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Abstract The rapid development of robust, reliable, and
reduced-order process-structure evolution linkages that take
into account hierarchical structure are essential to expedite
the development and manufacturing of new materials.
Towards this end, this paper lays a theoretical framework
that injects the established time series analysis into the
recently developed materials knowledge systems (MKS)
framework. This new framework is first presented and
then demonstrated on an ensemble dataset obtained using
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small-angle X-ray scattering on semi-crystalline linear low
density polyethylene films from a synchrotron X-ray scat-
tering experiment.
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Introduction

The discovery and curation of process-structure-property
(PSP) linkages in materials, their efficient communica-
tion to manufacturing experts, and their exploitation in the
design of improved materials are the main rate-limiting bot-
tlenecks in the advancement of many technologies. While
it has been recognized that an accelerated design cycle for
advanced materials can have a significant economic impact
[1–8], in practice, the design cycle often takes decades.
Some of the challenges encountered in the discovery and
curation stage include material property dependence on
extreme values of microstructure distributions, metastability
of microstructures during processing and/or use, variations
in data collection protocols, and uncertainty in data, models,
and model parameters [9, 10]. Additionally, the multiscale
(or hierarchical) nature of material structure necessitates a
high-dimensional representation and poses a central chal-
lenge in establishing high-value PSP linkages [10–13]. The
large descriptor space needed to capture the salient details of
the material structure creates a major challenge that, in turn,
demands a significant amount of data analysis in extracting
reliable and useful PSP linkages.
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Differences in processing routes for metals and alloys
even with a fixed chemical composition can significantly
influence the material internal structure (i.e., microstruc-
ture) and its associated macroscopic properties. In the case
of polymeric materials, minute differences in chemistry and
chemical composition can produce dramatic differences in
properties across members of the same polymer family.
Consider, for example, the case of the commodity polymer
polyethylene (PE) represented chemically by the formula
(CH2-CH2)n, which spans an application range from gro-
cery bags [14] to bulletproof vests [15]. In reality, the same
chemical formula represents a family of PEs that can be
subclassified into a variety of grades on the basis of fac-
tors such as density, crystallinity, average molecular chain
length, extent of chain branching, and polymer architecture
[16]. The type of PE and the choice of processing conditions
under which it is converted to finished product influences
the hierarchical structural assembly of the PE chains from
nanoscale to microscale and, ultimately, has a profound
impact on the macroscopic properties.

Constructing a PSP linkage, even for a well-understood
polymer such as PE, is non-trivial. First, a descriptor
space where the chemical architecture attributes of different
grades of PE can be quantified, either directly or through
a surrogate, is required. Second, microstructures (i.e., the
hierarchical internal structures) resulting from various pro-
cessing conditions and resultant PEs need to be quantified
either through experiments or simulations. Third, the prop-
erties of PEs emerging from the combination of chemistry,
processing, and microstructure must be evaluated.

The recently developed materials knowledge systems
(MKS) combines concepts from sophisticated physics-
based composite theories [17, 18], signal processing [19],
and machine learning [20–22] to establish a new frame-
work for pursuing PSP linkages. These linkages can be
established at separable time and length scales relevant to
the material hierarchical structure in order to communicate
the salient information for both the top-down (referred to
as localization) and the bottom-up (referred to as homoge-
nization) scale-bridging. The Python package PyMKS [23]
provides a code base to efficiently establish these linkages.

The MKS framework has thus far been applied largely
to capturing structure-property linkages from data generated
by multiscale models [13, 24–28]. These structure-property
linkages are, in general, less complex than the process-
structure linkages as they do not require a rigorous treatment
of the structure evolution over time. The extension of the
MKS framework to process-structure linkages necessitates
the introduction of time series analysis.

