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COPD, asthma, and cystic fibrosis (CF) are obstructive lung diseases with distinct pathophys-

iologies and clinical phenotypes. In this paper, we highlight recent advances in our under-

standing of relationships between clinical phenotypes, host inflammatory response, and

lung microbiota in these diseases. Although COPD, asthma, and CF largely have distinct lung

microbiota and inflammatory profiles, certain commonalities exist. In all three of these lung

diseases, and in healthy persons, anaerobic taxa that are typically associated with oral

microbiota (eg, Prevotella species, Veillonella species) are present in the airways and associ-

ated with increased host inflammatory response. Similarly, across all three diseases, members

of the Proteobacteria phylum are associated with more advanced disease. Finally, we highlight

challenges in translating these findings into advances in clinical care, including continued

knowledge gaps regarding the causal relationships between host inflammatory response, lung

microbiota, medication effects, and clinical phenotypes. CHEST 2019; 156(2):376-382
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Despite the range of ecosystems in which
microbes live,1-3 the healthy human lung
was thought to be an environment that
microbes do not colonize.4,5 Studies by
multiple groups demonstrate that the lower
airways are not sterile in the strictest
sense.6-9 Although the debate is still ongoing
as to whether this identified lung microbiota
is indeed a resident community,10 microbes
(whether resident or transient) within the
healthy lungs interact with host immune
response and can exacerbate or protect
against disease. In the setting of existing
inflammatory lung disease, lung microbiota
and host-microbiota interactions are also
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related to disease course; however, these
relationships are largely specific to the
underlying lung disease. In this paper, we
will review three inflammatory airway
diseases with distinct pathophysiologies:
COPD, asthma, and cystic fibrosis (CF). For
each of these three diseases, we will provide
a brief overview of some of the recent
advances and current challenges on the
relationships between lung microbiota, host
immune response, and disease
phenotype. We will highlight commonalities
and disparate findings between these
three distinct inflammatory airway diseases,
and finally we will relate these findings to
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future research directions in lung host-microbial
interactions.

COPD
Over the last 10 to 15 years, studies from multiple
laboratories have helped highlight the key correlations
between the lung microbiota and host response at all
stages of COPD.6,7,9,11-19 For tissue studies, few
differences in the microbiota can be identified between
smokers and nonsmokers or between mild and
moderate COPD.9,18 Similarly, studies on the BAL
bacterial community have identified few differences
between smokers, nonsmokers, and early COPD.7,11

Although Segal et al11 did not find a difference in the
microbial community between smokers, nonsmokers,
and early COPD, they did identify a strong relationship
between specific taxa (eg, Veillonella species, Prevotella
species) and BAL lymphocyte counts, BAL neutrophil
counts, and exhaled nitric oxide.11 In a separate study,
these same taxa also are strongly associated with a Th17
lung inflammation phenotype.12 Additionally, an
epithelial cell-derived signature of IL-17A inflammation
is associated with increased airway obstruction and
decreased corticosteroid responsiveness among smokers
with or without COPD.19 Because of the increased host
inflammation that is associated with Veillonella species
and Prevotella species, it is possible that these taxa could
be used to help classify individuals at higher risk of
progressing to later stages of COPD.

Lung tissue and bronchial brushing studies comparing
the microbiota between later stages of COPD and
control samples (either nonsmokers or smokers) have
consistently identified broad bacterial community
differences.6,9,13 A consistent finding across studies is an
increase of the Proteobacteria phylum and a decrease in
the Bacteroidetes phylum in late-stage COPD vs control
subjects.6,13 For the Proteobacteria phylum,
Haemophilus species were identified in both studies,
whereas for the Bacteroidetes phylum, the strongest
associated genus was Prevotella species.6,13 In the lung
tissue study, Haemophilus species relative abundance
was positively associated with a number of terminal
bronchioles and with an increased volume fraction of
neutrophils.13 Members of the Proteobacteria phylum
also have been known to shift in relative abundance at
the onset of COPD exacerbations14-17 and are impacted
differently, as are other members of the lung microbiota,
by type of treatment for exacerbation (eg, oral
corticosteroids vs antibiotics or both).14,17 Whether
inhaled corticosteroids (ICSs) alter lung microbiota
chestjournal.org
composition in COPD is not established, but there is
growing evidence of such in adults with asthma.46,48

