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Purpose: Computed tomography (CT) is an effective method for detecting and characterizing lung
nodules in vivo. With the growing use of chest CT, the detection frequency of lung nodules is
increasing. Noninvasive methods to distinguish malignant from benign nodules have the potential to
decrease the clinical burden, risk, and cost involved in follow-up procedures on the large number of
false-positive lesions detected. This study examined the benefit of including perinodular parenchymal
features in machine learning (ML) tools for pulmonary nodule assessment.
Methods: Lung nodule cases with pathology confirmed diagnosis (74 malignant, 289 benign) were
used to extract quantitative imaging characteristics from computed tomography scans of the nodule
and perinodular parenchyma tissue. A ML tool development pipeline was employed using k-medoids
clustering and information theory to determine efficient predictor sets for different amounts of par-
enchyma inclusion and build an artificial neural network classifier. The resulting ML tool was vali-
dated using an independent cohort (50 malignant, 50 benign).
Results: The inclusion of parenchymal imaging features improved the performance of the ML tool
over exclusively nodular features (P < 0.01). The best performing ML tool included features derived
from nodule diameter-based surrounding parenchyma tissue quartile bands. We demonstrate similar
high-performance values on the independent validation cohort (AUC-ROC = 0.965). A comparison
using the independent validation cohort with the Fleischner pulmonary nodule follow-up guidelines
demonstrated a theoretical reduction in recommended follow-up imaging and procedures.
Conclusions: Radiomic features extracted from the parenchyma surrounding lung nodules contain
valid signals with spatial relevance for the task of lung cancer risk classification. Through standard-
ization of feature extraction regions from the parenchyma, ML tool validation performance of 100%
sensitivity and 96% specificity was achieved. © 2019 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.13592]
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1. INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths in
the United States with an estimated 228,150 new diagnoses in
2019.1 Computed tomography (CT) is vital technology used
for lung nodule detection via an incidental finding, diagnostic
evaluation of symptomatic patients, and most recently as the
standard for lung cancer screening in nonsymptomatic
patients at high risk for lung cancer.2 This increased lung
nodule detection power comes with concerns related to
increased cumulative radiation exposure, risks from diagnos-
tic procedures for false-positive screens, and overdiagnosed
cancers.3 Guidelines such as the Lung Imaging Reporting
and Data System (Lung-RADS) criteria for lesions identified
with low-dose CT screening, and the Fleischner society
guidelines for incidental nodules use the size (and change in
size) of the lung nodule as a key indicator to determine
appropriate clinical follow-up procedures.4,5 However, this
approach does not include much of the information captured
in the CT data. Machine learning (ML) tools can utilize quan-
titative imaging features extracted directly from the CT scans,
such as nodule shape and texture, to differentiate between
malignant and benign disease states.6–20 The traditional focus
of imaging-based risk models for lung cancer has been on
nodule and border features with a range in area under the
receiver operator curve (AUC-ROC) performance (0.821-
0.962).7–13

The perinodular parenchyma has biological importance
with respect to cell migration, inflammation, and vascular-
ization. Morphological characteristics from this region
including spiculation and structural distortion of the par-
enchyma have been explored in the context of lung nodule
malignancy.21 Recently, improvements in lung nodule clas-
sification have been demonstrated through the inclusion of
perinodular parenchymal features using both machine
learning with AUC-ROC: 0.9386 and 0.91520 and deep
learning methods have indirectly examined parenchymal
inclusion with AUC-ROC of 0.993, 0.899, 0.946,
0.98413,17–19 but the degree to which parenchyma has been
included has varied. From the reported literature, it is not
clear where the optimal parenchymal radiological signal
resides, and how these features interplay with features
from the nodule and its borders.

In this study, we systematically investigate the optimal
regions of perinodular parenchyma to use for feature extrac-
tion and classification. With a focus on feature transparency,
we explore the trends within and between regions of perin-
odular parenchyma by nodule-standardized parenchymal
quartile bands. Finally, we compare the value this ML tool
could have on follow-up pathways versus the established
Fleischner Society guidelines in an independent validation
dataset.

