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Chemogenetic profiling enables the identification of genes that enhance or suppress the phenotypic effect
of chemical compounds. Using this approach in cancer therapies could improve our ability to predict the
response of specific tumor genotypes to chemotherapeutic agents, thus accelerating the development of
personalized drug therapy. In the not so distant past, this strategy was only applied in model organisms
because there was no feasible technology to thoroughly exploit desired genetic mutations and their
impact on drug efficacy in human cells. Today, with the advent of CRISPR gene-editing technology and
its application to pooled library screens in mammalian cells, chemogenetic screens are performed
directly in human cell lines with high sensitivity and specificity. Chemogenetic profiling provides insights
into drug mechanism-of-action, genetic vulnerabilities, and resistance mechanisms, all of which will help
to accurately deliver the right drug to the right target in the right patient while minimizing side effects.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
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1. Introduction

A major goal of precision medicine is the development of selec-
tive anticancer drugs that effectively target tumors while minimiz-
ing the side effects associated with conventional chemotherapy.
Development of anticancer drugs and repurposing existing drugs
is often driven by identifying tumor-specific molecular alterations.
To understand these alterations and exploit them as drug targets,
it is necessary to study how they define a molecular context that
allows sensitivity or resistance toparticular compounds [1]. Integra-
tion of traditional genetic approaches with the newwealth of geno-
mic information frombothhumanandmodel organismsestablished
techniques by which drugs can be profiled for their ability to selec-
tively kill cells in amolecular context same as those in tumors. Such
profiling allows for identifying genes whose mutations produce the
desired therapeutic outcome, andusing that knowledge it is possible
to identify and validate new drug targets. In addition, this genetic
approach for drug discovery also allows us to use mutation as a
model of an ideal drug. Through gene knockouts, we can eliminate
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particular protein’s functions, genetically modeling a perfect drug
for that target. In this reviewwe focus on findings specific to chemo-
genetic methods; a similar report [2] includes additional informa-
tion about other experimental approaches, including affinity-
based and comparative profiling methods.

1.1. Chemogenetics in yeast

A1983 studydone in Saccharomyces cerevisiaewasoneof thefirst
chemogenetic experiments, characterizing the previously unknown
metabolic target of a therapeutic agent. Using one yeast strain and
existing yeast clone pool, Rine et al. isolated genes whose products
are sensitive to specific inhibitors: compactin, tunicamycin and
ethionine (targeting the unrelated biosynthesis pathways of sterol
biosynthesis, glycoprotein biosynthesis, and AdoMet biosynthesis,
respectively). The approach used in this studywas based on the pre-
mise that increasing the copy number of a gene increases the
amount of gene product [3]. In a landmark study describing genetic
approaches for discovering cancer drugs by Hartwell et al. [4], a
panel of Saccharomyces cerevisiae DNA damage response mutants
were used to test for genotype-dependent variation in drug
response. The increased sensitivity of specific yeast mutants to par-
ticular types of DNAdamage – e.g. the hypersensitivity of DSB repair
mutants to topoisomerase II poison mitoxantrone – supported the
then-revolutionary notion that chemogenetic screening could
match chemotherapeutic compounds to the tumorgenotypeswhere
they would be most effective.

