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Abstract A novel data science workflow is developed and
demonstrated to extract process-structure linkages (i.e.,
reduced-order model) for microstructure evolution problems
when the final microstructure depends on (simulation or ex-
perimental) processing parameters. This workflow consists of
four main steps: data pre-processing, microstructure quantifi-
cation, dimensionality reduction, and extraction/validation of
process-structure linkages. Methods that can be employed
within each step vary based on the type and amount of avail-

able data. In this paper, this data-driven workflow is applied to
a set of synthetic additive manufacturing microstructures ob-
tained using the Potts-kinetic Monte Carlo (kMC) approach.
Additive manufacturing techniques inherently produce com-
plex microstructures that can vary significantly with process-
ing conditions. Using the developed workflow, a low-
dimensional data-driven model was established to correlate
process parameters with the predicted final microstructure.
Additionally, the modular workflows developed and present-
ed in this work facilitate easy dissemination and curation by
the broader community.

Keywords PSP linkages .Workflows .Microstructure
quantification . Additivemanufacturing .Monte Carlo
simulation

Introduction

Acceleration in the rate of material development and deploy-
ment has been the focus of several recent efforts in current
literature (e.g., [1–6]). In this regard, multiscale modeling and
simulation has been identified as a key enabler [7–11], be-
cause of its potential to dramatically reduce time and effort
expended in experimentation. However, there is now an in-
creasing recognition that this alone cannot bring about the
desired acceleration in material development. There is a crit-
ical need for the development and deployment of a suitable
supporting data infrastructure that efficiently integrates
closed-loop iterations between experimental and multiscale
modeling/simulation efforts. This need is being addressed by
a new cross-disciplinary field known as materials data science
and informatics [1, 3, 12–20].

A foundational element of a data science approach is a
versatile framework that enables capture, aggregation,
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curation, dissemination, and re-use of high-value knowledge
by communities of researchers. In materials innovation ef-
forts, this knowledge is chiefly desired in the form of
process-structure-property (PSP) linkages at length (and time)
scales relevant to the material systems of interest [1, 12, 18,
21–25]. For multiscale material modeling efforts, this would
imply the development of formal data science approaches for
distilling re-usable PSP linkages from ensembles of simula-
tion datasets. Figure 1 describes this strategy schematically.
The top row of this figure describes the typical workflow
explored by computational materials scientists in developing
PSP linkages. Typically, this entails the use of highly sophis-
ticated physics in conjunction with numerical algorithms and,
as a result, incurs substantial computational cost. This cost can
present a major impediment to materials innovation efforts, as
one would often need to run these simulations a large number
of times under varying inputs. This is precisely where a data
science approach offers many advantages. As suggested in
Fig. 1, one can learn from previously accumulated numerical
datasets and extract the embedded linkages between inputs
and simulated outputs. In the context of multiscale materials
phenomena, this learning is most efficiently carried out in a
mathematically rigorous framework for PSP linkages, while
taking full advantage of legacy knowledge, advanced statis-
tics, and machine learning techniques. As described in Fig. 1,
one of the central benefits of adding a data science component
to the overall workflow is that it produces a very practical (low
computational cost) approach to solving inverse problems that
lie at the core of all materials innovation efforts. This is mainly
because the PSP linkages are usually cast as metamodels (or
surrogate models) that allow easy inversion due to their rela-
tively simple mathematical reduction.

A central impediment in the implementation of the ap-
proach described in Fig. 1 comes from a lack of validated
and broadly adopted frameworks for the rigorous quantifica-
tion of hierarchical material structures or microstructure.
Microstructure plays a central role in the formulation of PSP
linkages and is often an important input and/or output.
Furthermore, microstructure can often require a higher dimen-
sional representation compared to other variables involved in

the PSP linkages. From a practical viewpoint, it becomes es-
sential to seek suitable reduced-order representations of mate-
rial structure and use them in formulating PSP linkages.
Traditionally, this dimensionality reduction has been per-
formed by materials scientists based on intuition or insight
of the materials phenomena studied. As a specific example,
one might quantify polycrystallinemicrostructures using grain
size or shape distributions, and possibly orientation and mis-
orientation distributions, when studying their plastic response.
However, such approaches have not yet identified a common
set of low-dimensional measures that can be universally ap-
plied across diverse material systems for identification of a
majority of material response characteristics. This, however,
is a key element in the formulation of re-usable, high-value,
material knowledge systems.