2. MATERIALS AND METHODS

A systematic processing pipeline was developed to iden-
tify the optimal feature set for ML, and independent valida-
tion testing, as depicted in Fig. 1. ML tool development
involved the selection of a feature set and classifier training,
while validation was executed on the top performing candi-
date tool.

2.A. Study population

Subjects were retrospectively selected and included 363
pulmonary nodules, ≤30 mm in diameter (74 malignant, 289
benign) from three study data sources: the Genetic Epidemi-
ology of Chronic Obstructive Pulmonary Disease study
(COPDGene), the National Lung Screening Trial (NLST),
and the SPIE LungX Challenge.2,22,23 A subset of 50 subjects
from the current 363 cohort was previously used to demon-
strate the value of feature extraction from the lung parench-
yma.6 The criterion for inclusion in this study was based on
the availability of diagnostic information: malignant nodules
were confirmed on histopathology, and benign nodules were
diagnosed by histopathology or size stability or resolution on
more than 24 months follow-up. An independent validation
cohort of 100 (50 malignant, 50 benign) pulmonary nodules
from the INHALE study was used to test the top performing
ML tool.24 Malignancy was confirmed in this cohort through
histological confirmation accessed through the Detroit area
SEER registry, and benign cases selected to match size char-
acteristics. Further demographics and scanning parameters
for the two cohorts are described in Table I, pictorial repre-
sentation of a randomly selected sample of 24 nodules (12
malignant, 12 benign) is included in the supplemental online
content (see Figures S1–S4).

2.B. Segmentation of nodule and parenchyma

The nodule and parenchyma were semiautomatically seg-
mented into volumes of interest (VOI) using a modified ver-
sion of the proposed pipeline by Mukhopadhyay.25 The
nodule mask was grown using a binary image dilation to pro-
duce parenchyma quartile bands: 25%, 50%, 75%, and 100%
of the maximum in-plane diameter of the nodule (Fig. 1).

2.C. Development of ML tool

Here, we provide a brief summary of our method of select-
ing feature sets and training artificial neural network (ANN)
classifiers which has been previously described on breast
masses.26 Quantitative CT features were extracted from the
nodule and each of the parenchyma quartile volumes. These
included 14 volumetric measures of intensity histogram (V-
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IH), 136 volumetric Law’s energy measures (V-LTEM), 13
volumetric gray-level run length measures (V-GLRL), 13 vol-
umetric gray-level size-zone measures (V-GLSZ), 5 volumet-
ric neighborhood gray tone difference measures (V-NGTD),
and 17 measures of size and volumetric shape (V-SzSp)
including 11 border measures.6,27–31

Features were clustered based on pairwise correlations
using the k-medoids method resulting in k clusters with k
representative medoid features.32 Determination of k was
done by optimization of the average cluster silhouette with
the method adjusted to not penalize for clusters of one fea-
ture. From the reduced group of medoids, a set of predicting
features was selected using an objective function of informa-
tion theory measures. The final selected set size was deter-
mined from the information objective function maximum
point (IOmax). In cases where the IOmax was larger than one
predictor for every 5–10 cases the set size was capped at 72
features. The selected feature sets were used to train the
ANNs with performance analyzed through tenfold cross vali-
dation on a per subject basis. As random initialization of
weights in ANN development can affect classifier

performance, we further developed an ensemble of ten ANNs
for final prediction values. Individual ANNs were trained
using an in-house developed MatLab (Mathworks, Natick
MA) script using stochastic gradient descent and hyperbolic
tangent activation function following random initialization of
weights;33 this method which was adjusted to allow for trials
of randomly assigned hyperparameter values (momentum,
learning rate, error signal, hidden layer node number).