Inducedhaploinsufficiency is another approachused for genomic
profilingof drug sensitivities. Saccharomyces cerevisiaewasagain the
model organismof choice due to the experimental tractability of the
yeast genome, which, coupled with a sequenced yeast genome,
allowed for the systematic construction of heterozygous deletion
strains in any essential or nonessential gene [5–7]. In this study Gia-
ever et al. tested six heterozygous strains carrying deletions in
known drug targets (HIS3, ALG7, RNR2, TUB1, TUB2, ERG11) for
induced haploinsufficiency. All of the tested strains showed induced
haploinsufficiency in the presence of at least one drug, defining a
class of genes that exhibit induced context-dependent haploinsuffi-
ciency. In the same study, drug-sensitivity profiling of 233 heterozy-
gous strains in the presence of tunicamycin revealed three drug-
sensitive loci:ALG7 (member of a protein glycosylation and a known
target of tunicamycin), YMR266W encoding a protein with homol-
ogy to the multi-facilitator superfamily and YMR007W encoding a
protein with unknown function [8]. Within a few years, the same
group developed a nearly complete collection of gene-deletion
mutants (96% of annotated open reading frames, �6000 genes) in
S. cerevisiae [9]. In this study the strains were constructed with
molecular bar codes to permit the identification and extraction of
individual mutant sensitivities from genome-wide competitive
growth in a single culture. In 2004, three other groups investigated
the sensitivity of large-scale yeast strains to small molecule inhibi-
tors or drugs [10–12]. Tucker and Fields investigated the sensitivity
of 4800 haploid yeast strains to ibuprofen, using a genetic-array-
basedmethod [10]. Using the same genetic arraying approach Baetz
et al. screened 5000 heterozygous yeast mutants for sensitivity to
dihydromotuporamine C, a compound used in preclinical develop-
ment as an inhibitor ofmetastasis at the time [11]. Lumet al. profiled
78 different drugs, the majority of which are approved by the FDA
and are considered to have well-characterized targets, in 3500
heterozygous yeast diploid strains using the barcoding method
[12]. Studies with such high-throughput chemical screening
genetic-array-based or barcoding methods presented approaches
to identify gene-drug and pathway-drug interactions on a previ-
ously unavailable scale. Hillenmeyer et al. performed1144 chemical
genomic assays on the yeast whole-genome heterozygous and
homozygous deletion pool to reveal the phenotypes for the
nonessential portion of the yeast genome (�80%). They have found
that 97% of gene deletions exhibited growth phenotype, suggesting
that almost all genes are essential for optimal growth in at least one
condition [13]. In parallel, Hoon et al. integrated three genome-wide
gene dosage assays (homozygous deletion mutants, heterozygous
deletion mutants, and genomic library transformants) to measure
the effect of small molecule in yeast. Their study confirmed that this
integrated approach improves the sensitivity and specificity of
small-molecule target identification, and allows the identification
of bothpotential targets and structure-activity relationships. Amore
detailed reviewof yeast chemogenetics can be found in similar stud-
ies [14–17].

Despite the advantages of yeast as a model organism for chemo-
genetic methods, it has limitations in identifying the molecular tar-
gets of drug candidates, and drug-gene interactions for use in
human cells. Many genes are not conserved between yeast and
humans, and conserved genes have frequently expanded into large
paralog families in mammals. In addition, as unicellular organisms,
yeast can’t recapitulate the complex cellular organization of a
human and are often a poor model for tissue-specific drug
response in higher eukaryotes. Thus, utilizing the findings and
technology from these yeast studies, efforts continued towards
developing adequate approaches in human cells.
1.2. RNAi, the first step toward chemogenetics in human cells

Within a few years of these seminal yeast studies, researchers
were using RNA interference (RNAi) in arrayed small interfering
RNA (siRNA) and pooled library short hairpin RNA (shRNA) to per-
turb gene expression in mammalian cell lines on a large scale. After
its discovery in Caenorhabditis elegans, RNAi showed great poten-
tial for use in guiding development of therapeutic agents in human
cells [18–20]. Identifying novel targets of a compound, novel path-
ways that affect the activity of a compound and potential biomark-
ers became available via screening small molecules (drugs,
chemical compounds) against siRNA libraries [21]. Screening
kinase and phosphatase libraries of siRNAs discovered genes
involved in resistance to standard-of-care chemotherapies [22–
24]. Large-scale shRNA libraries were also used for chemogenetic
screening to map out genetic modifiers that enhance or suppress
the activity of small molecules. With widespread use, however,
the method’s major technical shortcomings were revealed: incom-
plete target knockdown, poorly predicted off-target effects, and an
overall failure to appreciate or effectively model the experimental
noise left researchers – and drug developers – highly skeptical of
RNAi-generated leads [19,25–29].

One approach to overcome the low signal-to-noise problem
posed by early RNAi applications was to vastly expand the number
of reagents applied per gene. Whereas a typical pooled library
screen had used �5 shRNA hairpins targeting each gene
[22,30,31], Bassik et al. [32] developed an ‘‘ultracomplex” library
with 25 shRNA hairpins targeting each of nearly 19,000 genes. This
massive library, coupled with high coverage – each hairpin repre-
sented, on average, by over 1000 cells in the screen (‘‘1000� cov-
erage”) – was used to probe the cellular response to ricin toxin
in K562 chronic myelogenous leukemia (CML) cells. Pulsed treat-
ment with ricin at LD50 over several days revealed dozens of genes
in well-described pathways whose knockdown led to resistance or
sensitization to the poison. This ultracomplex shRNA screening
platform was subsequently used to identify the specific target of
a previously uncharacterized molecule. In November 2013,
Matheny et al reported that nicotinamide phosphoribosyl
transferase (NAMPT), a key enzyme in NAD biosynthesis, had been
identified as the primary target of compound STF-118804 by
screening MV411 acute monocytic leukemia (AML) cells with high



