basis for all
that follows. Under this view, members of a genealogy of n samples
(assumed to be � Ne) randomly coalesce each generation until the
entire genealogy has congealed to one common ancestor at the base
of the tree after the ðn2 1Þth coalescence event. Although the number
of possible tree topologies is enormous with large sample sizes, many of
the summary features of the coalescent are known (Hein et al. 2005;
Wakeley 2009).

Here, we are concerned with the average features of alleles within
different frequency classes (r ¼ 1 to n2 1) in the sample, which re-
quires an understanding of the nature of the branch segments on which
mutations of the different classes can reside. These probabilistic fea-
tures can be summarized with a knowledge of Pk;k2xðrÞ, the probability
that an allele (SNP, or single nucleotide polymorphism) with fre-
quency r=n resides on an uninterrupted branch starting at level k
and ending at level ðk2 xÞ, where k ¼ n denotes the branch tips and
k ¼ 1 denotes the base of the tree (Figure 1). For any class of mu-
tations, the underlying branch segments can start as early as level
ðn2 r þ 1Þ (singleton branches always start at level n) and can end
as deeply as level 1. This means that internal branches starting at
level k can span up to k2 1 possible coalescence events in the tree.
Each coalescence event can potentially be associated with a unique
effective population size.

A key point is that the Pk;k2xðrÞ coefficients are completely inde-
pendent of the underlying demographic history, as the coordinates are
simply denoted by the enumerated coalescence events, and are func-
tions of only the sample size (n) and the allele class (r). Only the branch
lengths are functions of the population size. As described below, the full
set of coefficients (derived in the Appendix) provide the basis for an-
alytical expressions for various useful statistical features of SNPs. Here,
we adhere to the infinite-sites model, so that each newmutation arising

on a genealogy is assumed to appear at a unique site, with the mutation
rate to a novel SNP being equal to u per site per generation.

An interval-specific view of Ne

We start with the assumption that n sequences have been sampled
randomly (from n=2 diploid individuals, or n haploids) at each of
L nucleotide sites known to behave in an effectively neutral manner.
Under neutrality, for a population with constant effective size, the
expected number of sites occupying frequency class r in an unfolded
site-frequency spectrum is

E½Gr � ¼ u � L
r

(1)

where u ¼ 4Neu (for diploids, assumed here, or 2Neu for haploids),
with u being the mutation rate per nucleotide site per generation
(Watterson 1975; Fu 1995; Ewens 2004; Messer 2009). Here, we take
a more refined approach by explicitly evaluating the way in which
each SNP class reflects the historical series of coalescence events
within a sample, averaging over all possible coalescent topologies
for a sample of size n. Looking into the past, a tree composed of
n sequences (branch tips) experiences ðn2 1Þ coalescence events
to the base, and to each level k we assign an effective population size
Nk, such that Nn denotes the average effective size between the
branch tips and the first coalescence event, Nn21 represents the aver-
age in the interval between the first and second coalescence events,
and so on. At level k, the expected time (in generations) to the next
coalescence event into the past is

tk ¼
4Nk

kðk2 1Þ (2)

Figure 1 A genealogy comprising a sample size of n ¼ 8; with the k
values denoting the ordered coalescence events (k ¼ 1 representing
the root of the tree). The external branches, which can contain only
singleton mutations, are given as solid black lines. There are three
internal branches of order r ¼ 2 (upon which doubleton mutations
must reside, denoted with large dashes); the red, green, and purple
doubleton branches have starting and ending levels of (7,5), (6,5), and
(4,2), respectively. The tree also contains single branches of orders
r ¼ 3 (tripletons, medium dashes), 4 (quadrupletons, dot/dashes),
and 5 (quintupletons, small dashes). The consecutive coalescence
times are denoted by tk , with Nk denoting the effective population
size from level k to k21.
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generations. For example, starting with k ¼ n; tn ¼ 4Nn=½nðn2 1Þ� de-
notes the expected number of generations until the first coalescence event
in the sample; and the second coalescence event, which depends onNn21;
is obtained by setting k ¼ n2 1; i.e., tn21 ¼ 4Nn21= ½ðn2 1Þðn2 2Þ�:

Given knowledge of the expected internal features of the coalescent,
for each SNP frequency class, the expected value ofGr can be expressed
as a function of the full set of relevant Nk; which determine the lengths
of branches upon whichmutations arise. This also requires expressions
for the expected number of branches of order r at each relevant level of
the coalescent, averaged over all possible random genealogies in a
sample of size n. These are derived in the Appendix.