2.D. Performance and comparison

Tool performance was assessed using area under the recei-
ver operating characteristic curve (AUC-ROC) and area under
the precision-recall curve (AUC-PR).34 To determine the sta-
tistical advantage of one ML tool over another on a given
dataset, we employed Delong’s assessment of AUC-ROC.35

Risk thresholds were determined using Youden’s J Statistic
with McNemar’s test to compare differences in threshold mis-
classifications between ML tools.36 Statistical difference of
features between malignant and benign predictors was
assessed with either a two-sample t-test (for normally

FIG. 1. Overview of machine learning tool development and validation pipeline. The depiction of the varying amounts of parenchyma tested through the pipeline
(in quartile bands) include; (1) Nodule, (2) Margin [nodule, 25%], (3) Immediate [nodule, 25%, 50%], (4) Extended [nodule, 25%, 50%, 75%], (5) Extended+
[nodule, 25%, 50%, 75%, 100%]. Abbreviations: ML, machine learning; VOI: volume of interest, IOmax, information objective function maximum point; AUC-
ROC, area under the receiver operating characteristic curve.
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distributed features) or a Wilcoxon rank sum test (for non-
normally distributed features).37,38

3. RESULTS

3.A. Study population

The development cohort (N = 363) was diverse in subject
demographics, scanner parameters, and CT manufacturer;
statistical difference in subject demographics existed between
malignant and benign nodules (Table I). As this cohort was
established by combination of different parent academic stud-
ies, we explored the number of subjects that would have met
lung cancer low-dose CT (LDCT) screening eligibility crite-
ria based on age and smoking pack-years. Scanning parame-
ters in the development cohort were in accordance with
recommended protocols for high-resolution CT studies,39

with the exception of the NLST cases which was a LDCT
protocol (reconstructed thin slice thickness). The demograph-
ics and scanning parameters for the validation cohort
(N = 100) were more evenly matched between malignant and
benign cases (Table I).

3.B. Perinodular ML tool performance

The best performing ML tool included the nodule and
surrounding tissue from the 25%, 50%, and 75% quartile
bands (Extended ML). In the development cohort, the
Extended ML tool achieved an AUC-ROC of 1.0 — or
complete separation of the classes along the ensemble-
ANN decision boundary (Fig. 1) and achieved the highest
AUC-PR (0.945). The performance of the undivided, inclu-
sive (border-to-75%) ring was also calculated and achieved
weaker measures (AUC-ROC = 0.938, AUC-PR = 0.916).
On the independent validation cohort, the Extended tool
achieved an AUC-ROC = 0.965 (accuracy 98%, sensitivity
100%, specificity 96%). Delong’s comparison showed the
four ML tools incorporating parenchymal signal (Margin,
Immediate, Extended, Extended+) were statistically better
than the Nodule ML tool (P < 0.01); there was no statisti-
cal difference between the ML tools developed with
parenchymal features (P > 0.05). AUC-ROC graphs for the
five ML tools are presented in Figure S5. Pairwise McNe-
mar’s tests showed binary predictions from Youden thresh-
old in the Nodule ML tool were significantly worse

TABLE I. Demographics and scanning parameters of study cohorts.

