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Lycopene attenuates LPS-induced liver injury  
by inactivation of NF-κB/COX-2 signaling
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Abstract: Aim: This study aimed to investigate the effect of lycopene on LPS-induced liver injury in mice and its 
mechanisms. Methods: Male C57bl/6 mice were randomly assigned to three groups: sham control group (S-C), LPS 
control group (L-C), lycopene treatment group (L-T). The mice from the L-T were treated with lycopene for 2 weeks, 
and the remaining mice with solvent. Afterwards, the mice from the L-C and the L-T received an intraperitoneal injec-
tion of LPS (20 mg/kg, dissolved in sterile saline), and the S-C mice were injected with sterile saline. Serum levels 
of alanine transaminase (ALT) and aspartate aminotransferase (AST) were determined for analysis of liver function. 
Levels of inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-6, malondialdehyde 
(MDA) content, and the activity of superoxide dismutase (SOD), were detected in serum. Liver tissues were oper-
ated for morphologic analysis and determination of protein by western blot. Results: Pretreatment with lycopene 
significantly decreased levels of ALT, AST, and TNF-α and IL-6, reduced MDA content, and increased activity of SOD 
in serum compared with the L-C mice. Lycopene increased expression of nuclear factor-erythroid 2 related factor 2 
(Nrf2), and reduced expression of cyclooxygenase (COX)-2, and phosphorylation of nuclear factor-kappa B (NF-κB) 
and extracellular regulated protein kinases 1/2 (ERK1/2). Conclusion: The results showed that lycopene attenuates 
LPS-induced liver injury by reducing NF-κB/COX-2 signaling by upregulation of Nrf2/HO-1 activation.
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Introduction

Sepsis is a severe clinical inflammatory res- 
ponse syndrome with high mortality [1]. Infec- 
tion caused by Gram-negative bacteria is a 
leading cause of sepsis. Various studies sh- 
owed that lipopolysaccharide (LPS), an impor-
tant component in cell wall of Gram-negative 
bacteria, triggers release of pro-inflammatory 
cytokines and reactive oxygen species (ROS) 
which damage to multiple tissues and organs 
including liver, heart, and kidney [2, 3]. Liver 
diseases are increasingly becoming a world-
wide problem, and there are still few effective 
treatments for severe hepatic failure. Increas- 
ing evidence confirmed that LPS plays a critical 
role in the development and progression of 
hepatic injury [4-6]. Clinical and animal experi-
ments suggested that level of LPS in plasma is 
associated with fibrosis and cirrhosis [7, 8]. 
Inflammatory mediators such as TNF-α and IL-6 
induced by LPS contributes to liver injury by 

depleting intracellular antioxidants, and caus-
ing lipid peroxidation and oxidative damage [9, 
10]. Antioxidants such as vitamin E and tocoph-
erols have been reported to play an important 
role in protection from oxidative damage [11].

Lycopene, a natural lipophilic carotenoid with 
no provitamin A activity, is synthesized in toma-
toes. Increasing evidence showed that lyco-
pene and its metabolites exhibit various impor-
tant biological functions [12-14]. Lycopene pos-
sesses many conjugated double bonds, so its 
ability to quench singlet oxygen is about 10 
times as much as that of vitamin E [15, 16]. 
Lipophilic lycopene affects lipid metabolism 
and protects lipid from peroxidation [17-20]. 
Further, lycopene reduces DNA oxidative dam-
age induced by ROS, and protects endothelial 
function from oxidative stress [21-23]. Animal 
studies showed that lycopene reduces synthe-
sis of C-reactive protein (CRP) secreted by the 
liver [24, 25], and inflammation [26, 27].
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Therefore, this study aimed to investigate the 
effect of lycopene on LPS-induced liver injury 
and the relevant mechanisms involving oxida-
tive stress and pro-inflammation.

Materials and methods

Materials

Lipopolysaccharide (LPS) was purchased from 
Sigma (St. Louis, USA). Elisa mice interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α) kits 
were purchased from Hefei Bomei Biote- 
chnology CO., LTD (Hefei China). SOD and MDA 
commercially available kits were obtained from 
Nanjing Jiancheng Bioengineering Institute 
(Nanjing, China). Primary polyclonal antibodies 
β-actin, HO-1, TNF-α, IL-6, COX-2, NF-κB, p-NF-
κB, ERK1/2, p-ERK1/2 and Nrf2 were pur-
chased from Bio Basic Inc., Canada.