Fig. 1. CRISPR technologies to perturb gene functions in mammalian cells for pooled genetic screens. CRISPR loss-of-function technologies include A) CRISPR knockout (KO)
and B) CRISPR interference (CRISPRi). A) Cas9-mediated DNA cleavage is directed to the coding region of a gene by a single guide RNA (sgRNA) and it results in error-prone
repair by nonhomologous end joining pathways (NHEJ), and as a consequence of that gene function is disrupted (when indels and especially frame shifts are introduced). B)
Catalytically dead Cas9 (dCas9) is fused to a transcriptional repressor domain (e.g. KRAB) and as that is recruited to the transcription start site (TSS) of a gene specified by an
sgRNA, to repress its transcription. CRISPR gain-off-function technology is C) CRISPR activation (CRISRPa). C) dCas9 is fused with transcriptional activation domain(s) (e.g.
VP64) and recruited to a given gene’s TSS, to activate its transcription.

Fig. 2. Experimental design for a whole genome CRISPR screen. In a pooled library CRISPR screen, cells are transduced with a pooled CRISPR library. Successfully transduced
cells are sampled (T0) and grown for several doublings. At Tn cells are sampled again. Genomic DNA is extracted from T0 and Tn cells, PCR-amplified and sequenced using
NGS. To identify essential genes (i.e. genes whose knock-out results in a fitness defect) abundance of each sgRNA at Tn is compared to abundance of each sgRNA at T0.
Genome-wide CRISPR screens can be divided into two classes, positive and negative selection. In a positive screen, the goal is to identify those cells that survive post-selection
(e.g. drug treatment). The selective pressure must be strong enough that most of the cells die, removing their sgRNAs from the population, and only a small fraction survives.
After the surviving cells are collected, their plasmids are PCR-amplified and sequenced using NGS to identify their target gene. In a negative screen, the goal is to identify those
cells that do not survive the selection mechanism. Two sets of cells are infected, one set is subject to selection (e.g. drug treatment) while the other set serves as a non-
selected (i.e. non-treated) control. These two populations are then sequenced using NGS to determined which sgRNAs have been depleted by selection.
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doses of the compound and looking for synthetic lethal drug-gene
interactions [33].

Although the efficacyof these examples is impressive, the scale of
the experiments is daunting. The ultracomplex library is comprised
of 9 subpools of 55,000 shRNA hairpins each. To achieve 1000� cov-
erage requires the successful transduction of nearly 500 million
cells; at a starting multiplicity of infection (MOI) of 0.3, typically
used to ensure that most cells are infected by a single shRNA-
carrying virion, this implies a starting population 1.5 � 109cells
[20]. Given that cells are grown for at least twoweeks after transduc-
tion and selection, it is clear why suspension cell lines, which can be
propagated at high density, were preferred for these assays.



Fig. 3. Arrayed library CRISPR screen. Arrayed libraries are generated in multi-well plates, where each well contains constructs preparation targeting an individual gene or
genomic locus. Arrayed libraries are delivered to populations of cells grown in an arrayed format as well, preventing an individual cell from being transduced with multiple
sgRNAs with different targets. There may be selection steps and treatments involved, but this can vary depending on the screen. Phenotypes are identified rather than
necessarily being selected for (allowing for reverse genetic screening), since the sgRNA responsible for each phenotype is known based on well location in the original
annotated library. The final outcome is a ranked phenotypic measure for each sgRNA delivered in the screen.
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1.3. The CRISPR/Cas9 revolution and chemogenomic applications

The development of the ultracomplex RNAi library was largely
concurrent with the discovery of the CRISPR/Cas9 RNA-guided
endonuclease system and its adaptation to mammalian genome
engineering, reported in early 2013 [34,35]. Cas9 introduces a
double-strand break at a locus specified by a guide RNA, triggering
DNA endogenous repair mechanisms that in protein coding regions
frequently result in frameshift mutations that result in a loss of
function of the encoded protein [36] (Fig. 1A).

