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Salicylic acid (SA) is produced by the enzyme iso-
chorismate synthase (ICS) within the chloroplast and
is subsequently exported to the cytosol by the multi-
drug and toxic compound extrusion transporter EN-
HANCEDDISEASE SUSCEPTIBILITY5 (EDS5; Nawrath
et al., 2002; Serrano et al., 2013). The ICS pathway is the
major source of SA during plant responses to various
fungal and bacterial pathogens (Nawrath and Métraux,
1999; Wildermuth et al., 2001). Accordingly, Arabidopsis
(Arabidopsis thaliana) mutants defective in EDS5 are im-
paired in the SA-dependent establishment of resistance
against Pseudomonas syringae pv. tomato (Nawrath and
Métraux, 1999). Several SA-deficient eds5 loss-of-function
alleles have been established. Themutant alleles eds5-1 and
eds5-3 (Glazebrook et al., 1996; Nawrath andMétraux,
1999) are widely used in plant pathology research,
whereas eds5-2 (Volko et al., 1998) is less frequently
used. We discovered that the eds5-3, syp121-1 syp122-
1 eds5-3, and syp121-1 syp122-1 eds5-3 sid2-1 mutants
all carried an unnoticed second-site mutation in
FERULIC ACID 5-HYDROXYLASE1 (FAH1). The
eds5-1 mutant lines might harbor a similar mutation

in FAH1. Therefore, it is strongly recommended to test
all stocks of eds5-3 and eds5-1 for the FAH1 background
mutation before use.

eds5 mutants do not have an obvious growth phe-
notype. However, under UV-A illumination, leaves of
eds5-3 exhibit red chlorophyll fluorescence rather than
the blue fluorescence observed in wild-type (Col-0)
plants (Fig. 1A). UV-excited blue fluorescence is mainly
emitted by sinapoylmalate, which is a major phenyl-
propanoid in vacuoles of the leaf upper epidermis,
where it serves as a protective barrier against harmful
UV irradiation (Fraser and Chapple, 2011). eds5-1 mu-
tant seedlings grown from two different seed stocks (the
Mario Serrano laboratory stock and the Arabidopsis Bi-
ological Resource Center stock CS3735, donated by the
Frederick Ausubel laboratory) had similar levels of blue
fluorescence as the wild type (Fig. 1A), suggesting that
the defect in EDS5 expression did not cause the lack of
sinapoylmalate in eds5-3. NahG sid2-1 plants cannot ac-
cumulate SA due to a mutation in the ICS coding gene
ICS1/SID2 and transgenic expression of the SA hy-
droxylase gene NahG from Pseudomonas putida (Delaney
et al., 1994; Supplemental Materials and Methods S1).
Under UV, NahG sid2-1 was indistinguishable from
wild-type plants, underpinning again that SA deficiency
does not affect sinapoylmalate biosynthesis (Fig. 1A).

The eds5-3 mutant had a similar UV phenotype as
reported in the previously identified reduced epider-
mal fluorescence mutants, including the fah1-2 line
(Fraser and Chapple, 2011; Fig. 1A). fah1-2 has a de-
fect in FAH1, which encodes ferulate-5-hydroxylase,
an essential enzyme for the conversion of ferulate
into sinapates such as sinapoylmalate (Chapple et al.,
1992; Fraser and Chapple, 2011). Ultra-performance
liquid chromatography coupled to mass spectrome-
try (Tzin et al., 2012) was employed for molecular
phenotyping of the mutants (Supplemental Materials
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and Methods S1). Pathogen infection with avirulent
P. syringae pv tomato AvrRpm1 triggered the accu-
mulation of SA at 4 h and more pronouncedly at 24 h
after infection in wild-type and fah1-2 plants (Fig. 1B).
By contrast, the SA peak was reduced in eds5-3 and

eds5-1, and absent in NahG sid2-1. Sinapoylmalate
levels were high and not strongly regulated upon
pathogen infection in wild type, eds5-1, and NahG
sid2-1. However, sinapoylmalate was not detectable
in eds5-3 and fah1-2 (Fig. 1B). Collectively, these results
point to sinapoylmalate biosynthesis being disrupted in
eds5-3 independently of the EDS5 mutation.
This prompted us to consider whether an unknown