As an example, consider the simplest case of the singleton class. All
singletonmutationsmustbepresent on external branches, which always
start at level n but may end at any level in the genealogy from n2 1 (the
first coalescent) to 1 (extending to the base of the tree). The expected
number of singletons in the sample is

E½G1� ¼ 4unL
Xn21

k¼1

Sn;ðnþ12kÞ � Nnþ12k

ðn2 kÞðnþ 12 kÞ ; (3a)

where Sn;ðn2xÞ is the probability of a singleton branch (starting at level
n) not having coalesced by level ðn2 xÞ. This expression is equal to
the sum of the product of the expected number of singleton branches
surviving at each level and the length of the subsequent coalescence
interval, all multiplied by the probability of a mutation arising per site
per generation. Using the expression for Sn;ðn2xÞ, Equation (A3) in the
Appendix, the preceding expression simplifies to

E½G1� ¼ 4uL
ðn2 1Þ

Xn
k¼2

Nk ¼ 4uL�NðnÞ; (3b)

where �NðnÞ is the arithmetic average of the interval-specific Ni from
the top (Nn) to the bottom (N2) levels of the tree. This result applies
regardless of the mode of population-size change, showing that an
estimate of the arithmetic average Ne across all coalescence events is
provided by the incidence of singletons, i.e., as �NðnÞ ¼ G1=ð4uLÞ,
where G1 denotes an estimate of the number of singletons.

Things are more complicated for the higher-order site-frequency
classes because internal branches no longer initiate at the same levels.
However, by extension from Equation (3b), one can infer that the
probability of a mutation arising on a single branch starting at level
k, allowing for variable ending points, is 4u�NðkÞ=k; where �NðkÞ is
the arithmetic average of the interval-specific Ni starting at level k
and descending down to the base of the tree. From Equation (A7),
the expected number of order-r branches starting at level k is
½ðr2 1Þ=ðn2 kÞ� �WkðrÞ, where WkðrÞ is a coefficient defining the
expected number of segments of order r present at level k; given by
Equation (A5). Summing these contributions over all levels,

E½Gr� ¼ 4uLðr2 1Þ
Xn2rþ1

k¼2

WkðrÞ
kðn2 kÞ �

�NðkÞ; (4a)

which can also be written as

E½Gr � ¼ 4uL � ðn2 r2 1Þ!
ðn2 1Þ!

Xn2rþ1

k¼2

ðn2 kÞ!
ðn2 k2 r þ 1Þ! � Nk

¼ 4uL
r

1�
n2 1
r

� Xn2rþ1

k¼2

�
n2 k
r2 1

�
Nk;

(4b)

also obtained by Liu and Fu (2015). These expressions show that the
expected frequencies of all mutation classes are defined by differen-
tially weighted averages of the interval-specific Ne. When r ¼ 1;
Equation (4b) yields (3b), and with constant Ne, it reduces to
E½Gr� ¼ 4NeuL=r; in accordance with Equation (1); considerable sim-
plification is also possible if many adjacent Nk have the same values
(see Supplemental Material).

Before proceeding, recall that there are two forms of a site-frequency
spectrum. The unfolded distribution, described above, requires infor-
mation on the ancestral allelic states of each SNP site, ideally inferred
from at least two suitably distant outgroup species (Keightley and
Jackson 2018). Such a distribution is a summary of all sites having
derived-allele frequencies 1=n to ðn2 1Þ=n: If ancestral allelic states
are unknown, as is often the case, one must work with the folded site-
frequency spectrum, which summarizes the minor-allele frequencies
in classes 1=n to 1=2. The folded site-frequency spectrum, with
1# r# n=2; is defined as

Fr ¼ Gr þ Gn2r ; (5)

with Fn=2 ¼ Gn=2 if n is even.

Average age of a SNP
Whereas the previous results are concerned with the demographic
history of the population, an alternative viewpoint considers the average
ages and demographic features of SNPs of various frequencies. Once the
interval-specific estimates of Nk are available, the statistical machinery
developed in the Appendix can be used to infer both order-specific
measures. There, we show that for an unfolded SFS the average age
(in generations) of an rth-order SNP in terms of the historical effective
population sizes is

E½Ar� ¼
4
Pn
k¼2

Nk

�
n2 k
r2 1

�Pn
ℓ¼k

Nℓ
ℓðℓ2 1Þ

Pn
k¼2

Nk

�
n2 k
r2 1

� : (6a)