The extension to process-structure relationships is a crit-
ical component of the MKS framework. Only with this
extension is it actually possible to formulate a complete and
comprehensive set of PSP linkages needed in a material

innovation effort. With the complete formulation of PSP
linkages (typically in the form of metamodels or surrogate
models), it is possible to address inverse problems in mate-
rials and/or process design, where the goal is to identify
a process recipe capable of producing a material with an
improved combination of properties or performance met-
rics. Furthermore, such surrogate models lend themselves
to an integrated community effort for curating and sharing
material knowledge (in the form of PSP linkages) at dif-
ferent length and time scales which can also be effectively
communicated and digested by manufacturing experts.

This paper lays the theoretical foundation to merge time
series analysis with sophisticated physics-based compos-
ite material theories to create robust structure-processing
linkages. The combination of these two domains provides
a rigorous framework that can be used to accelerate the
development of materials. The viability of the proposed
framework is demonstrated using X-ray scattering mea-
surements on linear low-density polyethylene subjected to
different strain levels. In this example, the imposed plas-
tic strain on the sample is treated as a process variable, and
therefore, our goal is to relate this process variable to suit-
able structure descriptors in PE using the data acquired in
X-ray scattering measurements.

Theoretical Framework

The MKS framework provides templatable protocols that
can be used to create PSP linkages. These protocols start by
introducing the concepts of local state space and microstruc-
ture function. Most simply, the local state could be the col-
lection of thermodynamic state variables (or order parame-
ters) needed to uniquely define a material system, such as
orientation, chemical concentration, crystal structure, phase,
and so on. The local state space defines the space of all pos-
sible local states used to define a material system for a given
problem. The microstructure function introduces a proba-
bilistic interpretation of the microstructure by converting the
structure into a probability distribution over local states. In
prior work, this function has been mostly used to describe
static microstructures. In this work, our interest is in cap-
turing details of microstructure evolution in manufacturing
processes. Consequently, we first extend the existing frame-
work [29, 30] to include time as an independent variable in
addition to the spatial variables used in describing any given
microstructure.

Employing discretized (i.e., binned) representations of
space indexed by s, time indexed by n, and local state
indexed by h, mj [h, s, n] provides a discretized description
of the evolving microstructure indexed by j . More specif-
ically, mj [h, s, n] denotes the probability of finding h in
voxel s during the time step n in the evolving microstructure
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labeled j . It is very important to recognize that j in the
formalism presented in this paper indexes a microstruc-
ture evolution pathline, i.e., the time history followed by a
microstructure in any selected processing operation repre-
sented as a pathline in the microstructure space. In many
ways, this represents a significant extension to the MKS
framework presented in prior work [24, 26, 28–32], where
the microstructures were simply indexed to denote distinct
(static) microstructures. However, in the formalism pre-
sented in this paper, the index j represents a complete set
of microstructures capturing the details of time evolution of
a microstructure in a selected processing step. This exten-
sion is essential to the application of time series analysis to
process-structure evolution linkages in materials science.

Formally, the expected value of the microstructure func-
tion is the measured material structure expressed as

Ej [h|s, n] =
∑

h∈H

hmj [s, n, h] (1)

Additionally, the binning of the local state space introduces
a consolidated discretized variable space where both tenso-
ral and scalar quantities needed to define material structure
may be conveniently mapped to a simple index h.

The homogenization (bottom-up scale-bridging) protocol
starts by converting the raw structure information into the
microstructure function (also referred to as digitizing the
microstructure) based on the local states (e.g., phase identi-
fier, chemical composition, lattice orientation). An idealized
example of discretized microstructure with two discrete
local states can be found in Fig. 1. In this example, the image
is segmented such that each voxel is assigned to one of two
possible local states colored white and gray.

Using the microstructure function, we can compute
spatial correlations between local states as [13, 29, 33, 34].

fj [h, h′, r, n] = 1

�j [r, n]
∑

s∈S

mj [h, s, n]mj [h′, s + r, n]

(2)

In Eq. 2, �j [r, n] is a normalization factor that pro-
vides a count of the total number of times it is actually
feasible to evaluate both mj [h, s, n] and mj [h′, s + r, n].
This normalization factor can therefore depend on the dis-
cretized vector r and the time step n (allowing for changes
in the microstructure volume with time). A full set of two-
point statistics is defined by all possible vectors that can be
defined within an image [13, 29, 33, 34]. Two-point statis-
tics fj [h, h′, r, n] are most efficiently computed via discrete
Fourier transforms [29]. The transformation of material
structure information into two-point statistics provides the
benefit of creating a natural origin or a point of reference
(usually taken as r = 0) that can be used to objectively com-
pare spatial arrangements of the local states across a given
microstructure as shown in Fig. 2.