Within a year, two groups had reported using the CRISPR/Cas9
system for large-scale gene knockout studies in human cells
(Fig. 2). Wang et al targeted 7000 genes with 10 guide RNA (gRNA)
per gene in near-haploid KBM7 CML cells [37]. As a proof of con-
cept, they screened for survival in the presence of 6-thioguanine
(6TG), a compound that introduces DNA lesions that, in cells with
a functional mismatch repair pathway, causes cell cycle arrest. All
four genes involved in basis mismatch repair (MLH1, MSH2, MSH6,
PMS2) were identified with high specificity. A follow-up screen in
leukemic HL60 cells in the presence of etoposide, a topoisomerase
II poison, identified TOP2A as well as cell cycle checkpoint kinase
CDK6 as resistance genes.

At the same time, Shalem et al reported their own pooled
library CRISPR screen, with 65 k gRNA targeting 18,080 protein-
coding genes. Exposing transduced BRAFV600E A375 melanoma
cells to the BRAF inhibitor vemurafenib yielded enrichment for
known resistance gene NF1, as well as a handful of other genes
including NF2 [38]. Interestingly, in a subsequent whole-genome
screen for fitness genes in this same cell line [39], NF2 knockout
appears to confer a fitness advantage on A375 cells [40], consistent
with its known role as a tumor suppressor. These two proof-of-
concept studies solidified the CRISPR/Cas9 system as a sensitive
drug-screening tool for mammalian cells, at least for positive selec-
tion screens (Fig. 2). Moreover, both examples required a signifi-
cantly smaller footprint that the RNAi studies, with 70 k libraries
screened at 300–500� coverage (i.e. �35 � 106 cells grown and
passaged).

A subsequent head-to-head evaluation of ultracomplex RNAi
and small-scale CRISPR knockout by Deans et al, K562 cells were
transduced with either the shRNA library or a CRISPR knockout
library targeting the entire human protein-coding genome (�4
sgRNAs per gene and �2000 negative control sgRNAs). In both
screens, transduced cells were cultured in the presence or absence
of GSK983, a compound with broad-spectrum antiviral activity
[41]. This study determined that GSK983 inhibits dihydroorotate
dehydrogenase DHODH to block virus replication and cell prolifer-
ation, and additionally purported to demonstrate the mechanistic
difference between CRISPR and shRNA screens. A widely discussed
conclusion from this study was shRNA might better mimic the
effects of drug exposure, since shRNA induces only partial knock-
down of its targets and CRISPR-mediated knockout results in com-
plete loss-of-function alleles, and might therefore represent a
better screening approach for therapeutic targets. However, the
data for this conclusion are weak: the shRNA screen is performed
at extremely large scale, while the CRISPR screen is much lower
coverage using an early-generation library for which no overall
screen quality metrics are published. Indeed, in light of subsequent
data, it seems likely that the CRISPR screen showed a high false
negative rate due to experimental and/or informatic idiosyncrasies
rather than technological limitations.

Indeed just a few months later, a CRISPR-mediated chemoge-
netic interaction screen was reported that identified the specific
target of an uncharacterized compound, LB-60-OF61, that selec-
tively killed cancer cells [42]. A 90 k gRNA library was transduced
into adherent HCT116 colorectal cancer cells at 1000� coverage,
expanded, and split into three treatment arms. Control cells and
cells treated with the compound at IC30 and IC50 were cultured
for three weeks, with samples collected at three timepoints. This
comprehensive experimental design allowed not only the identifi-
cation of the target of the compound (NAMPT) but also the dynam-
ics of hits over time and across experimental conditions. Of
particular interest in this experiment is the clear demonstration
of decreasing signal to noise as library coverage is reduced from
1000� to 1/2, 1/4, and 1/8 of that target value. The same experi-
mental design also identified the endoplasmic reticulum-
localized signal peptidase as the target of cavinafungin, potent
and selectively active compound against the Zika virus [43].