The expected second moment is expressed as

E½A2
r � ¼

32
Pn
k¼2

Nk

�
n2 k
r2 1

�Pn
ℓ¼k

Nℓ
ℓðℓ2 1Þ

Pn
m¼ℓ

Nm
mðm2 1Þ

Pn
k¼2

Nk

�
n2 k
r2 1

� ; (6b)

so the variance of ages of SNPs can be obtained as VarðArÞ ¼
E½A2

r �2 E2½Ar�, after substituting in the estimates for the Nk:
Although the preceding expressions apply to an unfolded SFS,

where the designated alleles are known to be derived (by use of
appropriate outgroup species for identifying ancestral allelic states),
studies without such a luxury must rely on a folded SFS. In this case,
each frequency class will be a mixture of derived and ancestral alleles
with different average ages. For low-frequency alleles in large sam-
ples, almost the entire set of sampled SNPs will consist of derived
alleles, and the preceding expressions can still be used to obtain
reasonably precise estimates. This follows from Equation (1), which
shows that the expected frequency of SNPs of order i is inversely
proportional to i. Thus, for i ¼ r and n2 r, the fractional contribu-
tion of the former to the folded distribution is of order ðn2 rÞ=n
provided the Ne associated with the two classes are not greatly
different (and larger than this if Ne is larger for the younger alleles).
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For r � n; almost all of the SNPs within folded class r will be de-
rived alleles.

A more precise approach is to explicitly treat the frequencies of the
folded distribution asmixtures of classes of derived alleles of order r and
ancestral alleles of order n2 r, with respective relative probabilities pd
and pa ¼ 12 pd . The expected age of a SNP of order r in a folded SFS
can then be written as

E
�
A�
r

� ¼ �pd � E½Ar�
�þ �pa � E½An2r�

�
; (7a)

where pd ¼ E½Gr�=ðE½Gr� þ E½Gn2r�Þ: The components of pd can
be estimated by substitution of the estimates for the Nk into
Equation (4b), and E½Ar� and E½An2r�, and their expected squared
values, are estimated by use of Equations (6a,b). The variance of
A�
r is then

Var
�
A�
r

� ¼ �p2d � VarðArÞ
�þ �p2a � VarðAn2rÞ

�
: (7b)

Average Ne of a SNP
For a population experiencing temporal changes in size, alleles of
different order will generally experience different long-term effective
population sizes from birth to the present. Letting the population size at
time s in the past be NðsÞ, the expected average population size expe-
rienced by an allele of frequency r is

E½Pr � ¼
E
h RAr

0 NðsÞds
i

E½Ar � :

If one has information on the ancestral states of alleles, and hence an
unfolded site-frequency spectrum, the mean Ne experienced by an
allele of order r can be obtained from the theoretical results on the
mean time spent in different intervals. Weighting of the interval-
specific durations by their associated Ne values leads to

E½Pr� ¼
Pn

k¼2Nk

�
n2 k
r2 1

�Pn
ℓ¼k 

4N2
ℓ

ℓðℓ2 1Þ
Pn

k¼2Nk

�
n2 k
r2 1

�Pn
ℓ¼k 

4Nℓ
ℓðℓ2 1Þ

: (8)

see Appendix. With a folded site-frequency spectrum, the weighting
approach used for the age of an allele in the preceding section can be
applied using the definitions of pd and pa, as well as E½Pr� andE½Pn2r� as
defined in Equation (8). Nonetheless, with large sample sizes, the pro-
posed approach is still expected to yield fairly accurate information on
the average Ne of rare alleles. This again follows from Equation (1),
which shows that the expected frequency of SNPs of order i is inversely
proportional to i.

ESTIMATION PROCEDURE
The results summarized in Equation (4b) amount to a series of n2 1
equations, each a function of the mutation rate, u, and one or more
of the interval-specific effective population sizes, Ni. Thus, in prin-
ciple, working backward, one could apply the elements of the ob-
served SFS to Equation (4b) to recursively estimate the full set of Ni

necessary to account for the data, i.e., solving a set of n2 1 equations
for n2 1 unknowns. However, with large numbers of unknowns
and imperfectly estimated Gr , such an approach leads to aberrant
results, including negative population-size estimates. Moreover, in
the case of a folded site-frequency spectrum, the number of possible

unknown population sizes exceeds the number of observed fre-
quency classes.

It then becomes necessary to pool adjacent population sizes so as to
reduce the number of parameters to be estimated. Consistent with Liu
and Fu (2015), we have adopted a stepwise procedure, implemented in
a likelihood framework. Consider a sampled site-frequency spectrum
given by G1; . . . ;Gn21, where G1 is the number of singletons, G2 the
number of doubletons, etc.With L sampled sites, the number of mono-
morphic sites is G0 ¼ L2G1 2⋯2Gn21. For any set of interval-
specific population sizes, Equations (4b,5) give the expected frequencies
of SNPs in the full set of classes. Using a composite-likelihood ap-
proach, i.e., assuming that the elements of the sampled SFS are all
essentially independent and Poisson distributed with parameters equal
to the frequency expectations times L, the likelihood function is given in
Supplemental Material.