Collectively, the observed associations between
Proteobacteria and COPD severity and exacerbations
confirm culture-based evidence of the importance of
specific Proteobacteria in COPD (eg, Haemophilus
species, Moraxella species). However, a more holistic
view of microbial community interactions during either
stable or exacerbating COPD has provided new
hypothesis-generating insights into the participatory
role of other microbiota, including non-Proteobacteria,
in COPD. Considering not only Proteobacteria but also
multiple other genera (eg, Prevotella species) could add
additional accuracy to disease progression risk
stratification. A recent study of exacerbations in COPD
and asthma, that identified three biological clusters
based on sputum microbiota (Proteobacteria and non-
Proteobacteria) and inflammatory mediator profiles, is a
promising early example of such an effort.20

Although the characterization of the microbiota in COPD
has been extensively studied, there are still some crucial
questions that need answering. First, small sample
numbers are an issue for several of the studies mentioned,
particularly earlier investigations. More recent studies of
microbiota dynamics in COPD exacerbation have
involved larger subject numbers. As an example, most of
these previous studies group COPD together as a single
disease entity. However, COPD is a heterogenous disease
and many different phenotypes exist, a facet increasingly
recognized among smokers with mild or no airflow
obstruction.21-23 Some questions that still need to be
studied include whether there are microbiota differences
between those with functional small airways disease
vs emphysema22 or by distribution of emphysema (eg,
panlobular, centrilobular), and between those with more
vs less chronic symptoms which impact quality of life and
exacerbation risk.23 Further studies in well-characterized
patient cohorts will lead to a better understanding of how
the microbiome contributes to the pathogenesis of COPD
and its heterogeneous phenotypes.

Research on the microbiota and COPD has arrived at a
critical juncture. There is no denying that the
observations coming from this line of research indicate
that lung communities may be involved in the
progression of COPD and that microbes identified in the
lung are associated with host inflammation.6,7,9,11-17

Although there is still a long way to go before the
microbiota can be used in a clinical setting, focusing on
studies that characterize the microbiota in different
phenotypes of COPD and how different taxa interact
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with the host inflammation that is associated with
worsening COPD stage could lead to the identification
of useful microbiota-based biomarkers.
Asthma
The role of microbiota in asthma pathogenesis has, until
recently, focused on the early life period and interactions
between microbiota (gut and nasopharynx), the
maturation of immune responses during infancy, and
subsequent risk for asthma during childhood. Earlier
epidemiologic studies conducted in Europe and the
United States were seminal in highlighting links between
differences in environmental microbial exposures and
the prevalence of allergic diseases including asthma.24-26

Numerous studies, using either culture-based or
molecular approaches to identify members of the gut
microbiota, subsequently described differences in
colonization patterns associated with asthma
development in children.27-30

Work using ex vivo approaches or animal models have
aimed to understand mechanisms through which an
altered composition of gut microbiota modulate innate
and adaptive immune responses resulting in allergic
inflammation.30-33 Findings have implicated a role for
various gene functions encoded in gut bacteria and
related metabolic products. These include bacterial
production of short-chain fatty acids, which may
attenuate the ability of bone marrow-derived dendritic
cells to initiate allergic responses.33 Additional metabolic
products of interest include the essential amino acid
tryptophan34 and histamine produced by certain
bacteria found elevated in the intestinal tract of some
subjects with asthma.35

The nasopharyngeal (NP) microbiome has garnered
increased attention recently because the nasopharynx is
easy to access, and also is the most proximal site of
interaction between respiratory epithelia and the
environment. Severe viral respiratory illnesses are a
strong risk factor for asthma development.36 Studies
from large pediatric cohorts have reported links between
an altered NP microbiota and frequency of, or symptom
severity in, viral illnesses that subsequently associate
with increased asthma risk.37,38 Although methods vary
between studies, observations have been consistent in
the finding that increased NP relative abundance of
particular genera (eg, Moraxella species, Haemophilus
species, Streptococcus species) is associated with asthma
or more severe respiratory illnesses in children.37,39-41

Notably, in both the gut or NP microbiomes of children,
378 Translating Basic Research Into Clinical Practice
differences associated with asthma risk have been
strongest in early infancy (< 3 months of age),30,37

highlighting the important dynamics of microbiota-
immune interactions in early life.