Continued improvement in CRISPR reagent design [44,45] and
corresponding refinement of experimental methods has broadened
the applicability of CRISPR-mediated chemogenetic interaction
screening (Fig. 2). One recent study brings the arc of chemogenet-
ics full circle: a screen for genetic modifiers of PARP inhibitors to
identify the genetic backgrounds in which these new drugs might
be therapeutically useful. Chemogenetic screens using the 90 k
TKOv1 library [46] were carried out at �200� library coverage in
immortalized human retinal epithelial RPE1-hTERT cells, HeLa
cervical cancer cells, and SUM149PT cells originating from a
triple-negative breast cancer and carrying a hemizygous BRCA1 fra-
meshift mutation. Treatment with olaparib identified a high-
confidence set of 73 genes whose knockouts increase sensitivity
to PARP inhibitors. In addition to an expected enrichment for genes
related to homologous recombination and repair, this study also
discovered that mutations in all three subunits of the ribonuclease
H2 complex sensitized cells to PARP inhibition, and characterized
the novel role of this protein complex in DNA repair. Further
screens in three independent cell lines (293A, HCT116, and
MCF10A) treated with AZD6738, a highly selective inhibitor of
DNA damage checkpoint kinase ATR, identified genes whose loss
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makes tumor cells hypersensitive to ATR inhibition – and interest-
ingly also demonstrated RNASEH2 synthetic lethality [47]. When
results from these ATRi screens were compared with another set
of ATRi screens (VE-821 as the ATR inhibitor in HCT116, HeLa,
and RPE1 hTERT TP53�/�; AZD6738 as ATR inhibitor in RPE1 hTERT
TP53�/�) a set of 11 genes were found as hits in at least 4 out of 7
screens indicating that they are likely to modulate the response to
ATR inhibition independently of cellular context [48].
1.4. The role of CRISPRa and CRISPRi in chemogenetic screening

RNA-guided, CRISPR-mediated genome editing is not limited to
gene knockouts induced by Cas9 double strand breaks. A nuclease-
deficient Cas9 (dCas9) fused with a transcriptional activation or
repression domain can be targeted to a gene promoter to activate
(CRISPRa) (Fig. 1B) or inhibit (CRISPRi) gene transcription [49]
(Fig. 1C). Gilbert et al. developed massive CRISPRi and CRISPRa
libraries (206 k reagents targeting 20,898 transcriptional start sites
of 15,977genes) anddeployed themathuge scale (3750� coverage–
nearly 800 � 106 cells) – again in suspension K562 cells – to identify
fitness genes as well as toxin response. In the presence of a chimeric
diphtheria/cholera toxin, both CRISPRi and CRISPRa screens were
able to classify both sensitizers and suppressors of toxicity [49]. A
smaller-scale screen (1000� coverage) in the same cells with candi-
date chemotherapeutic agent rigosertib identified a microtubule-
destabilizing signature as its mechanism of action [50]. In parallel,
Feng Zhang and colleagues reported the identification of genes
whose overexpression in A375 melanoma cells gave rise to resis-
tance against a BRAF inhibitor, an independent validation of the
CRISPRa screening platform [51]. A study including all three
approaches (CRISPRko, CRISPRi and CRISPRa) in the context of
genome-wide screens to identify drivers of resistance and sensitiv-
ity to the BRAF inhibitor vemurafenib [52] yields results consistent
with the previously published datasets [23,28]. The CRISPRko and
CRISPRi data sets are highly similar, leading the authors to suggest
that aCRISPRimightbe amore sensitive screeningplatformfor some
targets and that it might overcome some of the flaws of CRISPRko
screens (e.g. sensitivity to copy-number amplification at the target
locus). The CRISPRa data set from this study overlaps substantially
with earlier mentioned CRISPRa data [51], and allows cross valida-
tion of hits identified from the CRISPRi screen. All three approaches
have their unique strengths and disadvantages, however, this study
emphasized that the precision of knock out screens is greatly
enhancedwhen combining CRISPRi andCRISPRa screens in the same
cells [52].

With CRISPR-based gene knockout and gene activation methods
available, a few groups combined CRISPRko and CRISPRa screens to
study gene functions, gene networks and uncover novel drug tar-
gets [53–55]. Prior developing and optimizing the orthogonal
CRISPR system, Boettcher et al. identified genes whose activation
can alter imatinib drug response. The study reports that main
advantage of the gain-of-function approach (activation screen)
used here, as opposed to more common loss-of-function approach,
is that genes exhibiting no or very low expression can also be
investigated. Indeed, out of 332 hits from this activation screen,
21% were not expressed in K562 cells in which the screen was per-
formed, suggesting that imatinib-responsive genes could be identi-
fied from genes with a broad range of expression levels [55]. Najm
et al. developed a lentiviral vector and cloning strategy to generate