We have implemented the above procedure in the program epos
(Estimating POpulation Sizes), which runs under the UNIX command
line. The C sources of epos and tutorial-style documentation are avail-
able from github at https://github.com/EvolBioInf/epos. The starting
point of the estimation procedure assumes a constant population size
throughout the entire history of the sample. The maximum-likelihood
estimator ofNe is then equivalent toWatterson’s (1975) estimator. The
next most complicated model involves a single coalescent breakpoint k
flanked by two different Ne, such thatNi is a constantNk for k, i# n,
andNk21 for i# k. The formulae for the expected SFS then reduce to a
three-parameter model, whose solution requires a search for the com-
bination of k; Nk, andNk21 that maximizes the composite likelihood of
the observed SFS, which can be found by Newton-Raphson iteration.
This procedure is then iterated in a stepwise fashion, with each iteration
increasing the number of breakpoints by one, until the difference in
adjacent likelihoods no longer improves beyond a critical value. To
this end, we employ the Akaike Information Criterion (AIC), mov-
ing on to the next iteration provided the log-likelihood has in-
creased by at least 2.0 in the preceding iteration. The end result is

Figure 2 Results from the application of epos to the Yoruba SNP data
set applied in Lapierre et al. (2017). The Yoruba data set was boot-
strapped 10,000 times (average given by solid line) and the 5 and 95%
quantiles (lower and upper dashed lines, respectively) computed from
these replicates.

214 | M. Lynch et al.

https://github.com/EvolBioInf/epos


a stepwise plot of interval-specific Ne estimates, with the break-
points converted to time (in generations) using the interval-specific
expected coalescent times given by Equation (2) and a mutation rate
provided by the user.

Several additional features are built into epos. First, it is possible
to analyze folded as well as unfolded SFSs. Second, the auxiliary
program bootSfs (github.com/EvolBioInf/bootSfs) implements the
bootstrap to estimate the sampling variance of the estimated de-
mographic history. Third, it is possible to exclude classes from the
SFS, if for example the singleton class is deemed unreliable owing
to sequencing errors. Fourth, the user can specify the AIC stopping
criterion. Fifth, all possible combinations of breakpoint locations
can be re-evaluated at each iteration, as opposed to sequentially
adding fixed breakpoints; to accomplish this, there are two versions
of the function nextConfig in epos: a fast, greedy version, which adds
one new level at a time and a slow, exhaustive version, which goes
through all possible combinations of levels. This flexibility is
provided because the the number of possible sets of breakpoints
increases exponentially as the stepwise estimation procedure
advances.

Based on the performance of the Stairway Plot algorithm of Liu and
Fu (2015), as applied to a single human (Yoruba) population sample,
Lapierre et al. (2017) have raised concerns about the use of model-
flexible approaches to estimating historical demography, as opposed
to using model-constrained approaches that pre-specify the form of

population growth and breakpoints in demographic features. In this
particular application, these authors showed that the Stairway Plot
algorithm predicts a complex demographic history with multiple
recent bottlenecks, with a poor least-squares fit to the observed
SFS (with a weighted mean-squared distance of d2 ¼ 2:9 · 1023).
In contrast, simpler pre-specified models (e.g., linear, exponential,
and sudden) predicted consistent increases in population size to the
present (all with d2 in the range of 2:2 · 1024 to 4:1 · 1024). Appli-
cation of epos to the same data set predicts an increase in population
size from the deep past to the present, but with a short intervening
population bottleneck � 500; 000 years ago (Figure 2), and has a
fivefold reduction of d2 to 8:0 · 1025. The current Ne≃28; 000 pre-
dicted by epos is comparable to that obtained by other methods.
Thus, contrary to the conclusions of Lapierre et al. (2017), these
results suggest that constrained models are not inherently superior
to flexible models, but simply that the quality of the results obtained
in the latter context can be suboptimal if the algorithmic approach
of Liu and Fu (2015) is applied.

We have further evaluated the utility of epos by fittingNe histories to
various demographic scenarios by generating sample SFSs using the
coalescent software of Kelleher et al. (2016) and Chen et al. (2009) in
the analyses in Figures 3A-E and 3F, respectively. Comparison of our
results to those obtained by the algorithms of Liu and Fu (2015) shows
that epos performs as well and in some cases better than the Stairway
method (Figure 3). For each evaluated scenario, ten SFSs were

Figure 3 Comparison of the estimation quality of epos (blue) to results from the Stairway Plot (SP, red) method of Liu and Fu (2015). In each panel,
the means of 10 medians and 5 and 95% quantiles are shown (dotted and dashed lines, based on averages of 10 independently derived SFSs).
The black lines denote the true underlying demography used to simulate the data.
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generated, and 2,000 bootstrap replications were used to find the
mean and percentiles of the effective-population size estimates, except
under the last scenario (F), where 200 bootstrap replications were
used. Epos is at least 1,000 times faster than Liu and Fu’s (2015)
Stairway procedure. For example, epos and Stairway Plot v2 took
0:00:14 and 6:11:51, respectively, to analyze one site-frequency spec-
trum under the scenario in Figure 3a.