Fig. 1 Idealized digitized microstructure with two local states shown
by the white and gray voxels. The relative spatial locations for two
voxels are described by a discretized vector r

Creating structure-property linkages or classification
models with the raw two-point statistics is difficult due
to the large feature space and collinear features. Low-
dimensional microstructure descriptors can be created using
dimension reduction techniques such as principal com-
ponent analysis (PCA) or one of its variants [35, 36].
PCA is a global unsupervised distance-preserving linear
transformation, which then finds its way naturally into
the known physics-based theories [37]. Additionally, accu-
rate approximations to PCA are computationally faster
than other dimensionality reduction techniques [38]. In the
MKS framework, PCA is used to create low-dimensional
microstructure descriptors using linear combinations of the
two-point statistics. Mathematically, this transformation can
be expressed as

fj [l, n] ≈
K∑

k=1

μj [k, n]φ[k, l] + f [l] (3)

In Eq. 3, fj [l, n] is a feature vector that includes all two-
point statistics deemed important for the problem (l indexes
all unique combinations of h, h′, and r included in the anal-
ysis; see [39] for guidance on how to make such selections)
at time step n. As defined earlier, j identifies a particular
microstructure evolution pathline. φ[k, l] and f [l] are the
estimated time-independent PCs and the time-independent
mean values of the selected features, respectively. K is the
total number of PCs. μj [k, n] are the time-dependent PC
scores and are taken as the low-dimensional descriptors for
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Fig. 2 Discretized
microstructure (left) and its
two-point statistics (right). Each
pixel in the two-point statistics
image depicts the probability of
finding the selected local states
at the ends of a vector whose tail
is at the origin and the head is at
the pixel itself (Color figure
online)

microstructure evolution pathline j . Often, most of the vari-
ation in a dataset can be captured by only a few PC scores.
Let k = 1, 2, ..., K∗ denote this low-dimensional represen-
tation of the microstructure, where K∗ is many orders of
magnitude smaller than the large number of microstructure
statistics included in the analysis. Previous studies have suc-
cessfully used these protocols to create structure-property
linkages with effective properties or microstructure classi-
fication models that could be used to objectively quantify
the variation in microstructures due to changes in manu-
facturing processes [13, 29, 30, 34]. A related protocol for
localization (i.e., top-down scale-bridging) has also been
applied successfully to a variety of multiscale material
phenomena [12, 24–27, 32].

While previous MKS studies have successfully captured
structure-property linkages, the application of the same
framework to establishing process-structure evolution link-
ages requires the extensions developed and presented in
this paper. As noted earlier, this extension is specifically
designed to facilitate the application of time series anal-
ysis techniques. Time series modeling approaches can be
separated into methods that work in the frequency domain
such as spectral analysis [40–42] and wavelets [43–45], and
methods that work in the time domain. The time domain
methods can be further separated into three main categories:
autoregresive integrated moving average (ARIMA) mod-
els [46], state space models [47–53], and non-parametric
regression machine learning models [54–56], notably neural
networks.

ARIMA models were developed by Box and Jenkins
[46] and predict the evolution of time series data based
on previous values and previous errors. The advantages of
ARIMA models are that (i) the model has a relatively small
number of parameters, (ii) the parameters can be estimated
via ordinary least squares, and (iii) the model itself and
its parameters are relatively intuitive. The model requires
that non-linear trends be removed from the data, and if the
residuals are normally distributed, simple estimates for the
variance-covariance matrix of the parameters are available
[46].