Animals

C57bl/6 mice (20±2 g) were obtained from  
the Animal Experimental Center in Wannan 
Medical College. Animal experiments obeyed 
Chinese Community Guidelines for the use of 
experimental animals. The mice were raised 
with a standard animal facility for acclimatiza-
tion. After 1 weeks, the animals were randomly 
assigned to three groups (10 mice per group): 
sham control group (S-C), LPS control group 
(L-C), lycopene treatment group (L-T). The mice 
from lycopene treatment group received lyco-
pene treatment by oral administration for 2 
weeks, and the others were treated with sol-
vent. Then, the L-C and L-T mice were intraperi-
toneally injected with LPS (20 mg·kg-1) dissolved 
in sterile saline, and the S-C mice received ster-
ile saline. After 6 hours, animals were anesthe-
tized with sodium pentobarbital (50 mg/kg); 

plasma were detected by an automated bio-
chemical analyzer.

Determination of inflammatory cytokines

Levels of TNF-α, and IL-6 were determined by 
mice TNF-α and IL-6 specific ELISA kits accord-
ing to the instructions. Their levels were ex- 
pressed as ng/L, respectively.

Change of antioxidation

Activity of antioxidases such as superoxide dis-
mutase (SOD), and level of malondialdehyde 
(MDA) were measured by commercially avail-
able kits for assessment of antioxidant effects.

Morphological analysis

Livers fixed in formalin were dehydrated, and 
then embedded in paraffin. Embedded livers 
were cut into 5-μm sections, and mounted on 
glass slides. Sections were stained with hema-
toxylin and eosin. Morphological examination 
was performed under a light microscope at 
magnifications of 400×.

Western blot

Livers were dissected out, homogenized and 
lysed in lysis buffer (50 mmol/L HEPES, 2 
mmol/L EDTA, 100 mmol/L Na4P2O7, 100 
mmol/L NaF, and 1% Triton X-100) with 0.2 
mmol/L PMSF for 10 min. Homogenates were 
centrifuged at 13,000 g at 4°C. for 15 min. 
Equal amounts of protein were separated by 
SDS-PAGE, and then electrophoretically trans-
ferred to nitrocellulose membranes. Subse- 
quently, the membranes were incubated with 
primary rabbit antibodies including β-actin 
(1:1000), HO-1 (1:1000), TNF-α, IL-6, p-ERK1/2, 
ERK, COX-2, NFκB, p-NFκB, and Nrf 2 (Bio Basic 

Figure 1. Effect of lycopene on liver function. Activity of AST (A) and ALT (B) 
in serum was measured. Levels of AST (A) and ALT (B) are shown as means 
and standard deviation. **P<0.01 vs. S-C; $$P<0.01 vs. L-C.

the livers were collected, 
stored in liquid nitrogen and 
partially fixed with 4% neu- 
tral formalin. Blood samples 
were obtained for biochemi- 
cal analyses.

Estimation of liver function

To estimate the effect of Lyco- 
pene on liver function, aspar-
tate transaminase (AST) and 
alanine transaminase (ALT) in 
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Inc., Canada) dissolved in TBS-T (10 mmol/L 
Tis-HCl, 150 mmol/L NaCl, and 1% Tween 20) 
containing 5% nonfat milk overnight at 4°C, 
respectively. After incubated with goat anti-rab-
bit secondary antibody, the membranes were 
rinsed, and then used to detect the immunore-
active bands by visualization with DAB (Bio 
Basic Inc., Canada).

Statistics

Data were expressed as mean ± standard devi-
ation (SD). Statistical analysis was performed 
by SPSS16.0. Statistical difference was ana-
lyzed by Tukey’s test for unpaired data and one-
way Analysis of Variance (ANOVA), followed by 
Bonferroni’s post-test. A value of P<0.05 was 
considered significant.

ment improved architecture of tissue, and re- 
duced congestion in the L-T mice. Fewer inflam-
matory cells and intact lobular structure were 
observed in the L-T mice (Figure 2).

Effect of lycopene on oxidative stress

To assess the effect of lycopene on oxidative 
stress, we first determined level of MDA, and 
activity of SOD in serum. Level of MDA was 
increased in the L-C mice compared with the 
S-C (P<0.01) (Figure 3), while activity of SOD 
was reduced in the L-C mice (P<0.01) (Figure 
3). However, administration of lycopene prior to 
PLS decreased level of MDA, and increased 
activity of SOD compared to LPS alone (P<0.01) 
(Figure 3). Further, we measured expression of 
antioxidase such as HO-1, and observed that 

Figure 2. Observation of morphology of liver tissues. A. Sham control mice; B. LPS control mice; C. Treated mice 
with lycopene.

Figure 3. Improvement of lycopene on antioxidant effect. Activity of SOD (A) 
and content of MDA (B) were determined. Protein expression of HO-1 (C) was 
evaluated in liver tissues with western blot. Relative Level of HO-1 (D) was 
expressed as means and standard deviation. **P<0.01 vs. S-C; $$P<0.01 
vs. L-C.