Emerging toolsets in materials data science and informatics
have demonstrated tremendous promise in addressing some of
the key challenges described above. It is now possible to gen-
erate a large ensemble of datasets (inputs and outputs) from a
simulation toolset and publicly share these with the broader
scientific community in an open-access data repository [20].
Once this is accomplished, it is possible to engage the broader
scientific community in the extraction of the embedded
knowledge of these datasets. If this activity is guided in a
suitable framework for PSP linkages, it could lead to acceler-
ated and robust curation of the knowledge, while simulta-
neously ensuring the highest levels of access, sharing, and
dissemination for re-use.

The main goal of this work is to explore the viability of the
concepts and philosophies described above with an example
demonstrator focused on process-structure (P-S) linkages with
a view toward additive manufacturing. Additive manufacturing
(AM) is a rapidly growing field of advanced materials process-
ing [26, 27]. Process improvements in recent years have en-
abled the creation of near-fully dense parts with sophisticated
geometries that are unobtainable using traditional manufactur-
ing techniques [28].While AM has seen significant adoption as
a prototyping and small-batch production tool, the science be-
hind AM part creation is complex and only partially under-
stood. Variations in factors such as powder composition,

Fig. 1 A schematic description
of the workflow typically
employed in current
computational materials science
efforts (top row) and how this can
be augmented with a data science
approach to recover
computationally low-cost, high-
value PSP linkages of interest to
materials innovation efforts [12]
(Color figure online)
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processing technique, and component shape can result in dra-
matically different microstructures and material properties.
Additionally, microstructure can vary significantly even within
a single as-built part. The interplay between the length scales of
AM builds and those of processing (e.g., localized melt pool
size and shape) presents new challenges in the analysis and
prediction of microstructure-sensitive performance characteris-
tics. Furthermore, irregular component geometries and material
anisotropies create compounded difficulties for traditional anal-
ysis methods [29].

Among the many processing variables of interest, beam
power density and scan pattern stand out as relatively domi-
nant factors. Power density is directly controlled by beam
parameters (spot size, power, scan rate, etc.), but is also indi-
rectly influenced by the scan pattern used to construct the
build. Together, power density and scan pattern greatly influ-
ence both the overall microstructure and the local microstruc-
tural variations [30–32]. Although a number of experimental
and simulation studies are underway [27, 33–35] to quantify
the P-S relationships in AM, the opportunity for advanced
data analysis has also been recognized [27, 35–38]. The
multiscale heterogeneity present throughout a solidified AM
build would suggest that a rigorous, quantitative, and statisti-
cal analysis is essential to achieve high-fidelity success in the
realm of qualification for significant industrial or high-
consequence applications [2].

AMonte Carlo Potts model has been employed successful-
ly to simulate grain growth [39], recrystallization [40], elec-
tron beam welding [40], and AM processing [41], and has
demonstrated a remarkable qualitative agreement with exper-
imental data. The simulation method yields predictions of
three-dimensional (3-D) polycrystalline microstructures under
a variety of scenarios and has even been demonstrated to
couple effectively with additional models for the inclusion
of additional physics [41]. With recent advances in computa-
tional infrastructure, it is now possible to conduct a large
number of simulations to generate an aggregate dataset com-
posed of thousands of individual simulations, where input
parameters are systematically varied to cover specific ranges
of interest. While extracting re-usable P-S linkages in the form
of low-cost surrogate models from these datasets is a non-
trivial task, this paper will address this task using emerging
toolsets of materials data science and informatics.

Additive Manufacturing Simulation Dataset

A user subroutine was created for the SPPARKS kinetic
Monte Carlo (kMC) simulation suite [42] to approximate mul-
tiple passes of a localized heat source during AM processing.
The adaptation utilizes a modified Potts-Monte Carlo [43]
approach to simulate grain growth during directional solidifi-
cation. In this study, we do not seek to exhaustively describe

the simulation approach but will offer a few salient specifics to
provide a cursory understanding of the synthetic microstruc-
ture generation. The reader is advised to always ensure the
accuracy and reliability of the physics-based simulation
toolsets before embarking on the calibration and extraction
of reduced-order models of interest. For the simulation suite
used here, this effort was carried out elsewhere and the reader
is directed to refs. [44, 45] for details regarding the approach
and its validation against experimental results. Only a few
essential points and modifications will be discussed here. A
collection of sites on a cubic lattice compose the simulation
domain, in which each site is assigned a “spin” to identify its
membership to a certain grain identified by that spin. The
physical arrangement of similar and dissimilar spins defines
the grain structure and total energy of the simulation.
Simulation time is expressed in Monte Carlo steps (MCS).
One MCS corresponds to an attempted Monte Carlo spin flip
at each neighbor of every lattice site. Although the exact rela-
tionship to physical time is difficult to define, they are related
by a constant factor [43]. A local heat source is rastered
through the domain using a prescribed pattern. To simulate
melting, a site’s spin is randomized when it is located within
the “melt pool” of the heat source. Resolidification and grain
growth occur in the heat-affected zone (HAZ) surrounding the
melt pool. Elongated grains grow in the direction of the max-
imum thermal gradient, and an anisotropic polycrystalline mi-
crostructure is produced bearing the history of the scanning
strategy and the inherent size and shape of the heat source. In
the present study, the melt pool was rastered across each layer
in four parallel passes, with each pass alternating direction by
180°. This was repeated for 4 layers of deposition, resulting in
16 passes of the simulated heat source. Additionally, the melt
pool used in this study was comprised of a half-ellipsoid shape
and is reproduced here for convenience in Fig. 2.