State space models estimate a joint probability over latent
state variables and observed measurements. A Kalman Fil-
ter [47] can be used when the latent state variable is assumed
to be continuous, while hidden Markov models can be used
with discrete latent variables [48–50]. State space models
can be viewed as recursive Bayesian estimation [57] and are
well suited for streaming noisy data. The models create a
linear function using a Markov assumption (only the pre-
vious state is needed to predict the current state), although
extensions of the models have been made to account for
non-linearities [51–53]. The drawbacks from this method
are that (i) the parameter estimation is non-convex and (ii)
the dynamics of the system must be well understood a pri-
ori to create transition models to update the latent state
variables.

Neural networks have been successfully applied to time
series analysis as well as other sequential learning prob-
lems. The most notable model is long short-term memory
neural network (LSTM) [54]. LSTM introduces the concept
of a memory block which contains gates that control the
flow of information into and exiting the memory block as
well as information carried into the next time step [55]. This
model has been shown to outperform the previous two meth-
ods with non-stationary data [56], but optimization of neural
network parameters is non-convex and typically requires a
significant amount of data [55].

In this study, an extension to the MKS homogenization
framework is presented based on a non-parametric exten-
sion to ARIMA models for time series data gathered from
synchrotron based in situ X-ray scattering measurements. In
experiments of this type, the material system under investi-
gation is constantly exposed to an X-ray beam which allows
the internal structure to be probed continuously. Simulta-
neously, the thermodynamic state variables for the system,
i.e., processing conditions, are perturbed and the resulting
changes in the properties of the material under investiga-
tion are observed and recorded. These state variables can
include temperature, pressure, and electric fields or their
combinations. Using this tri-component approach of simul-
taneously monitoring structural changes continuously while
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manipulating the process variables and recording the cor-
responding properties permits the construction of a time
series-based process-structure linkage. Although our work
towards establishing PSP linkages is demostrated on X-ray
scattering data, the approach can be extended to data from in
situ experiments utilizing a variety of microscopy, tomogra-
phy, neutron scattering, and spectroscopic techniques.

Time Series Analysis for Process-Structure
Evolution Linkages

State space models enjoy certain advantages in handling
noisy data and can be adapted to in-line learning from
streaming data. But in order to avoid divergence and mini-
mize error, these models require a priori knowledge of the
dynamics of the system to create state transition matrices.
Although some work has been done to empirically calibrate
these transition matrices [58, 59], the dynamics of low-
dimensional microstructure descriptors is generally not well
understood. While LSTMs have shown significant predic-
tive power when optimized with a large dataset, in many
practical applications, material datasets are not large enough
[60]. For these reasons, LSTM and state space models were
not used in this study.

ARIMA models require information from previous pre-
diction errors (at prior time steps). This makes multistep
predictions challenging with a moving average component
while autoregressive models only require information from
predictions at prior time steps. As a result, autoregressive
models lend themselves better to multistep predictions. A
non-parametric regression method call multivariate adap-
tive regression splines (MARS) was developed by Friedmen
[61] and later applied to time series analysis by Lewis and
others [62, 63]. In time series applications, the method is
referred to as time series multivariate adaptive regression
splines (TSMARS). TSMARS has been shown to work well
in a moderate dimensional setting (in our case, the number
of PCs is expected to be 20 or less) and moderate-sized data
(between 50 and 1000 datapoints) [61].

In the present application, TSMARS will be used to esti-
mate a function, F , connecting the current microstructure
descriptors μ[k, n] with their prior values as well as poten-
tially with processing parameters η[n]. Mathematically, this
function can be expressed as

μ̂j [k, n]=F(μj [k, n−1], μj [k, n−2], ...η[n], η[n−1], ...)+ε

(4)

In Eq. 4, μj [k, n − i] and η[n − i] are the microstructure
descriptor (i.e., kth PC score) and the processing parameter,
respectively, at the discrete time step (n − i). The function
F is expressed as a linear combination of basis functions,

each of which is (i) a constant, (ii) a hinge function with
knot point at an observed input location, or (iii) a prod-
uct of the hinge functions. The coefficients in the series are
commonly estimated via least squares regression. A hinge
function can be defined as in Eq. 5, and an example of two
hinge functions meeting at a knot equal to 5 is shown in
Fig. 3.

g(x) =
{

x, if x > 0.