Results

Lycopene attenuates LPS-
induced liver injury

Serum levels of AST and ALT 
were determined for assess-
ment of liver injury. Levels of 
AST and ALT in the L-C mice 
were significantly increased 
compared with the S-C (P< 
0.01) (Figure 1). Precondition- 
ing of lycopene decreased lev-
els of AST and ALT (P<0.01) 
(Figure 1).

To further investigate LPS-in- 
duced liver injury, morphology 
of liver tissues was observed. 
Liver histological sections of 
the L-C mice showed the infil-
tration of inflammatory cells, 
and necrosis of liver cells 
(Figure 2). Lycopene treat-
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expression of HO-1 was significantly increased 
in the L-T mice compared with the L-C (P<0.01) 
(Figure 3).

Lycopene decreases levels of pro-inflammatory 
cytokines

Pro-inflammatory cytokines play a pivotal role 
in LPS-induced liver injury, thus we investigated 
the effect of lycopene on production of pro-
inflammatory cytokines. The results showed 
that levels of pro-inflammatory cytokines such 
as TNF-α and IL-6 in serum were significantly 
increased in the L-C mice compared with the 
S-C (P<0.01) (Figure 4). Pretreatment of lyco-
pene reduced the increase in levels of TNF-α 
and IL-6 (P<0.01) (Figure 4). Second, expres-
sion of TNF-α and IL-6 in liver tissues was sig-
nificantly decreased in the L-T mice compared 
with the L-C (P<0.01) (Figure 4). 

Effect of lycopene on p-ERK1/2, COX-2, 
p-NFκB, and Nrf 2 protein expression

To further explore the mechanism of lycopene 
treatment in LPS-induced liver injury, we deter-

COX-2 and phosphorylation of NF-κB and 
ERK1/2.

Sepsis resulting from infection is a leading 
cause of mortality. Liver damage is a contribu-
tor of mortality caused by sepsis. LPS is found 
to play an important role in the pathogenesis of 
infection [28], and the study confirmed that a 
small dose of LPS led to fatal liver damage in 
mice [29]. LPS result in tissue injury by exces-
sive inflammation, the elevation of oxidative 
stress and mitochondrial impairment [30]. 
Küpffer cells activated by LPS by binding with 
Toll-like receptor 4 (TLR-4) can excessively re- 
lease pro-inflammatory cytokines and gener- 
ate a tremendous amount of ROS, which trig-
gers apoptosis of liver cells, even necrosis [31]. 
Therefore, oxidative stress and inflammation 
are involved in LPS-induced liver injury [2]. 
Some studies showed that various antioxid- 
ants can prevent LPS-induced liver injury and 
oxidative stress [2, 32-34].

Oxidative stress features an imbalance bet- 
ween oxidants and antioxidants such as exces-
sive consumption of antioxidants and overpro-

Figure 4. Effect of lycopene on inflammatory cytokines. Levels of TNF-α (A) 
and IL-6 (B) in serum were measured. Protein expression of TNF-α (C) and 
IL-6 (D) were determined in liver tissues by western blot. Relative levels of 
TNF-α (E) and IL-6 (F) were expressed as means and standard deviation. 
**P<0.01 vs. S-C; $P<0.05 and $$P<0.01 vs. L-C.

mined expression of COX-2 
and Nrf 2 protein, and phos-
phorylated levels of NF-κB  
and ERK1/2. The result show- 
ed that expression of COX-2, 
and phosphorylated levels of 
NF-κB and ERK1/2 were in- 
creased in the L-C mice com-
pared with the S-C (P<0.01) 
(Figure 5), while expression of 
Nrf 2 was reduced (P<0.01) 
(Figure 5). Pretreatment by 
lycopene increased expres-
sion of Nrf 2, and decreased 
expression of COX2 and phos-
phorylated levels of NF-κB and 
ERK1/2 (P<0.01) (Figure 5).

Discussion

In present study, we investi-
gated the effect of lycopene 
on LPS-induced liver injury. 
Our results that lycopene at- 
tenuated LPS-induced acute 
liver injury by reducing oxida-
tive stress and inflammatory 
response. Further, lycopene 
increased expression of Nrf2, 
and decreased expression of 
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duction of ROS [35]. Superoxide, one of the 
most common ROS, is transformed to hydro- 
gen peroxide catalyzed by SOD, then further to 
hydrogen peroxide to water by peroxidases 
such as catalase and glutathione peroxidases 
[36]. Depletion of antioxidant enzyme such as 
SOD, catalase and glutathione peroxidase re- 
sults in overproduction of ROS including su- 
peroxide, which damage macromolecules and 
increase lipid peroxide [37].

Evidence suggested that lycopene supple-
ments elevated activity of the antioxidant en- 
zymes, decreased lipid peroxidation, and at- 
tenuated hepatic steatosis [38, 39]. Further, 
lycopene and its metabolite regulated tran-
scription systems and cell signaling pathways 
[40]. In present study, our results showed that 
injection of LPS increased levels of AST and ALT 

TNF-α and IL-6 in liver. Previous study con-
firmed that lycopene attenuated inflammation, 
and reduced secretion of C-reactive protein 
(CRP) [24, 25].