In contrast with the focus on asthma susceptibility in
children, studies of the respiratory microbiome in adults
with asthma have identified significant relationships
between microbiota patterns and features of chronic
asthma, including disease severity and other phenotypic
features.42-46 Asthma’s heterogeneity in adults is well
recognized, with many phenotypes described by
combinations of clinical and inflammatory
characteristics.47One consistent observation across studies
ofmore severe asthma is airway enrichment inmembers of
the Proteobacteria phylum, which represent many
potentially pathogenic respiratory bacteria such as
members of the Haemophilus, Moraxella, and Neisseria
genera.6,42,44,45,48 To an unclear extent, these findings may
reflect in part long-term treatment with ICSs, which are
immunomodulatory and may therefore change the
microbial pressure by the host. However, evenwith ICSuse
in the background, clinical features that distinguish severe
asthma phenotypes may associate with different patterns
of airway microbiota composition. These features include
stability of asthma control, obesity-associated severe
asthma, and airway inflammation patterns.44,46,49

Observations that airway inflammation patterns
associate with differences in airway microbiota
composition suggest the likelihood of bidirectional,
microbiota-host interactions that drive or at least
modulate asthma phenotype. For example, stratification
of patients by some biomarker of type 2 inflammation
(eg, blood or sputum eosinophils, fraction of exhaled
nitric oxide) is helpful and clinically informative, given
the options now available for type 2-directed biologic
therapies.50 Similar stratification of adult study subjects
with asthma by type 2 inflammation status (eg, type 2
high/low, eosinophilic/noneosinophilic) has revealed
correlative links between differences in airway
microbiota composition and the presence or absence of
type 2-driven inflammation. Among subjects with severe
asthma, those with a neutrophilic sputum inflammatory
phenotype49 or a Th17-driven bronchial epithelial gene
expression profile demonstrate a significantly different
airway microbiota (enriched in Proteobacteria)44,49,51

from those with predominantly eosinophilic sputum
inflammation. Additionally, these observations may not
be limited to severe asthma. A study on adults with mild,
well-controlled asthma (not on chronic ICS therapy)
identified similar stratification of differences in airway
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microbiota composition based on the presence or
absence of type 2-driven epithelial cell responses, with
patients with type 2 high asthma demonstrating
significantly lower airway bacterial burden.46

To summarize this section, studies over the last decade
have revealed novel associations between differential
patterns of respiratory microbiota composition and risk
for childhood asthma or phenotypic features of persistent
asthma in adults. These links are bolstered by evidence of
specific associations with airway immune response
patterns, particularly among adults with asthma, whether
categorized by pattern of sputum cellular inflammation or
epithelial cell gene expression. That there has been some
consistency across studies to date in observations of a
distinguishing bacterial microbiome signal in those with
low type 2 or less/absent eosinophilic airway inflammation
invites speculation that one or more subgroups of patients
with type 2 low harbor airway microbial dysbiosis as a
potential treatable trait.
CF
Over the past decade, studies of the CF lung microbiome
have expanded our understanding of the relationships
between CF lung microbiota, inflammation, and lung
disease. Alterations in lung microbiota and
inflammatory markers in CF begin as early as infancy.
Lung microbiota, as measured in BAL fluid, differs in
infants with CF compared with healthy infant control
subjects.52 Studies of BAL fluid CF animal models53 and
infants with CF54 demonstrate that inflammation can
occur in the absence of culturable bacterial infection,
and is associated with structural lung disease.54 Culture
independent studies have demonstrated that the CF lung
microbiome is highly diverse in infancy and the first
years of life55,56 and dominated by oral microbiota-
associated taxa (eg, Prevotella species, Veillonella species,
Streptococcus species, Fusobacterium species) that are
often not identified on routine bacterial culture.57 A
recent study of BAL samples from young children with
CF identified positive associations between these oral
microbiota-associated taxa, bacterial burden, and
increased host inflammation in young children with
CF.56 These findings emphasize that host-microbial
interactions begin early in life in CF and are related to
initiation of CF lung disease. These studies also
specifically suggest a role for oral microbiota-associated
taxa in the host-microbiota interactions leading to early
CF lung disease, and are consistent with studies
chestjournal.org
associating Prevotella species and Veillonella species
with lung inflammation in healthy adults.11,12

Throughout later childhood and early adulthood, the
diversity of CF lung microbiota decreases, as the relative
abundance of traditional CF pathogens (many of which
are members of the Proteobacteria phylum [eg,
Pseudomonas species, Burkholderia species,
Achromobacter species]) increases. Similar to findings in
COPD and asthma, relative abundances of members of
the Proteobacteria phylum in CF are positively
associated with levels of inflammation56,58,59 and
advanced lung disease stage.60