0, otherwise.
(5)

In the example used in this study, strain values correlate
with time steps (i.e., the same strain history is imposed on
all samples); therefore, strain does not provide additional
information. Therefore, the function F will only be writ-
ten in terms of the previous values of the microstructure
descriptors μj [k, n − i] for the remainder of the paper.

The TSMARS estimation consists of three major steps.

1 A forward pass greedily adds basis functions in mirror
image pairs to minimize mean squared error (MSE) until
a stopping criteria is reached.

2 A pruning or backward pass removes the least important
basis functions greedily to avoid over-fitting according
to generalized cross validation (GCV).

3 Coefficients for the basis functions are estimated using
least squares.

Detailed explanations of MARS and TSMAR can be found
in published literature [61–63].

In this study, the iterations of the forward pass were
stopped if (i) the R-squared value was greater than 0.999
or (ii) the change in the R-squared was less than 0.001.
The number of PCs, K , and the autoregressive order, P , are
the two hyper-parameters in the model development; these
were optimized for the process-structure linkage extracted

Fig. 3 An example of two hinge functions meeting at a knot with
value of five (κ = 5) (Color figure online)
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in this work using a leave one sample out cross-validation
approach. When selecting the range over which to search,
three practical issues need to be considered. (i) P deter-
mines the number of initial images that need to be provided
to the model at the time of prediction. As a result, a suf-
ficiently accurate model with a low value of P is desired.
(ii) As K increases, the amount of variation retained in the
low-dimensional microstructure descriptors μj [k, n] also
increases (i.e., we obtain a more complete description of the
microstructure). (iii) While the time complexity for predic-
tion is O(NPK), where N is the number of time steps, the
time complexity for estimation is O

(
N2(PK)3

)
. The last

two issues require an optimized value of PCs where a suf-
ficient amount of the variation is captured without the run
time becoming too large.

During the cross-validation process, each of the sam-
ples was systematically left out during the estimation of the
model parameters. After each of the estimations, the first P

images from the sample not used during the estimation were
provided as initial conditions for the model. The prediction
process recursively used predictions from the previous time
steps in the model (i.e., if P = 1, then μ̂j [k, n + i] is used
to predict μ̂j [k, n + i + 1]). The MSE values, as defined in
Eq. 6, were computed over the predicted time steps.

1

NK

K∑

k=1

N∑

n=1

(μ̂j [k, n] − μj [k, n])2 (6)

Application

In a conventional synchrotron X-ray scattering experiment,
the specimen under investigation is irradiated by a collimated
beam of monochromatic X-rays. The incident X-rays inter-
act non-destructively with the electrons in the specimen.
This interaction results in a fraction of the X-rays deviating
from their original collimated path, i.e., results in scattering.
The spatial distribution of electrons in a material, the elec-
tron density distribution, is a characteristic of the material.
In turn, the scattering of incident X-rays due to the electron
density distribution is characteristic of that microstructure.
The scattered X-rays, which are captured on a 2D detector
plate, create a 2D scattering pattern which contains the rel-
evant microstructural information. Depending on the type
of X-ray scattering technique used for investigation, the
microstructure of a material can be characterized across
length scales spanning from 0.1 nm to 1 μm [64].

Small-Angle X-ray Scattering of Partially Crystalline
Polymers

Small-angle X-ray scattering (SAXS) is a subset of X-ray scat-
tering techniques wherein inhomogeneities or two-phase

microstructural features at the mesoscale between 1 nm
and 100 s of nm can be probed in a specimen. In this
work, we use SAXS to investigate the mesoscopic struc-
ture of semi-crystalline polymer films of linear low-density
polyethylene (LLDPE), a grade of PE. Semi-crystalline
polymers comprise of a microstructure wherein the poly-
mer chains can organize into crystalline and non-crystalline
domains. The crystalline domains consist of tightly packed
polymer chains that have become regularly ordered to form
lamellae while amorphous domains are formed from loose
disordered arrangements of the polymer chains. In an ideal
case, the crystalline and non-crystalline domains are sepa-
rated by a sharp interface, and therefore, the two domains
can be considered to be separate local states. Most impor-
tantly, the electron density in crystalline domains, ρc, is
greater than the electron density in the amorphous domains,
ρa .