Malignant Benign P-value

Development

Subjects 74 289 –

Study (COPDGene:NLST:LungX) 30:6:38 239:8:42 <0.001c

Age, yrs (mean � SD) 65.5 � 11.3 53.2 � 13. <0.001

Sex (Female: Male) 34:40 179:110 <0.001c

Pack-yearsa, yrs (mean � SD) 37.7 � 30.4 10.7 � 15.7 <0.001

Nodule size, mm Range (mean � SD) 5–30 (13.6 � 6.2) 4–30 (7.79 � 13.3) <0.001

Nodule size ≤ 15mm 50 240 0.005c

LDCT screening eligiblea (Yes: No) 33:3 69:178 <0.001c

Kilovoltage, kVp (range, mean) 120–120, 120 120–120, 120 1.00

Tube current, mA (range, mean) 60–440,b 339 40–500,b 330 0.89

Slice thickness, mm (range, mean) 0.6–1.3, 0.8 0.6–1.3, 0.7 0.97

CT manufacturer (GE:Philips:Siemens) 19:35:20 86:97:106 <0.001c

Validation

Subjects 50 50 –

Age (mean � SD) 64.0 � 10.7 62.5 � 10.9 0.456

Sex (Female: Male) 35:15 31:19 0.339c

Pack-yearsa, yrs (mean � SD) 33.5 � 30.1 30.1 � 23.6 0.505

Nodule size, mm Range (mean � SD) 5–30 (19.9 � 7.4) 9–30 (13.66 � 4.8) <0.001

Nodule size ≤ 15mm 17 35 <0.001c

LDCT screening eligible (Yes: No) 18:32 16:34 0.674c

Kilovoltage, kVp (range, mean) 120–120, 120 120–120, 120 1.00

Tube Current, mA (range, mean) 160–351, 237 160–386, 265 0.62

Slice thickness, mm (range, mean) 0.6–0.8, 0.7 0.6–0.8, 0.7 0.98

CT Manufacturer (GE:Philips:Siemens) 17:19:14 16:22:12 0.817c

COPD, chronic obstructive pulmonary disease; NLST, National Lung Screening Trial; SD, standard deviation; LDCT, low-dose computed tomography; GE, General Elec-
tric.
asmoking pack-year data were not available for the LungXChallenge.
blow-dose NLST scans included were reconstructed to higher resolution at time of acquisition.
cdiscrete (categorical) data significance performed with chi-square test.
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(P < 0.01) than the four ML tools incorporating parenchy-
mal signal; no statistically significant difference in threshold
binary predictions among the parenchymal ML tools was
found using McNemar’s tests (P > 0.05).

For the Extended and Extended+ ML tools the objective
function’s IOmax of 76 and 85 predictors respectively were
adjusted to 72 predictors to prevent overfitting (Table II). To
test if fewer selected features were needed to maintain this
boundary plane we built ensemble ANNs for each feature set
size between 2 and 72 predictors. Complete class separation
was achieved for all ensemble ANNs between 50 and 72
predictors (AUC-ROC = 1.0, AUC-PR = 0.945) for the
Extended ML tool. The remainder of the results will focus on
the Extended ML tool built using the top 50 features (Fig. 2).
At the suggestion of the editor, the methodology for develop-
ment and validation of the ML tool was repeated using the
LungX dataset as the blinded validation cohort. This achieved
a development AUC-ROC of 0.957 (COPDGene, NLST,
INHALE) and a validation AUC-ROC of 0.924 (LungX);
refer to Supplemental Text and Table S4, Figure S6 for full
results of this investigation.

3.C. Extended ML tool feature set

The 50 selected features included 13 V-IH, 15 V-GLRL,
12V-GLSZ, 6 V-NGTM, 1 B-ASC, and 3 V-SzSp. The
region from which the included features were extracted
included 19 nodular, 2 of band 25%, 12 of band 50%, and 17
of band 75%, such that the final model contained more fea-
tures extracted from the parenchyma than from the nodule. In
the development cohort, cutoff values of 0.38 from the recei-
ver operating characteristic prioritize the correct classification
of malignant cases (Fig. 2). Application of the Extended ML
tool in the independent validation cohort resulted in an accu-
racy of 98%, with no misclassification of malignant cases.

A complete list of the 50 selected features for the
Extended ML tool with mean, standard deviation, p-value
(from t-test or Wilcoxon rank sum test as appropriate),
and Pearson’s correlation with nodule size is included in the
online data supplement (see Table S1). The AUC-ROC val-
ues for each of the 50 features as independent predictors is
also included in the online data supplement (see Table S2).
The individual AUC-ROC for diameter was 0.594 (95% con-
fidence-interval: 0.526–0.663) and for volume was 0.542

(95% confidence-interval: 0.478–0.606); Delong compar-
isons of these individual predictors to the Extended ML tool
indicated statistical difference (P < 0.01).