high-complexity pooled dual-knockout libraries (Big Papi – paired

S. aureus and S. pyogenes Cas9 endonucleases for independent per-
turbations) to identify synthetic lethal and buffering gene pairs
across multiple cell types (A375, Meljuso, HT29, A549, 786O, and
OVCAR8). Identified hits include interactions between MAPK path-
way genes, apoptosis genes, AKT paralogs and BRCA and PARP
genes. To confirm the synthetic lethal interactions between anti-
apoptotic genes, including synthetical lethality between BCL2L1
and MCL1, and BCL2L1 and BCL2L2 (an interaction not observed
prior to this study) authors used various small molecule inhibitors
of these proteins. They confirmed the synthetic lethal interaction
between MCL1 and BLC2L by all combinations of drug-gene pertur-
bation, and further demonstrated synergy of a two-drug cocktail
[54]. A preprint from this year describes another study where sim-
ilar idea of combinatorial screens was utilized to develop a ‘one-to-
all’ approach which accommodates screening in isogenic mam-
malian cell lines without single cell cloning [56]. This approach is
based on two vectors: the first vector, to which authors refer as
‘‘anchor” vector, delivers S. pyogenes Cas9, and a guide compatible
with S. aureus Cas9; the second vector delivers S. aureus Cas9 and a
guide cassette compatible with S. pyogenes, which is used to deliver
the library of choice. A guide targeting gene of interest (‘‘anchor
gene” in their parlance, but frequently called ‘‘query gene” in the
yeast genetic interaction nomenclature), is cloned into the anchor
vector, and the population of cells expressing this vector is
expanded. The authors argue that no editing will occur after this
transduction because the single guide RNA of one bacterial species
is paired with the Cas9 endonuclease of the other. In the next step,
the library of choice is introduced, with the expectation that each
cell will generate approximately simultaneous knockout of both
the anchor gene and the gene targeted by the library. To test this
approach, authors used widely studied and characterized genes:
BCL2L1, MCL1, and PARP1 as anchor genes, and cell lines: Meljuso,
OVCAR8, A375 and Hap1. To validate detected genetic interactions
with anchor genes, authors have performed chemogenetic screens
using small molecules targeting these anchor genes (A-1331852
BCL2L1i, S63845 MCL1i, olaparib and talazoparib PARPi) (Table 1).

1.5. CRISPR-based chemogenetics for studying the noncoding genome

CRISPR-mediated chemogenics has also shown as successful in
studying the noncoding genome which can affect gene regulation
and disease. Sanjana et al. developed a CRISPR screen using
�18,000 single guide RNAs targeting >700 kilobases surrounding
the genes NF1, NF2, and CUL3, which were previously reported as
involved in BRAF inhibitor resistance in melanoma. They found that
noncoding locations that modulate drug resistance also harbor pre-
dictive hallmarks of noncoding function [57]. Another group devel-
oped a genome-scale CRISPR activation screen that targets more
than 10,000 long noncoding RNA (lncRNA) transcriptional start
sites to identify noncoding loci that influence a phenotype of inter-
est. They report 11 lncRNA loci that, upon recruitment of an activa-
tor, mediate resistance to BRAF inhibitor. Most candidate loci
appear to regulate nearby genes [58]. Both screens were done in
human melanoma A375 cells. In a more recent study a global
approach to integrate computational analysis of cell line pharma-
cogenomic datasets with functional CRISPRa screens targeting cod-
ing and non-coding genes was developed. As the authors state, this
approach aimed to uncover integrated mechanisms regulating nor-
mal cellular homeostasis and disease and was applied to identify-
ing functional lncRNAs modulating the cytotoxic effect of Ara-C, a
chemotherapy agent frequently used in the treatment of AML
patients. In addition to a number of coding genes and pathways
previously shown to regulate the response to Ara-C treatment,
their analysis also revealed a number of lncRNAs that influence
response to Ara-C, and a cis-regulation pattern by lncRNAs on their
adjacent cognate coding genes [59].

1.6. Arrayed CRISPR library screening

Another component of the genome editing toolbox is arrayed
CRISPR library screening (Fig. 3), which is enables reverse genetic



Table 1
Genome-Scale CRISPR-mediated Chemogenetic Screens in Human Cells.