A single SAXS pattern provides an average description
of all the spatial arrangements of crystalline and amorphous
domains within the scattering volume at that instant of time.
The time series data used in this application of the MKS
homogenization approach are image sequences of such
SAXS patterns obtained while simultaneously recording the
stress and strain data of the individual specimens during
uniaxial tensile stretching. The dataset therefore provides
insight into the evolution of the semi-crystalline microstruc-
ture at the mesoscale for different LLDPEs under uniaxially
applied stress and strain.

For this case study, X-ray scattering data serve as a surro-
gate for two-point statistics. Mathematically, X-ray scatter-
ings from a two-phase microstructure have been shown to
correspond to the Fourier transform of the autocorrelation
of the difference in electron density [65].

Table 1 Labeling of tensile specimens made from blown films of the
two LLDPE polymers

Polymer Film label BUR Thickness (μm) Images

LLDPE1 LLDPE1.1a 2.5 20 182

LLDPE1.1b 2.5 30 191

LLDPE1.1c 2.5 75 195

LLDPE1.2a 3 20 191

LLDPE1.2b 3 30 195

LLDPE1.2c 3 75 191

LLDPE2 LLDPE2.1a 2.5 20 191

LLDPE2.1b 2.5 30 195

LLDPE2.1c 2.5 75 61

LLDPE2.2a 3 20 227

LLDPE2.2b 3 30 199

LLDPE2.2c 3 75 206
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Materials and Methods

Melt blown films of two LLDPE polymers, henceforth
referred to as LLDPE1 and LLDPE2, were supplied by
ExxonMobil Chemical Company (EMCC). Both the LLD-
PEs were statistical copolymers of ethylene and hexene,
where the hexene comonomer was incorporated along the
backbone chain in the form of butyl short-chain branching
(SCB). The densities for LLDPE1 and LLDPE2 were 0.912
and 0.923 g/cm3. The density variation between the two
polymers arose from the differing levels of SCB incorpo-
ration. The melt flow index for each of the polymers was
1.0 (ASTM-D1238) and the molecular weight distributions
for these LLDPEs were also similar. Both polymers were
converted into films by the method of film blowing into
two series of blown films. The first series of films had a
blow up ratio (BUR) of 2.5 while the second series had
a BUR of 3. The BUR is a standard processing parame-
ter which describes the manufacture of blown films. Within
each series, three films were fabricated with average thick-
nesses of 20,30, and 75 μm, thereby totaling 12 films. The
labeling scheme followed in the current work to describe
tensile specimens for in situ testing is described in Table 1.

SAXS experiments were performed at beamline 12-IDC
of the Advanced Photon Source (APS) at the Argonne
National Laboratory (ANL). In these experiments, the

X-ray beam had an energy of 12 keV (i.e., a wave-
length of 1.0332 Å) and the beam dimensions were
200 μm × 200 μm. X-rays scattered by the LLDPE film
specimens were detected by a MAR CCD detector situ-
ated at a distance of 2426 mm from the LLDPE specimen.
The detector pixel size was 175 μm. A fixed exposure time
of 0.1 s was utilized while taking SAXS snapshots. SAXS
patterns were collected every 3 s. This time interval was
determined based on the minimum detector readout time per
pattern. A portable tensile stage, made by Linkam Scientific
Instruments, was utilized for the tensile measurements. The
Linkam stage was operated at a tensile deformation rate of
25.4 mm/min. The collection of SAXS data and deforma-
tion data was synchronized such that the first SAXS pattern
in any of the image sequences was always obtained from an
unstrained pristine specimen at t0.