To summarize, the first five features selected included two
features from the surrounding parenchyma quartile bands,
followed by three nodule features. Selected first was a V-
NGTD feature describing the coarseness of texture in the
75% parenchyma quartile band, which is a high order feature
where large values represent areas where the gray tone differ-
ences are small, therefore, leading to a high degree of local
uniformity in intensity. Malignant cases had lower values
(mean � SD: 0.005 � 0.013) than benign cases
(0.011 � 0.017) and this was statistically different
(P = 0.023). Next, feature selection chose a V-GLSZ texture
feature indicating large zone emphasis in the 50% parench-
yma quartile band. This feature multiplies each zone by the
size of the zone squared, thus high values imply large zones
within the texture. Again, malignant cases had lower values
(159.5 � 386.4), than benign (3087.1 � 8332.7), this was
statistically significant (P = 0.007). The third selected feature
was V-GLSZ extracted from the nodule indicating small zone
low gray-level emphasis with malignant cases having lower
values (0.026 � 00.23) than benign (0.036 � 0.025) at a
significant level (P < 0.001). This feature is larger when
there is an emphasis of small zones of low intensity within
the texture. The next two selected features were also nodule-
based being the entropy (V-IH) and high gray-level zone
emphasis (V-GLSZ). Figure 3 illustrates the order of feature
selection for the five ML tools (Nodule, Margin, Immediate,
Extended, Extended+), partitioned based on the intensity his-
togram, texture, or size/shape-based feature class. This figure
demonstrates how the inclusion of features from the parench-
yma affect the selection of features from the nodule.

Presented in Table III are the features used in the Extended
ML tool, which were selected from more than one location
(i.e., nodule and parenchyma, or different quartile bands of
parenchyma). Twenty three out of the 50 total features were
selected from more than one location. While these features
are extracted in the same manner, the spatial location of the
extracted region is effective. Large values in entropy features
indicate a large amount of randomness in gray levels of the
VOI. Full-width-at-half-maximum (FWHM) of the his-
tograms of parenchyma bands tended to be smaller in malig-
nant cases indicating a thinner, more peaked histogram

TABLE II. Development cohort performance results from differing amounts of surrounding parenchyma utilized.

ML tool IOmax HLSM AUC-ROC AUC-PR Accuracy Sensitivity Specificity

Nodule 22 8 0.919 0.891 89% 85% 92%

Margin 38 7 0.982 0.916 95% 90% 98%

Immediate 55 8 0.998 0.943 97% 93% 98%

Extended 76a(72) 8 1.000 0.945 100% 100% 100%

Extended+ 85a(72) 6 0.998 0.944 97% 93% 98%

ML, Machine learning; IOmax, feature set size from information optimization; HLSM, hidden layer size maximum; AUC-ROC, area under curve receiver operating charac-
teristic; AUC-PR, area under curve precision recall.
aIndicates IOmax beyond N/5 limitation, classifier set was curbed at 72 features. This highest performing ML tool is highlighted in bold.
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shape. The gray-level nonuniformity demonstrates while the
malignant nodule showed increased nonuniformity, the tissue
surrounding the malignant nodules tended to be lower than
their benign counterparts. Run length variance tended to be
lower in malignant cases indicating more homogeneous runs.
The small zone low gray-level emphasis demonstrated a con-
verse effect with malignant nodules tending to have lower
values while the tissue surrounding those nodules obtained a
mean higher than that of benign nodule’s surrounding tissues.
Similarly, the contrast in texture showed a converse effect
between nodule and parenchyma signal as this feature is high

in the surrounding malignant nodules indicating increased
amount of local variation in intensity. On the other hand, con-
trast texture tends to be lower in the nodule proper indicating
a smaller amount in local intensity variation. While there was
a size bias in the development cohort (malignant:
13.6 mm � 6.2, benign: 7.8 mm � 13.3, P < 0.001), the
maximum in-plane diameter was selected later (39/50) in the
Extended ML. In addition, on nodules with size ≤ 15 mm,
the Extended ML tool maintained high performance in both
development (AUC-ROC = 1.0, AUC-PR = 0.943) and vali-
dation (AUC-ROC = 0.998, AUC-PR = 0.877).

FIG. 2. The final Extended machine learning tool lung cancer risk prediction values result in complete division of malignant and benign lung nodule cases in
cross validation testing of the development cohort (363 cases), with a threshold of 0.38 as determined using the Youden’s J statistic. Output lung cancer risk pre-
diction values range from 0 (confidently benign) to 1(confidently malignant).