Approach Guides/gene Genes Cell Type Phenotype [Reference]

CRISPRko (Sabatini) 10 7114 Near-haploid KBM7 and pseudo-diploid HL60
leukemia cells

Resistance to thioguanine and
etoposide [37]

CRISPko (GeCKO) 3-4 18,080 A375 melanoma cells Resistance to vemurafenib [38]
CRISPRko (TKOv1) 6 17,661 RPE1-hTERT, HeLa and SUM149PT cells Sensitivity and resistance to olaparib

[46]
CRISPRko (TKOv3) 4 18,053 293A, HCT116 and MCF10A cells Sensitivity and resistance to ATR

inhibition [47]
CRISPRko (TKOv1) 6/(TKOv3) 4 17,661 HeLa, HCT116, RPE1 hTERT TP53�/� cell Resistance to ATR inhibition [48]
CRISPRko (custom) 5 18,080 HCT116 cells Sensitivity and resistance to NAMPT

inhibitor [42]
CRISPRko (custom) 5 18,080 HCT116 cells Sensitivity and resistance to

cavinafungin [43]
CRIPSRi 10 49 K562 leukemia cells Sensitivity to AB toxin ricin [43]
CRIPSRi 10 15,977 K562 leukemia cells sensitivity to rigosertib [50]
CRIPSRa 10 49 K562 leukemia cells sensitivity to AB toxin ricin [49]
CRISPRa 10 15977 K562 leukemia cells Sensitivity to rigosertib [50]
CRISPRa 3 23,430 A375 melanoma cells Sensitivity to BRAF inhibitor (PLX-

4720) [51]
CRISPRi (hCRISPRi-v2) 5 19,050 A375 melanoma cells Resistance and sensitivity to

vemurafenib [52]
CRISPRa (hCRISPRa-v2) 5 19,050 A375 melanoma cells Resistance and sensitivity to

vemurafenib [52]
CRISPRko (GeCKOv2) 6 19,050 A375 melanoma cells Resistance and sensitivity to

vemurafenib [52]
CRISPRa up to 12 every coding and 4000 non-coding

transcripts
K562 leukemia cells Resistance and sensitivity to imatinib

[55]
CRISPRko total 18,315 noncoding loci surrounding CUL3,

NF1, NF2
A375 melanoma cells Resistance to vemurafenib [57]

CRISPRa 10 10,504 lncRNA TSS A375 melanoma cells Resistance to vemurafenib [58]
CRISPRa (Konermann et al.

2015) 3
23,430 coding isoforms MOLM14 AML cells Resistance to Ara-C [59]

CRISPRa 4 14,701 lncRNA genes MOLM14 AML cells Resistance to Ara-C [59]
CRISPRko (Brunello) 4 and

(Gattinara) 2
19,114 Meljuso and A375 melanoma cells, OVCAR8

ovarian cells
Resistance and sensitivity to A-
1331852 [56]

CRISPRko (Brunello) 4 and
(Gattinara) 2

19,114 Meljuso and A375 melanoma cells and OVCAR8
ovarian cells

Resistance and sensitivity to S63845
[56]

CRISPRko (Brunello) 4 19,114 OVCAR8 ovarian cells and A375 melanoma cells Resistance and sensitivity to olaparib
[56]

CRISPRko (Brunello) 4 19,114 Hap1 cells Resistance and sensitivity to
talazoparib [56]

CRISPRko (Gattinara) 2 19,114 A375 melanoma cells Resistance and sensitivity to
talazoparib [56]
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screens with a much wider utility in terms of phenotypic read-out
(including fluorescence/luminescence and image-based
approaches). Arrayed library screening is different from
approaches using pooled libraries. Arrayed libraries are usually
generated in multi-well plates, where each well contains one or
more guide constructs targeting an individual gene. Such a library
is delivered to cells grown in an arrayed format as well, opposite to
the pooled library screen, in which a pool of cells (all grown in a
single plate or set of replicate plates) is transduced with a pooled
library. The arrayed set up allows exploration of complex pheno-
types (e.g. subcellular localization of a fluorescent reported) rising
from a number of distinct cell perturbations in parallel [60–64].
This screening method hasn’t yet been widely used for exploration
and investigation of chemogenetic interactions, as the one-
perturbation-per-well approach does not scale well, but advances
in screen miniaturization could change these prospects rapidly.