In this study, a process-structure evolution linkage is
sought between the applied strain (process parameter) and
the evolution of the anisotropic crystalline and amorphous
structure in LLDPE polymers. Traditional approaches to
create similar process-structure evolution linkages reduce
the 2D SAXS intensity plots to 1D by either (i) assum-
ing that the material is isotropic and integrating out the
angular information from the raw data [66–68] or (ii) study-
ing 1D intensity plots along selected angles [69, 70]. More
advanced techniques use the 1D intensity plots to create

Fig. 4 An example of the
typical evolution in 2D SAXS
patterns with increasing strain
for a tensile specimen of
LLDPE2.2a. Strain is applied in
the vertical direction with a
tensile deformation rate of
25.4 mm/min. The numbers
indicate the SAXS pattern
number; an interval of 3 s
between consecutive patterns is
strictly maintained. Every tenth
image is displayed for clarity.
The intensity is log scaled to
highlight the characteristic
features in the SAXS evolution
with strain (Color figure online)
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Fig. 5 a Principal component scores for X-ray scattering images from the 12 different samples and b the percent variance captured as a function
of the number principal components (Color figure online)

2D collection functions to look at changes over time [71,
72]. Indeed, all of these techniques are aimed at reduc-
ing the dimensionality of the structure information obtained

from the scattering measurements. In the present study,
we take an objective (data-driven) approach to dimen-
sional reduction using the MKS framework described

Fig. 6 The mean and first five principal components computed doing principal component analysis on 2224 images. 86.7% of the variance in the
dataset is captured by the first five principal components (Color figure online)
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earlier. One of the main advantages of the MKS approach
is that we can retain a significantly larger amount of
the information in the reduced dimensional representa-
tion of the microstructure with a remarkable ability to
recover almost the full representation when needed. This
is mainly because of the use of the PCA and storing the
information on the PCs and the mean values of the fea-
ture distributions, as will be illustrated later in this case
study.

Data Processing

Prior to analysis, the contrast X-ray scattering images were
transformed by taking the log of the intensity. In order to
normalize the difference in intensity due to film thickness,
each of the images was normalized by their mean intensity
value.

PCA was done on the complete set (ensemble) of 2224
images from the 12 samples (see Table 1). Each scattering
image (such as those shown in Fig. 4) was represented as
a vector of 422,500 intensities. In other words, the dimen-
sionality of the measured structure information is 422,500,
which is clearly unwieldy to extract high value process-
structure evolution linkages. Figure 5b shows the explained
variance in the complete ensemble of the measured struc-
tures as a function of the number of PCs. This essentially
means that fewer than 20 PCs would be enough to recover
most of the original microstructure information. This is
indeed a remarkable reduction in dimensions, from 422,500

to less than 20, while capturing 88% of the differences
between the individual structures in the ensemble. The full
ensemble of structures is shown in the first three PCs in
Fig. 5a. In this visualization, the structure evolution in
each of the 12 samples is tracked by assigning distinct
colors and symbols to each sample. Consequently, we can
visualize the structure evolution in each sample as a single
pathline.

The mean and the first five PCs are reshaped from vec-
tors into the original images and are presented in Fig. 6.
As explained in Eq. 3, the image titled mean is the time-
independent mean of the entire ensemble. Images titled PC1
through PC5 identify the most distinguishing features in
the X-ray scattering images in an orthogonal frame. PC1
appears to increase the contribution from short vectors, at
the expense of long vectors. PC2 appears to impart a large
bias in the horizontal direction compared to the vertical
direction. The higher order PCs are capturing increasing
complex features. The large dimension of each PC makes it
very difficult to understand all of the information embedded
in each component. Physical interpretation of the PCs in the
MKS framework is a current area of major research interest.