FIG. 3. Visualization of feature selection by category for each of the five candidate ML tools: (1) Nodule, (2) Margin [nodule, 25%], (3) Immediate [nodule,
25%, 50%], (4) Extended [nodule, 25%, 50%, 75%], (5) Extended+ [nodule, 25%, 50%, 75%, 100%. The shape of the point indicates the feature’s origin (nodule,
25% band, etc.), color shows which tool it was selected into, and distance from horizontal axis shows the feature selection prioritization (ranging from an IOmax
of 22 for the Nodule ML tool to a cap of 72 for the Extended + tool. Abbreviations: ML, Machine learning; V-IH, intensity histogram features; V-GLRL, gray-
level run length texture measures; V-GLSZ, gray-level size-zone texture measures; V-NGTD, neighborhood gray tone difference texture measures; V-SzSp, size
and shape.
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3.D. Fleischner society guidelines comparison

We analyzed the potential effect the Extended ML tool
would have on the follow-up response compared to the Fleis-
chner Society Pulmonary Nodule Follow-up Guidelines as
the INHALE study used for validation was not a lung cancer
screening cohort (see Table S3, which provides the results of
applying the guidelines to the validation cohort).24 These
guidelines are stratified by size and nodule composition, as
all nodules in this study were solid we can separate into three
categories: Category 1: CT in 12 months, Category 2: CT in
6–12 months, and Category 3: CT, biopsy, or positron emis-
sion tomography in 3 months. No size distribution criterion
was enforced on nodule inclusion in this study. As such, 97%
of the validation cohort fell into the third size-based category;
this differed from the development cohort where the split was
more balanced (Category 1: 23%, Category 2: 35%, Category
3: 41%). The Extended ML tool identified 50 malignancies
that would have required follow-up with a waiting period of
3–12 months.4 The Extended ML tool also recognized 48
benign lesions that would have required a 3-month follow-up
with imaging or biopsy. We demonstrate the potential accel-
eration of malignant follow-ups over the Fleischner guideli-
nes; for three malignant cases, the Fleischner Society
guidelines would have recommended a CT in 6–12 months
while the Extended ML tool would immediately send these

patients to treatment. Similarly, for an additional 45 subjects
with malignant nodules, the guidelines would have recom-
mended a follow-up in 3 months of imaging and/or biopsy.

4. DISCUSSION

We have developed a high performing lung nodule classi-
fication approach using radiomic features of the lung and sur-
rounding parenchyma extracted from CT data, and validated
the performance in an independent validation cohort. We dis-
covered that features from three separate perinodular
parenchymal quartile bands contributed various texture fea-
tures to improve the model performance, at a level that was
not achievable with one inclusive area of comparable size.

Other studies have explored the inclusion of perinodular
features from the surrounding parenchyma for classification
of lung nodules. A recent study comparing the performance
of human observers to a computer algorithm showed obser-
ver-interpreted broader characteristics such as spiculation,
and disruption of perinodular parenchymal architecture as
significant indicators of malignancy; however, subjective
assessment of these characteristics is associated with a high
degree of observer variability.21 Dilger et al, demonstrated the
potential of quantitative texture features for improved classifi-
cation in a cohort of 50 subjects, using bounding boxes for
capturing parenchymal signal approximately proportional to

TABLE III. Example feature trends in malignant nodules from Extended ML tool. For a complete list of selected features see online supplement (Table S1).