APPLICATION TO DAPHNIA POPULATION-GENOMIC
DATA
We applied epos to the SFSs from eight Daphnia pulex populations, an
emerging model system in population genomics. A practical issue in
any population-genomic study with moderate sequence coverage per
site is that not all sites are scored in identical numbers of individuals. In
this particular study, for each population 8 to 14 SFSs were available for
sample sizes of 40,000 to 2,400,000 nucleotides (Table 1), with separate
analyses performed for fourfold redundant silent sites in protein-
coding genes and internal intron sites known to behave in a nearly
neutral fashion (Lynch et al. 2017). Although the individuals used
within these within-population analyses were largely overlapping, the
sites employed were fully nonoverlapping. The numbers of individuals
associated with each SFS range from 62 to 93.

This type of partitioning is required because the SFS theory involves
discrete distributions, i.e., frequencies from different sample sizes
should not be amalgamated into a single pooled SFS. However, such
replication in analysis also provides some guard against sampling
variance issues. For each of the samples, 10,000 bootstraps of the
SFS were performed to generate a median demographic-history
estimate, assuming a mutation rate of u ¼ 5:7 · 1029 per site per
generation (Keith et al. 2016). The final demographic-history esti-
mates for each population are then given as the means of separate

n■ Table 1 The site-frequency spectra analyzed in this study.
Details on data acquisition can be found in Maruki et al. (2019)
For each population, 8 to 14 SFSs were used, with a range of
numbers of sampled individuals and nucleotides as noted in the
text

Population
Number
of SFSs

Sample
Sizes Nucleotides

CHQ 8 90 to 93 148,485 to 2,386,879
KAP 14 72 to 78 111,372 to 893,885
LPA 8 83 to 86 46,126 to 449,970
LPB 10 80 to 84 122,659 to 984,400
NFL 8 86 to 89 135,090 to 1,933,077
PA 12 62 to 67 63,013 to 101,901
POV 8 68 to 71 62,784 to 2,344,877
TEX 12 66 to 71 204,372 to 480,031

Figure 4 Estimated demographic history of eight
Daphnia pulex populations, measured as the means
of the medians (thick black lines) of the replicated
10,000 bootstrap estimates derived for the number of
samples noted in Table 1. Deviations of single standard
errors of the means are given as red and blue dashed
lines.

216 | M. Lynch et al.



median estimates (Figure 4), and a further summary mean over all
populations is given in Figure 5.

Although there are significant differences among populations, these
analyses suggest a fairly consistent demographic history among all
populations (focusing on an order-of-magnitude time scale). From
� 105 to 3 · 106 generations in the past, Ne was almost always in the
range of 0.5 to 2:0 · 106, with little evidence of dramatic changes. All
populations exhibit evidence of a twofold or so decline in Ne in the
very recent past, followed by an interval of population-size expansion
around 20,000 generations ago (Figure 5). Assuming five to ten gener-
ations per year, these recent demographic shifts would represent post-
Pleistocene changes, with the point of initiation of population-size
expansion being 2,000 to 4,000 years ago (roughly corresponding
to the Neopluvial, a period of wetter and cooler climate in North
America). The ending points in the demographic profiles (� 3 · 106
million years ago) fall in the mid-Pleistocene. Influences from
European settlement, deforestation, and agriculture would date
no further back than 5,000 generations, and are not discernible.

Finally, the relationships between the mean Ne of SNPs and their
average age is given for each population in Figure 6. The left panel
provides an example of the variation among sample-size classes for one
particular population (with each point representing a particular SFS
class for a particular number of individuals scored). The right panel
summarizes the average results for each population as simple first- or
second-order polynomial least-squares regressions. The main point
again is that these Daphnia populations do not exhibit major demo-
graphic shifts across allele-frequency classes, with the population aver-
age Ne associated with SNPs of all ages almost always falling in the
range of 800; 000 to 3; 000; 000:

Data availability
The details on data acquisition, curation, and deposition appear in
Maruki and Lynch (2019); the FASTQ files of the raw-sequence data
are publicly available via the NCBI Sequence Read Archive (accession
number SRP155055). Supplemental material available at figshare:
https://doi.org/10.25387/g3.10265867.