Model Selection, Estimation, and Validation

The results from the leave one sample out cross-validation
process can be found on the top image in Fig. 7. It was
found that as the number of PCs increased, the mean MSE
value decreased. When K is small, the mean MSE value

Fig. 7 Log of the mean MSE
values created using leave one
sample out cross-validation as a
function of the autoregressive
order P and total number of
principal components K

(above). Mean MSE values for
PCs 1 and 2 decrease as the
number of the total number of
principal components K

increases (below) (Color figure
online)
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decreases as P increases, but this trend reverses as the K

gets large. In general, the value of P had less effect on the
MSE value as the number of PCs increased. This essen-
tially means that we are likely to extract a better model
by capturing in more detail the structure information in the
immediately preceding one to two timesteps as opposed to
retaining less structure information over a larger number of
the preceding timesteps. Indeed, the model with the lowest
mean MSE value was found to have P = 1 and K = 20
and had an average value of 6.8 overall all calibrations. The
general trend indicates that the model accuracy would con-
tinue to increase as the number of PCs increases but with
diminishing returns and higher computational costs. The

bottom images in Fig. 7 qualitatively show that the predic-
tions for PCs 1 and 2 improve as the total number of PCs,
K , increases.

In order to demonstrate the utility of this method, the
results from models with the maximum and minimum MSE
values found during the cross-validation process for P = 1
and K = 20 are shown in Figs. 8 and 9. Using the pre-
dicted low-dimensional microstructure descriptors, a low
rank approximation of the X-ray scattering images was
created as shown in Eq. 3. The model used to predict
sample LLDPE1.2b had the lowest MSE value of 2.11.
Figure 9 shows the actual final image and the final predicted
image using the reduced-order image as well as the entire

Fig. 8 Predicted and actual principal component scores for sample LLDPE1.2b (above). The original image (bottom left) and the predicted image
(bottom right). The mean squared error value over the predicted principal component scores had a value 2.11 (Color figure online)
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Fig. 9 Predicted and actual principal component scores for sample LLDPE2.2b (above). The original image (bottom left) and the predicted image
(bottom right). The mean squared error value over the predicted principal component scores had a value 19.9 (Color figure online)

microstructure evolution pathline (in the PC space). The
model used to predict sample LLDPE2.2b had a MSE value
of 19.9. The measured and predicted images are shown in
Fig. 9 along with the predictions of the entire microstruc-
ture evolution pathline. Interestingly, in spite of the large
differences in the error measures, both predictions in Figs. 8
and 9 have retained the relevant scattering information.

Leave one sample out cross-validation was used in this
study for two reasons: (i) consideration of the least and most
accurate models allows for an unbiased assessment of the
method’s utility and robustness, and (ii) leave one sample
out cross-validation is equivalent to a traditional train-test
split where 11 samples are used to calibration and one sam-
ple is used for validation, repeated 12 times in the present
case study. Most practical material development efforts

have limited data, and this approach provides an excellent
strategy for building useful models with limited data.

Conclusion

In this paper, an extension of the MKS homogenization
framework is presented to allow extraction of process-
structure evolution linkages from multiscale material
datasets. This extension was accomplished by extending
the definition of the discretized microstructure function to
include details of its temporal variation. Most importantly,
this extension was accomplished in a way that allowed the
continued application of PCA for low-dimensional repre-
sentation of the material structure and its time evolution in
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a selected processing step as a structure evolution pathline.
This is particularly significant as this is the only known
dimensionality reduction algorithm that employs a distance-
preserving linear transformation, which allows a natural
insertion into established composite theories (for establish-
ing the complementary structure-property linkages) and is
computationally low cost. Therefore, the framework pre-
sented here potentially offers the broadest interoperability
with complementary PSP linkages needed to objectively
guide the material innovation efforts. Furthermore, the
framework presented here was amenable to the applica-
tion of time series multivariate adaptive regression splines
(TSMARS). The viability and potential of this extended
framework was demonstrated through an application on an
ensemble of small-angle X-ray scattering images obtained
from in situ plastic deformation of low-density PE sam-
ples. It was seen that the proposed framework exhibited
remarkable accuracy in capturing the highly non-linear
and complex characteristics of structure evolution in these
experiments.

The theoretical framework outlined in this paper pro-
vides a strong foundation to connect time series analysis
and sophisticated composite theories to create robust process-
structure evolution linkages. Together with process-structure
linkages, this method can be used to create comprehensive
process-structure-property linkages in a format that can be
readily accessed and utilized by the material development
community and shared with manufacturing experts.
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