Although these general trends in CF lung microbiota in
association with age and disease stage have been
reproducible across multiple studies, other associations
between lung microbiota and clinical outcomes differ by
disease phenotype. For example, increased relative
abundance of anaerobic genera has been identified in
association with CF pulmonary exacerbation61; however,
this relationship is present only at early and intermediate
disease stages, and not at advanced lung disease. In addition
to disease stage, other phenotypes relevant for stratification
of analyses of CF lung microbiota include disease
aggressiveness (ie, rate of lung functiondecline in relation to
age),59,62 dominant taxa,63 and chronic antibiotic use.64,65

The interactions and causal relationships between CF lung
microbiota, host inflammatory response, antibiotic (and
other medication) use, and clinical outcomes in CF,
however, remain largely unclear.

Despite these existing knowledge gaps in the drivers of CF
lung disease, advances in our understanding of CF lung
microbiota, and relevant disease phenotypes, have
suggested potential applications wherein knowledge of the
lung microbiome may help advance clinical practice. For
example, the potential utility of CF respiratory microbiota
as a biomarker of treatment response was illustrated in a
study of lung function response to treatment with inhaled
aztreonam.64 In this study, patients with higher relative
abundances of certain taxa (Staphylococcus species,
Prevotella species, and Fusobacterium species) were less
likely to have improvement in lung function with inhaled
aztreonam treatment.64 Other studies have identified
changes in CF respiratory microbiota after initiation of
treatment with ivacaftor, suggesting the potential use of
respiratory microbiota as an outcome measure for
response to cystic fibrosis transmembrane conductance
regulator modulators.65,66 In the longer-term future, the
CF lung microbiome has potential utility as a prognostic
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marker for disease course and/or as a target for
intervention to prevent advancement of lung disease.

Conclusions
From this review, relationships between the microbiota
and host vary by the lung disease being studied;
however, many taxa are common to lungs in health and
disease. Across these three inflammatory airway diseases
with distinct pathophysiology, certain common host-
microbial interactions have been identified. For example,
members of the Proteobacteria phylum have consistently
been identified as enriched in individuals with COPD,
asthma, and CF vs healthy control subjects, and have
been associated with more advanced disease. Across the
three inflammatory airway diseases (and healthy control
subjects), the significance of certain anaerobic taxa (eg,
Prevotella species, Veillonella species) is less clear
because these taxa are found in states of health, or
milder disease phenotypes, but also can be associated
with host inflammatory response. Additionally, in
asthma and CF, there is rationale to suggest that early
life interventions on the microbiota could modulate
disease course; however, this has not yet been tested.

Moving forward, there also is common ground to be
found in advancing research on host-microbial
interactions in COPD, asthma, and CF. Although there
are similarities that have been reported across different
cohorts for all three diseases, there is a general lack of
studies that investigate the reproducibility or repeatability
of the currently published findings (eg, in pediatric studies
of asthma). Reproducibility or repeatability studies would
help illustrate the potential utility of deploying similar
research methodologies in different study populations.
Doing so would provide useful guidance into how to use
microbiota features as a phenotype or risk stratification
tool. One such approach could be the use ofmeta-analyses
of existing data. However, pursuing this approach may be
limited by the differences in methodologies and
nonuniform provision of data and necessary metadata
across studies. Additionally, there is the growing need to
determine how the clinical heterogeneity observed in
COPD, asthma, and CF inform our understanding of
host-microbiota relationships within these diseases,
which might change existing paradigms about their
pathogenesis. Some of these limitations may be solved
with the use of more longitudinal studies. The use of
longitudinal studies also may provide opportunities to
identify noninvasive microbiota-based biomarkers that
could have a large impact on disease prevention and
diagnosis. This paper focused specifically on the bacterial
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portion of the microbiota, and this does not mean that
viral or fungal lung community members do not play a
role in these diseases. Collectively, the lungmicrobiotas in
COPD, asthma, and CF are different from individuals
who do not have these diseases. However, knowledge gaps
exist regarding the interactions between lung microbiota,
host inflammatory response, and medication effects (eg,
steroids, antibiotics), and how these complex interactions
shape the pathogenesis of lung disease in COPD, asthma,
and CF. Ongoing research in these areas will determine
how much of the lung microbiota research in chronic
airway diseases can be translated into the clinic.
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