DISCUSSION
Themethods developed herein provide amodel-independentmeans for
estimating the past demographic history of a sample, using information
on the frequency distribution of nucleotide sites assumed to behave in a
neutral to nearly neutral manner. The approach taken assumes that
changes in population size occur only at specific points in a genealogy,
i.e., at the times of average occurrence of coalesence events. This, of
course, will never happen precisely in any natural population.However,
as the times of coalescent events vary widely among genealogies, such
granularity can be expected to average out. Moreover, the approach
taken does provide an increasingly fine dissection of the overall time
scale under evaluation with increasing sample size (n). So as shown by
Liu and Fu (2015) and herein, the method has the potential to closely
approximate the more continuous patterns of population-size changes
that likely occur in nature.

In the proposed method of estimation, Epos simply starts with an
assumption of constant Ne, and then progressively searches for points
of change in Ne that, when invoked, yield significant improvements in
the likelihood of the observed SFS data in a stepwise manner. Appli-
cation of the bootstrap yields a further smoothing of the output esti-
mates as well as confidence intervals on the overall pattern. Further
smoothing is obtained by partitioning the SFS data into classes differing
in sample sizes (or from different classes of sites, such as fourfold re-
dundant codon sites vs. internal intron sites, both of which behave in a

nearly neutral fashion). SFS sample-size variation will generally be the
rule in low-coverage population-genomic sequencing data, where some
individuals will have inadequate sequence at random sites.

The theoretical basis of the methods described herein is the same as
that adopted by Liu and Fu (2015), although we have derived a number
of extensions. In addition, the estimation procedures embodied in Epos
deliver advances over the pioneering work of Liu and Fu (2015) in a
number of ways. First, by using a Newton method for maximizing the
likelihood rather than a (slow) genetic algorithm for optimization, the
overall algorithmic approach is considerably more efficient, improving
computational speed by over an order of magnitude without sacrificing
accuracy in estimation (and in some cases apparently improving it).
Second, Epos is capable of an exhaustive search for the best-fit demo-
graphic scenario, up to a number of steps specified by the user. Under
this exhaustive search model, in adding a new breakpoint to the de-
mography, each step in the iterative fitting re-evaluates the positions of
all preceding breakpoints and their flanking Ne estimates. Third, epos
returns estimates on the average ages and Ne (and sampling errors) of
alleles within different frequency classes.

One potential concern with our method is its reliance on a com-
posite-likelihood approach that ignores the nonindependence of linked
SNPs. There are two reasons to believe that this is a minor issue with
respect to the final analyses. First, most organisms have ten or more
chromosomes, so only a minor fraction of pairs of loci are even on the
same chromosome, and even a smaller fraction are within the� 106 bp

Figure 5 Average pattern of demographic history over the entire
D. pulex metapopulation, plotted on the linear and logarithmic time
scale, with deviations from the mean given as single standard errors
among the profiles for each of the eight populations.
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where linkage disequilibrium is likely to be significant. Second, our
simulation studies on algorithm performance, which generated data
based on a recombining chromosome and then applied the composite
likelihood, did indeed yield results consistent with simulated demog-
raphies. Although desirable, full-likelihoodmethods allowing for linked
loci would be enormously computationally demanding, but more im-
portantly would require detailed information on chromosomal map
structures, which are available for few species.

Like all polymorphism-based methods, our approach is expected to
become increasingly unreliable at very distant times in the past, owing
to the increasing granularity of the coalescent process, and the fact that
few polymorphisms are expected to survive for more than 4Ne gener-
ations. In addition, the ability to estimate very recent population-size
changes is a function of the sample size, as there can be no power to
estimate a span of time during which there is essentially zero chance of
a de novo mutation appearing in a sample.
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APPENDIX

Results at various intermediate steps had to be derived before arriving at the main results of the text, some scattered in the prior literature
(e.g., Janson and Kersting 2010; Dahmer and Kersting 2015). Here we summarize things in one place to make the overall approach
more transparent.

Probability distribution for external branches.
By definition, singletonmutations exist only on external branches, which always start at level k ¼ n in the coalescent and can end at levels

k ¼ n2 1 to 1, where n is the sample size. These locations denote the consecutive coalescence events across the tree (with k ¼ 1 denoting
the base of the genealogy). We wish to determine the probability distribution of branch lengths in units of coalescence events across the
tree, with Pn;kð1Þ denoting the probability that an external branch (starting at level n) ends at level k. This can be accomplished by letting
Sn;k denote the probability that a singleton branch descends to at least level k without having been absorbed by a coalescence event. By
definition, Sn;n ¼ 1, and

Pn;kð1Þ ¼ Sn;kþ1 2 Sn;k: (A1)

Sn;k is the fraction of singleton branches extending down the tree until at least level k; whereas Pn;kð1Þ denotes the fraction of all singleton
branches terminating at level k:

Toobtain theprobabilityofaparticular externalbranchsurvivinguntil thefirst coalescenceevent across the tree, note that twodrawsmustbemade
without replacement from the n initial branch tips. The probability that neither draw involves the focal branch tip is