Group Feature Rank Trend

Malignant Benign

PMean SD Mean SD

V-IH Nodule Entropy 4 ↑ 7.38 0.93 7.25 1.03 0.326

50% Entropy 33 ↑ 8.58 0.72 8.03 0.74 <0.001

50% Maximum intensity 21 ↑ �220.4 56.3 �236.6 68.9 <0.001

75% Maximum Intensity 47 ↑ �235.0 97.1 �265.6 120.7 <0.001

50% FWHM 40 ↓ 0.04 0.05 0.06 0.04 <0.001

75% FWHM 19 ↓ 0.05 0.05 0.06 0.04 <0.001

V-GLRL Nodule GL Nonuniformity 29 ↑ 0.08 0.04 0.07 0.05 0.091

25% GL Nonuniformity 35 ↓ 0.05 0.04 0.06 0.04 <0.001

50% GL Nonuniformity 49 ↓ 0.06 0.02 0.08 0.04 <0.001

Nodule Run Length Variance 17 ↓ 1.8E-04 2.1E-04 2.5E-04 3.4E-04 0.035

50% Run length Variance 10 ↓ 2.4E-04 1.4E-04 2.8E-04 9.9E-05 <0.001

Nodule GLVariance Runs 24 ↑ 0.08 0.08 0.07 0.06 0.349

50% GLVariance Run 31 ↑ 0.04 0.06 0.03 0.04 0.014

75% GLVariance Run 14 ↑ 0.02 0.03 0.02 0.03 0.015

V-GLSZ Nodule GLVariance Zones 9 ↑ 0.06 0.02 0.05 0.01 <0.001

75% GLVariance Zones 37 ↑ 4.3E-03 1.9E-02 3.6E-03 1.1E-02 0.019

Nodule Large Zone Emphasis 34 ↓ 443.6 1089.9 1708.6 4862.4 0.360

50% Large Zone Emphasis 2 ↓ 159.5 386.4 3087.1 8332.7 0.007

Nodule Small Zone Low GL Emphasis 3 ↓ 0.03 0.02 0.04 0.02 <0.001

75% Small Zone Low GL Emphasis 50 ↑ 0.02 0.01 0.02 0.01 0.134

V-NGTD Nodule Contrast Texture 38 ↓ 0.41 0.87 0.50 0.61 0.018

50% Contrast Texture 42 ↑ 0.37 0.30 0.22 0.19 <0.001

75% Contrast Texture 8 ↑ 0.26 0.25 0.12 0.14 <0.001

FWHM, Full-width-at-half-maximum; GL, gray level; SD, standard deviation; V-IH, intensity histogram, V-GLRL, gray-level run length texture; V-GLSZ, gray-level size-
zone texture; V-NGTD, neighborhood gray tone difference texture.
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nodule size and whole lung density measures, with optimal
classifier AUC-ROC of 0.938. Huang et al. more recently
demonstrated using a cohort of 186 subjects from the NLST
trial that a ML tool system constructed with perinodular fea-
tures achieved an AUC-ROC of 0.915. Their published results
show a direct agreement with two nodule features selected in
the Extended ML: nodule entropy and nodule variance. Also,
two of their perinodular features selected from the small par-
enchyma ring surrounding the nodule appear similar to our
selected parenchyma quartile band features: surrounding vari-
ance (at 25%, 50%) and surrounding parenchyma maximum
intensity (at 25%, 50%, 75%).

The method of feature set selection used in our study is
not only independent of classifier performance but also pro-
vides separate insight into the connections among imaging
features and between characteristics and disease classifica-
tion. In this study, the top two features were extracted from
parenchymal bands distant to the nodule which provides evi-
dence that there are more global changes in the lobe charac-
teristics that imaging can detect. Decoding the spatial
relationship between radiomic features from the parenchyma
surrounding lung nodules, presents future opportunity to
advance ML tool analysis beyond a binary diagnosis. The
field of transport oncophysics is relatively new, but holds pro-
mise in understanding the mass transport differentials of
malignancy.40 With a dataset classified in these differentials,
the Extended ML tool could be used as an effective delin-
eator of mass transport.