The approach described here allows for rapid exploration
of varying simulation conditions and the use of relatively large
simulation domains (300 × 300 × 200 elements) at low com-
putational costs. The kMC simulations are non-dimensional
but include an implied length scale resulting from the shape of
the molten zone and the height of the remelt layers as both
determine significant amounts of the resulting microstruc-
ture’s arrangement. In the simulations presented, a molten
zone of 60, 70, 80, or 90 sites corresponds to physical dimen-
sion of 0.3, 0.35, 0.4, or 0.45 mm, respectively. These layer-
by-layer structures with limited remelting of prior layers are
consistent with the low-power experimental validation com-
parisons of [46] presented in [45]. A total of 1799 microstruc-
tures (each corresponding to a different combination of pro-
cess parameters) were generated on a Linux-computing clus-
ter to comprise the ensemble dataset for this study. In compar-
ison, state-of-the-art thermofluid, multiphysics, simulations of
AM processes are generally capable of simulating only a sin-
gle pass under a similar computational cost [35].
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The input simulation parameters used to generate the en-
semble dataset were selected to mimic processing parameters
found in metal AM techniques, and are listed in Table 1.
While several parameters were varied during the study, an
identical number of layers and passes per layer were used
across all cases. The domain size and hatch spacing between
scans were also maintained constant. The values of the simu-
lation parameters were selected to span an experimentally rel-
evant range, but were not intended to be exhaustive. The rel-
ative variation in the ensemble dataset is illustrated by the
four-image composite of simulated microstructures shown in
Fig. 3a, along with their corresponding process parameter set
in Fig. 3b. Three orthogonal cross sections are shown in
Fig. 3a for each simulation, where the arrows indicate in-
plane scan directions, while circles with a cross or dot denote
inward or outward out-of-plane scan directions with respect to
the page. Two scan patterns between successive layers were

studied. The first used a uniform pattern across all layers (i.e.,
parallel build, simulations 1 and 2 in Fig. 3) whereas the sec-
ond rotated the raster pattern by 90° between each successive
layer, (i.e., cross hatch, simulations 3 and 4 in Fig. 3). Each
simulation produced a microstructure with unique grain size
distributions and varying directional anisotropies.

Data Science Workflow for Extracting
Process-Structure Linkages

Building on prior work [12, 47], a generalized four-step
workflow was designed for establishing P-S linkages and is
shown in Fig. 4. This workflow has been designed to serve as
a generic template that is applicable to the broad class of
microstructure evolution phenomena that are likely to be stud-
ied by a variety of techniques (these could include modeling
techniques such as phase-field models [48], cellular automata
[49], and level-set methods [50] or experimental techniques
such as X-ray computed tomography [51, 52]). Themain steps
are listed in blue boxes. The white accompanying boxes show
specific methods and/or procedures that might be employed in
that step.

The first step in the workflow is a pre-processing step
aimed at ensuring quality and consistency of the dataset.
While the identification of the phases, boundaries, or other
features of interest in simulated data is trivial in most cases,
experimental data often requires segmentation of images to
properly identify a given feature of interest. As needed, one

Table 1 The range of simulation conditions used in the study

Variable Values explored

(X/XY) Scan pattern Parallel (X) or cross hatch (XY)

(W) Molten zone width (lattice sites) 60, 70, 80, 90

(V) Velocity (sites/Monte Carlo step) 2.5, 5, 7.5, 10, 15

(D) Molten zone depth (sites) 50, 62.5

(L) Molten zone tail length (sites) 50, 60, 70

(HAZ) Heat-affected-zone width (sites) 5, 20, 35

(T) Tail heat-affected-zone length (sites) 5, 20, 35

Fig. 2 a Idealized 3D melt pool
with temperature gradient profile
used for kMC synthetic
microstructure generation. b–d
Orthogonal cross-section
schematics of melt pool; molten
zone is depicted in orange and
HAZ is shown in blue [41]
(Color figure online)
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might set a criterion to eliminate spurious or questionable data
(e.g., the data that does not conform to known physics). In this
step, the inputs (process parameters) are also clearly associat-
ed with the outputs (microstructure data).