second-site mutation caused the unexpected eds5-3
phenotype. In more recent reports, Col-0 was given
as the background of eds5-3 (Nawrath et al., 2002;
Serrano et al., 2013). Only the initial publications,
describing the generation, identification, and charac-
terization of eds5 mutants, provided an explanation
for the sinapoylmalate deficiency of eds5-3. In these
publications, it was mentioned that eds mutants were
generated by EMS mutagenesis of fah1-2 rather than
Col-0 seeds (Glazebrook et al., 1996; Rogers and
Ausubel, 1997). The fah1-2 mutant (in the Col-0
background) was chosen because the red fluores-
cence phenotype is a useful marker in genetic crosses
(Glazebrook et al., 1996). eds5-1 and eds5-3 both orig-
inated from the same mutant population. The fah1-2
and eds5 mutations are only 10 centimorgans apart
(Reuber et al., 1998), which rendered removal of the
fah1-2 mutation by backcrossing difficult due to ge-
netic linkage. eds5-1 was successfully backcrossed
with Col-0 before submission to the Arabidopsis Bi-
ological Resource Center (Fig. 1; J. Glazebrook, per-
sonal communication), whereas eds5-3 still carries the
fah1-2 background mutation (Fig. 1; Nawrath and
Métraux, 1999). eds5-2 originated from an indepen-
dent screen, not involving fah1-2 (Volko et al., 1998).
eds5 lines were crossedwith variousmutants to study

the interaction of SA signaling with other defense
mechanisms (Zhang et al., 2008; Venugopal et al., 2009;
Dong et al., 2016). Inspecting multiple mutants
under UV revealed that syp121-1 syp122-1 eds5-3 and
syp121-1 syp122-1 eds5-3 sid2-1 (mutants from H.T.-C.’s
laboratory; Zhang et al., 2008) displayed the red fluo-
rescence phenotype, whereas in snc1-1 eds5-3 (mutant
from Xin Li’s laboratory; Dong et al., 2016) the fah1-2
mutation was seemingly outcrossed (Fig. 1C). Thus,
due to genetic linkage, fah1-2 can be an unnoticed
background mutation in multiple mutants containing
eds5-3. Some laboratories could have stocks of the
original eds5-1 line with the fah1-2 background.
However, we have yet to test multiple mutants con-
taining eds5-1, such as acd11 eds5-1 and ssi2 eds1-2
eds5-1 (Brodersen et al., 2005; Venugopal et al., 2009).
Previous studies provided evidence that the lack of

sinapates and syringyl lignin in fah1-2 increased sus-
ceptibility to the fungal pathogens Botrytis cinerea and
Verticillium longisporum (Lloyd et al., 2011; Demkura
and Ballaré, 2012; König et al., 2014). Hence, the un-
noticed fah1-2 background mutation could influence
pathogen resistance of eds5-3 and possibly eds5-1 plants
in a SA-independent manner, thereby leading to false
conclusions on the role of EDS5 and SA in plant–
pathogen interactions. For this reason, it is strongly

Figure 1. eds5-3 carries a FAH1 mutation. A, Detection of blue flu-
orescent sinapoylmalate under UV-A illumination (365-nm wave-
length). Mutant lines lacking sinapoylmalate emit red fluorescence
under UV. B, Semiquantification of SA and sinapoylmalate (SinM) by
ultra-performance liquid chromatography coupled to mass spec-
trometry. Plants were infected with P. syringae pv. tomato AvrRpm1,
and leaf extracts were sampled at 4- and 24-h post infection (hpi).
Error bars indicate the SD (n5 4–5). C, The syp121-1 syp122-1 eds5-3
and syp121-1 syp122-1 eds5-3 sid2-1 mutants carry the fah1-2
background mutation as evidenced by their red fluorescence pheno-
type. snc1-1 eds5-3 showed blue fluorescence under UV illumination,
suggesting that the fah1-2 mutation had been crossed out. Refer to
SupplementalMaterials andMethods S1 for a detailed description of the
mutant lines and methods.
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recommended to check all lab stocks of eds5-3, eds5-1,
and multiple mutants containing one of these mu-
tations under UV-A illumination for the character-
istic red fluorescence phenotype of fah1-2, followed
by molecular confirmation of the genotype by PCR
with FAH1-specific primers as described in Weng
et al. (2010).

Supplemental Data

The following supplemental materials are available.

Supplemental Materials and Methods S1. Description of the mutant
lines, materials, and methods used.
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