1.7. Chemogenetics coupled with existing genomics data

Inter-institutional efforts to conduct a detailed genetic and phar-
macologic characterization of a large panel of human cancermodels
resulted in a large-scale pharmacogenomic studies such as the Can-
cer Cell Line Encyclopedia (CCLE) [65–68], Genomics of Drug Sensi-
tivity in Cancer (GDSC) [69–71], and The Connectivity Map (CMap)
[72,73]. These studies provide a potential to improve cancer treat-
ments by defining a landscape of genetic targets for therapeutic
development, identifying patients who respond to these therapies,
and developing a better understanding of the vulnerabilities of can-
cer. TheCCLE,whichpreviouslywasbasedonexpression, chromoso-
mal copy number, sequencing data and drug responses, recently
expanded the characterization of cancer cell lineswith RNA splicing,
DNA methylation, histone H3 modification, microRNA expression
and reverse-phase protein array data [65]. The CMap dataset is
established on transcriptional expression data to probe relation-
ships between diseases (cancer, neurological diseases, and infec-
tious diseases), cell physiology, and therapeutics. With the L1000
assay for generating a large scale of expression profiles, CMap was
enhancedwith�1million expression profiles resulting frompertur-
bations of multiple cell types [72]. GDCS resources include �1000
genetically characterized human cancer cell lines screened with a
wide range of therapeutic agents. Integration of drug sensitivity,
RNAi, and CRISPR datawith transcriptional expression profiles, copy
number aberrations andmutational profiles has a potential to reveal
candidate targets for cancer drugs and associated biomarkers.

1.8. CRISPR’s evolving role in chemogenetics

The relatively short history of chemogenetic screening in human
cells reflects the ongoing competition between reagent quality,
experimental scale, biological signal, and overall cost. The ultracom-
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plex RNAi library comprises some 500,000 reagents and requires on
the order of a billion cells. The most recent CRISPR chemogenetic
screens use libraries of �70,000 unique gRNA and required fewer
than 20 million cells per replicate. Importantly, vastly improved
reagent quality has allowed researchers to address the question of
generalizability, one of the fundamental shortcomings of in vitro
screening in cell lines. The latest generation of screens was per-
formed inmultiple cell lines reflecting varied genotypes and tissues
of origin, increasing confidence that the results of chemogenetic
screens are not specific to the backgrounds being tested.

Lack of standardization is still an issue, however. Experimental
designs include high-coverage, single-replicate experiments as
well as low-coverage, multiple-replicate approaches. Bioinformatic
approaches to analyzing screen data can be equally bewildering
(Box 1). CRISPR reagent design continues to improve rapidly, with
several groups tackling not only improved individual reagent
design as well as the next step, multiplex targeting of gene pairs
to identify genetic interactions [74–78].

Despite these issues, CRISPR-mediated chemogenomic screen-
ing clearly offers powerful insight into many aspects of drug
development. Results from CRISPR-mediated loss-of-function
screens for resistance against 6-thioguanine [37], etoposide
[37], and vemurafenib [38] recapitulated the known mechanisms
of action, validating the ability of such screens to identify targets
and genetic dependencies of known drugs. Genome-scale CRISPRi
and CRISPRa screens have been successful at identifying known
and new pathways and complexes governing the response toxins
[49]. Screens for both positive and negative regulators of drug
activity have identified specific targets of uncharacterized mole-
cules, and clarified the mechanism of action of drugs in develop-
ment. With CRISPR technology rendering the human genome
tractable, we have the tools to exploit genetics for drug discov-
ery directly in human cells, as envisioned more than two dec-
ades ago.
Box 1 MAGeCK [79] identifies essential genes from
genome-scale CRISPR-Cas9 knockout screens. This algorithm
uses a negative binomial model to test whether sgRNA abun-
dance differs significantly between treatment and control
samples, and ranks them based on the negative binomial p-
values. To rank positively or negatively selected sgRNA, gene
and pathway it uses a robust ranking aggregation algorithm
(RRA).

DrugZ [80] is an algorithm for identifying chemogenetic
interactions from CRISPR-mediated chemogenetic screens.
It calculates a fold change for each sgRNA in a treated sample
relative to a control sample. It then calculates a Z-score for
each guide using an empirical Bayes estimate of variance
from similar sgRNAs ranked by read counts in the control
cells. Guide level Z-scores are then combined into normalized
gene level Z-score.

RIGER [22] is a statistical approach to enrich for on-target
genes in an RNAi screen (considers the phenotypic results for
the multiple shRNAs targeting the same gene). It is based on
the gene set enrichment analysis (GSEA) methodology and
uses similar Kolmogorov–Smirnov (KS)-based statistics to
calculate gene scores from a dataset of shRNA construct
profiles.

STARS [44] is a gene-ranking algorithm for genetic pertur-
bation screens. Computing gene-level score uses the proba-
bility mass function of a binomial distribution based on the
total number of perturbations targeting a gene, the within-
gene rank of the perturbation, and a ratio of the rank of the
within-gene perturbation over the total number of perturba-
tions in the experiment.
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