It is well known that inflammatory response 
and oxidative stress are closely associated. It 
has been reported that ROS resulting from  
oxidative stress regulated inflammatory cyto-
kines by NFκB signaling [43]. NF-κB is a tran-
scription factor which can be activated under 
oxidative stress status. Activated NF-κB regu-
lated the encoding of various genes such as 
inflammatory cytokines, and chemokine throu- 
gh upregulation of COX-2, which lead to inflam-
mation [44, 45]. It has been reported that LPS 
regulates inflammatory response by activating 
NF-κB [46]. Mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase 

Figure 5. Regulation of lycopene on inflammation and antioxidant signaling. 
Protein levels of Nrf 2 (A) and COX-2 (B), and phosphorylated levels of NF-
κB (E) and ERK (F) were detected in liver tissues by western blot. Relative 
expression levels Nrf 2 (C) and COX-2 (D), and relative phosphorylation levels 
of NF-κB (G) and ERK (H) were expressed as means and standard deviation. 
**P<0.01 vs. S-C; $$P<0.01 vs. L-C.

(markers of liver injury) in 
serum, and the infiltration of 
inflammatory cells was obser- 
ved in section of liver tissues. 
Consistent with previous stu- 
dy, LPS treatment decreased 
activity of SOD, and increas- 
ed content of MDA. Lycopene 
pretreatment increased activ-
ity of SOD, and decreased 
content of MDA in serum. Fur- 
ther, lycopene increased ex- 
pression of antioxidant enzy- 
mes such as HO-1 in liver. 

Excessive release of pro-in- 
flammatory cytokines is im- 
plicated in various acute and 
chronic disease such as trau-
ma, sepsis, and chronic vas-
cular disease [41]. Pro-inflam- 
matory cytokines is involved  
in pathogenesis of acute and 
chronic liver injury [5]. In non-
alcoholic liver disease, pro-
inflammatory cytokines indu- 
ced by LPS aggravated liver 
injury by accelerating apopto-
sis of liver cells, and was 
closely associated with sever-
ity of liver injury [42]. Our stu- 
dy suggested that lycopene 
pretreatment decreased lev-
els of serum TNF-α and IL-6, 
and reduced expression of 
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(ERK) is involved in LPS-induced inflammation 
[47]. ERK activated by phosphorylation medi-
ates translocation of NF-κB to nuclear, and 
COX-2 [48, 49].

Cyclooxygenase 2 (COX2) is critical for regula-
tion of inflammation signaling, and regarded as 
the target of drugs. COX-2 can catalyze synthe-
sis of prostaglandins [50, 51], which play a vital 
role in various physiological processes [52]. 
Some work suggests that prostaglandins are 
involved in generation of inflammatory cyto-
kines [53]. HO-1, an antioxidant enzyme, can 
decompose heme into biliverdin, carbon mon-
oxide (CO), and free iron. Catalytic products of 
HO-1 such as biliverdin and CO have been dem-
onstrated to possess antioxidation [54, 55], 
and CO can reduce inflammatory response and 
apoptosis of cells [56, 57]. Further study 
showed that increased expression of HO-1 
attenuates oxidative stress damage to cells 
and tissue [58-60]. It has been reported that 
CO exerts anti-inflammatory effect by modulat-
ing inflammatory signaling including NK-κB, and 
attenuates LPS-induced inflammatory response 
through reduction of NK-κB [61, 62].

Nrf2 is a vital transcription factor which medi-
ates expression of various antioxidases includ-
ing HO-1 [63, 64]. Under oxidative stress, acti-
vated Nrf2 translocates into the nucleus, and 
modulates expression of antioxidant-related 
genes at transcriptional level [65]. Nrf2 plays a 
vital role in antioxidant defense systems by 
reducing inflammation and oxidative stress 
[66]. In this study, our data showed that lyco-
pene pretreatment increased Nrf2 expression, 
and decreased expression of COX-2, and phos-
phorylation of ERK and NF-κB. These findings 
suggested that the protective effect of lyco-
pene against LPS-induced liver injury may be 
associated with suppression of NF-κB/COX-2 by 
Nrf2/HO-1 activation.

In conclusion, our results suggest that lycopene 
protected liver against LPS-induced injury. 
Lycopene exerted its beneficial effect by reduc-
ing oxidative stress and inflammation damage, 
which may be associated with upregulation of 
Nrf2/HO-1 signaling pathway, and inhibition of 
LPS-activated inflammatory signaling (NF-κB/
COX-2). Although the exact mechanisms called 
for further elaboration, our results support a 
preventive effect of lycopene in acute liver 
injury.
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