This study did include some limitations. The malignant
tumors in both the development and validation cohorts were
larger on average than their benign counterparts creating a
size bias between the classes. While RECISTwas selected in
the final ML tool model (39/50), it was not predominantly
ranked, the other selected features were not highly correlated
with the nodule size. While this bias exists in both cohorts,
there was still a range in nodule size with some small malig-
nant cases and some large benign cases; if size was a driving
factor, we would have expected to see a greater disparity in
performance in these nodules particularly. The number of
malignant and benign nodules are matched in the validation
dataset, it is possible given a more population representative
validation dataset (more benign nodules) performance could
be altered. The CT data quality used in this study is not the
current clinical standard (LDCT or clinical chest with con-
trast) but rather a cohort of high-resolution multicenter trial
CT scans; however, it does demonstrate the performance
advantage in using high-quality scans and incorporating the
perinodular signal. Our group has previously demonstrated
the effects of LDCT and ultra-LDCT protocols on quantita-
tive lung and airway measurements.41 The ML tool here pur-
ports the diagnostic quality of features extracted from high
quality scans, of which most were not LDCT scans or sub-
jects eligible for LDCT screening. Further studies investigat-
ing the transference of these high-resolution features to
LDCT is needed to determine the performance of the
Extended ML tool on lower resolution scans. If transference
of features to LDCTwere to decrease the performance of the

ML tool, this would show the increased value of high-dose
CT for the characterization of disease and reduction of
repeated imaging studies would keep radiation dosage low.

We included only solid nodules in this study. In our valida-
tion cohort, only 34% would have met LDCT screening eligi-
bility, making comparisons to the Fleischner guidelines more
suitable for comparison than Lung-RADS. Assuming all fol-
low-ups complied with the guidelines and patients were seen
at the earliest follow-up point, the Extended ML tool would
reduce patient wait time on malignant nodules by a cumula-
tive 165 months, or on average 3.3 months per patient.

This study included a large dataset with histopathology
confirmed malignant cases. The dataset we have assembled
includes multicenter variability, indicative of generalizability
to a wide study population. As the algorithm is based only on
radiological features, the approach presents a pipeline inte-
gration advantage without the need for separate (and poten-
tially subjective) data extraction and inclusion. The high
accuracy of our approach can support clinician’s higher con-
fidence in risk assessment output and hence adherence to fol-
low-up in concordance with the assigned class. This presents
the potential to decrease the burden of unnecessary clinical
follow-up of benign lesions and the timely and efficient treat-
ment of those with cancerous lesions.

In conclusion, we demonstrate ML tool accuracy using
nodule standardized, perinodular parenchyma features. We
quantified the theoretical benefit the Extended ML tool could
have on the follow-up response compared to the Fleischner
Society Pulmonary Nodule Follow-up Guidelines in reducing
follow-up of benign nodules and expediting treatment of
malignant nodules.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1: Example centroid slice images of six benign cases.
Red arrow indicates location of nodule. See Figs. S2–S4 for
additional nodule images.
Fig. S2: Example centroid slice images of six benign cases.
Red arrow indicates location of nodule. See Figs. S1; S3–S4
for additional nodule images.
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Fig. S3: Example centroid slice images of six malignant
cases. Red arrow indicates location of nodule. See Figs. S1–
S2; S4 for additional nodule images.
Fig. S4: Example centroid slice images of six malignant
cases. Red arrow indicates location of nodule. See Figs. S1–
S3 for additional nodule images.
Fig. S5: Development Cohort Receiver-Operator Characteris-
tic (ROC) Curves. Curves were constructed using the R pack-
age “pROC” (Xavier Robin, Natacha Turck, Alexandre
Hainard, Natalia Tiberti, Fr�ed�erique Lisacek, Jean-Charles
Sanchez and Markus M€uller (2011). pROC: an open-source
package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics, 12, p. 77.).
Fig. S6: Receiver-operator curve for validation cohort
(LungX) on Extended ML-tool. Curves were constructed

using the R package “pROC” (Xavier Robin, Natacha Turck,
Alexandre Hainard, Natalia Tiberti, Fr�ed�erique Lisacek,
Jean-Charles Sanchez and Markus M€uller (2011). pROC: an
open-source package for R and S+ to analyze and compare
ROC curves. BMC Bioinformatics, 12, p. 77.).
Table S1: List of Extended machine learning tool selected
features with mean, standard deviation (SD), and p-value.
Pearson’s correlation of the feature with nodule size is also
shown as r-size.
Table S2: List of Extended ML tool selected features with
single-AUC calculated using “pROC” R package.
Table S3: Extended machine learning tool effect on follow-
up response.
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