Sn;n21 ¼
�
12

1
n

��
12

1
n2 1

�
¼ n2 2

n
: (A2a)

The probability of the focal branch tip continuing to survive the next coalescence event (i.e., not being drawn) is obtained by noting that there are
now n2 1 possible draws,

Sn;n22 ¼ Sn;n21 �
�
12

1
n2 1

��
12

1
n2 2

�
¼ ðn2 2Þðn2 3Þ

nðn2 1Þ ; (A2b)

which generalizes to,

Sn;n2x ¼ ðn2 xÞðn2 x2 1Þ
nðn2 1Þ : (A3)

Substituting into Equation (A1) yields the general expression for a singleton branch terminating at the xth coalescence event in the tree,

Pn;n2xð1Þ ¼ 2ðn2 xÞ
nðn2 1Þ: (A4)

Probability distribution for internal branches
The situation is more complicated with internal branches, which have variable starting and ending points, and also vary in number among

alternative tree topologies.However, progress ismadepossiblewith a result fromDahmer andKersting (2015), which states that for a sample of sizen
the expected number of segments of order r present at level k (just below the coalescence at this point) is

WkðrÞ ¼
kðk2 1Þ
n2 r

Yr22

i¼0

�
n2 k2 i
n2 12 i

	
¼
�
kðk2 1Þ
n2 r

�
� ðn2 kÞ!ðn2 rÞ!
ðn2 k2 r þ 1Þ!ðn2 1Þ!; (A5)

for k# ðn2 r þ 1Þ, andWkðrÞ ¼ 0 for k. ðn2 r þ 1Þ. This result can also be obtained by extrapolating Equation (14) in Fu (1995). Again note
that k ¼ n denotes the branch-tip level, k ¼ n2 1 denotes the first coalescence event in the sample, and k ¼ 1 denotes the base of the genealogy
(the final coalescent), so that starting points (nearer the branch tips) have higher integer values than ending points.

From this expression, it is possible to deconvolute the expected number of internal branches initiating at level k; BkðrÞ, by noting the birth-death
process involving segments of order r as one descends down the tree,

WkðrÞ ¼ ½Wkþ1ðrÞ � sk� þ BkðrÞ; (A6a)

where

sk ¼
�
12

1
kþ 1

��
12

1
k

�
¼ k2 1

kþ 1
; (A6b)

is the probability that a particular group at level kþ 1 is not a participant in the next coalescence event. Upon rearrangement, and substitution
from above,

BkðrÞ ¼
r2 1
n2 k

�WkðrÞ: (A7)

The highest level for a nonzero value of this birth rate is n2 r þ 1, and thereafter 0,BkðrÞ, 1, except for the case of k ¼ n2 1 for r ¼ 2,
Bn21ð2Þ ¼ 1; as the first coalescence event always produces a doubleton.
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From the statistical properties of coalescence events arising subsequent to the origin of a segment noted above, the expected number of internal
branches of order r initiating at level k and ending at level k2 x, where 1# x# ðk2 1Þ; is

Bk;k2xðrÞ ¼ BkðrÞ �
2

k2 x þ 1
�
Y
i¼1

x2 1�
12

2
k2 iþ 1

	

                                        ¼ 2ðk2 xÞBkðrÞ
kðk2 1Þ ;

(A8)

which follows directly from Equation (A4).
The complete probability distribution for segment spans of order r is then

Pk;k2xðrÞ ¼
Bk;k2xðrÞ
BTðrÞ ; (A9a)

where the denominator is the expected total number of branches of order r in a genealogy

BTðrÞ ¼
Xn2rþ1

k¼2

BkðrÞ: (A9b)

None of the features in this entire section on the genealogical structure of a sample depend on demographic history, although the lengths of the
individual branches do.

Average age of a SNP
Griffiths (2003) obtained a general expression for the average age of a derived allele of arbitrary frequency under the assumption of constant

population size, given in generations,

E½Ar � ¼ 4Ner
n2 r

Xn
x¼rþ1

1
x
: (A10)

However, here we are concerned with themore complex issue of estimating the average age of SNPs when the population size is not constant. The
central challenge is that mutations of various orders can appear on branches that start and end at various levels in the tree, each of which may be
associated with a particular Ne:

Here, we take advantage of a derivation of Griffiths and Taveré (1998), their Equation (5.4), which requires a definition of pn;kðrÞ, the probability
that a random line, at the time there are k total lines in the coalescent, is subtended by r leaves in the tree. This is equivalent to WkðrÞ=k; with
simplification of Equation (A5) leading to

pn;kðrÞ ¼
k2 1
r

�

�
n2 k
r2 1

�
�
n2 1
r

�: (A11)

Letting tk be the time the coalescent has k lines (defined by Equation (2) in the main text), and Tkþ1 ¼ tn þ⋯þ tkþ1, then as Griffiths and
Tavare (1998) argue above their Equation (5.1), the expected age of an allele arising on a branch when the coalescent has k lines, is Utk þ Tkþ1,
where U is a uniformly distributed on ½0; 1� independent of all other random variables.

To obtain the moments of the ages, we take advantage of a derivation of Griffiths and Taveré (1998), their Equation (5.4),

E½Aj
r� ¼

1
jþ1

Pn
k¼2

�
n2 k
r2 1

�
kðk2 1ÞE

h
Tjþ1
k 2Tjþ1

kþ1

i
Pn
k¼2

�
n2 k
r2 1

�
kðk2 1ÞE½tk�

: (A12)

The denominator, which is independent of j, reduces toXn
k¼2

�
n2 k
r2 1

�
kðk2 1ÞE½tk� ¼ 4

Xn
k¼2

�
n2 k
r2 1

�
Nk: (A13)

For thenumerator, we just provide the results necessary for thefirst twomoments, which are required for estimates of themean and variance of the
average age. For j ¼ 1

E
�
T2
k 2T2

kþ1

� ¼ E

"
t2k þ 2tk

Xn
ℓ¼kþ1

tℓ

#
¼ 2

ð2NkÞ2�
k
2

�2 þ 2
2Nk�
k
2

� Xn
ℓ¼kþ1

2Nℓ�
ℓ
2

� ¼ 2
2Nk�
k
2

� Xn
ℓ¼k

2Nℓ�
ℓ
2

�;

which leads to
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1
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n2 k
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kðk2 1ÞE�T2

k 2T2
kþ1

� ¼ 16
Xn
k¼2

Nk

�
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For j ¼ 2,
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which leads to
1
3

Xn
k¼2

�
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r2 1

�
kðk2 1ÞE�t3k 2 t3kþ1

� ¼ 128
Xn
k¼2

Nk
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�Xn
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Nℓ
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Xn
m¼ℓ
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mðℓ2 1Þ: (A15)

Substitution of Equations (A13-15) into Equation (A12) leads to the expressions for the mean and variance in the main text,
Equations (6a,b).

Average Ne of a SNP
The results from the previous section summarize the average amounts of times that alleles spend at the various population sizes. For SNPs of any

order r, the averageNe experienced can be determined by weighting the relative time spent in each interval by the interval-specific population sizes.
From Griffiths and Taveré (1998), their Equation (5.1), we know that (6a) is in fact equivalent to

E½Ar� ¼
Pn

k¼2kpn;kðrÞE½tk � ðUtk þ Tkþ1Þ�Pn
k¼2kpn;kðrÞE½tk�

;

where U is uniformly distributed on ½0; 1�; see also the explanation below (A11). This formula can be interpreted such that the kpn;k-term is
proportional to the probability that the SNP of size r occurs within level k. The expectation in the numerator then gives the time how long in the
past this level happened. For estimating the averageNe of a SNPs in size r, we need to weigh this expectation by the experienced population sizes,
leading us to

E½Pr� ¼
Pn

k¼2kpn;kðrÞE½tk � ðUtkNk þ tkþ1Nkþ1 þ⋯þ tnNnÞ�Pn
k¼2kpn;kðrÞE½tk � ðUtk þ Tkþ1Þ�

:

For the denominator, note that

E½U� ¼ 1
2
; E

�
t2k
� ¼ 8N2

k�
k
2

�2 ¼
32N2

k

k2ðk21Þ2; E½Tkþ1� ¼
Xn
ℓ¼kþ1

4Nℓ

ℓðℓ2 1Þ:

So, we compute Xn
k¼2

kpn;kðrÞE½tk � ðUtk þ tkþ1 þ⋯þ tnÞ�

¼
Xn
k¼2

 
n2 k

r2 1

!
kðk2 1Þ

 
n2 1

r

!
r

 
16N2

k
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4Nk
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X
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n 4Nℓ
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!
¼
Xn
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4Nk

 
n2 k

r2 1

!
 
n2 1

r

!
r

Xn
ℓ¼k

4Nℓ

ℓðℓ2 1Þ:

The numerator is actually almost the same except for a different weight of the Nℓ’s, i.e.

222 | M. Lynch et al.



Xn
k¼2

kpn;kðrÞE½tk � ðUtkNk þ tkþ1Nkþ1 þ⋯þ tnNnÞ� ¼
Xn
k¼2

4Nk

�
n2 k
r2 1

�
�
n2 1
r

�
r

Xn
ℓ¼k

4N2
ℓ

ℓðℓ2 1Þ:

Dividing the last two displays then gives Equation (8).
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