In the second step, microstructures are quantified to obtain
salient statistical measures of microstructures. In a data

science approach, it is desirable to capture a very large set of
measures at this stage. Consequently, it is preferable to adopt a
microstructure quantification framework that allows one to
increase systematically the numbers of potential features in-
cluded in the analyses. In this regard, the framework of n-point
spatial correlations [12, 53, 54] offers tremendous promise

Fig. 3 aOrthogonal views of four synthetic microstructures with the scan direction indicated for each pass, and b corresponding simulation parameters
(Color figure online)
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because of its scalability (ability to define an infinite number
of microstructural features), organization (value of n can start
with one and increase systematically), and available access to
efficient computational toolsets [55, 56]. Another option for
this step includes lineal path functions [57] or chord-length
distributions [58, 59] that provide information about shape
and size distribution of a specific feature of interest.

The third step in the workflow focuses on reducing the di-
mensionality of microstructure representation using data science
approaches. Some of the established dimensionality reduction
techniques include principal component analysis [12], factor
analysis [60], projection pursuit [61], and independent compo-
nent analysis [62], among others. These methods are designed to
reduce dataset dimensions, while losing only the smallest
amounts of information. The use of dimensionality reduction
leads to savings in both computational time and storage, and
leads to identification of salient features that can be used to es-
tablishmodels. For example, in prior work [12], PCA has proven
to be remarkably efficient in producing high-value, low-order,
representations of microstructures that are ideally suited to estab-
lishing PSP linkages in a broad variety of material systems.

The last step of the workflow focuses on establishing and
validating a reliable and robust P-S linkage. This step typically
involves an iterative process of model selection. The first part of
this step requires establishing a model using a variety of machine
learning techniques ranging from simple regression to sophisti-
catedM5model trees [63] and support vector machines [64]. It is
important to recognize that the models developed are indeed
dependent on the available data. Therefore, the model itself can
change as one adds more data. Validation of the model
established in this step is typically performed using accuracy
estimation methods. Cross-validation [65] has been found to be
quite effective in avoiding overfitting of the data to the model.
Data splitting is another validation method in which each ensem-
ble dataset is generally split into calibration and test subsets. Data
splitting was shown to be an effective technique, where

collection of new validation data is avoided [66]. In this step, a
model selection is accomplished iteratively based on the optimi-
zation of error parameters. Error metrics therefore play an impor-
tant role in the model selection process. Popular choices have
included various combinations and variants of the mean of abso-
lute error (MAE), the standard deviation of error (SDE), the
coefficient of correlation (R), and the explained variance (R2)
[56]:
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where yi denotes the value of the output variable from the
actual data, y is the corresponding predicted value from the
statistical model produced, and N is the number of data points.
The R2 value is a metric of goodness of fit, where a value
closer to one indicates a superior fit.

After obtaining a data-drivenmodel, errors are checked, and if
they do not satisfy the error criteria, a new iteration in model
building is launched (see Fig. 4). It is, however, important to
identify which step contributed most to the unreliable model. If
this insight is available, suitablemodifications can be implement-
ed in any step of the workflow in the next iteration. For instance,
one might select a different model learning algorithm or identify
new features using a different dimensionality reduction tech-
nique. The modular nature of the workflow shown in Fig. 4
allows one to explore a very large number of potential models
in highly computationally efficient toolkits [67, 55] before set-
tling on the best model for the phenomena studied.

Fig. 4 Workflow template for
establishing process-structure
linkages using a data science
approach. Blue boxes describe
general steps while corresponding
white boxes list example methods
that can be used within a step
(Color figure online)
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Suitable error criteria for an acceptable model should be
defined or set by the user for any practical implementation
of the workflow shown in Fig. 4. These criteria are likely to
be highly dependent on the intended purpose of the reduced-
order model extracted using this workflow. In most MGI or
ICME applications, a materials designer is likely to use the
reduced-order models for rapid screening of a large design
space under consideration. Therefore, the requirements for
accuracy should be based on obtaining reliable guidance for
meaningful down-selection of the design choices. Note also
that all data sources (in the present case, simulation codes
employed to generate an ensemble of microstructures) inher-
ently exhibit certain (often non-negligible) uncertainty (or in-
accuracy) that can be attributed to the numerous approxima-
tions and idealizations employed. Therefore, it would be un-
wise to establish an error criterion that exceeds the inherent
uncertainty in the data source.

Case Study: Application to Additive Manufacturing
Datasets

The workflow discussed in Fig. 4 provides a generalized tem-
plate to extract a P-S linkage from a collection of data points,
where each data point includes both the final microstructure
(measured or simulated) and the process parameters associat-
ed with it. In this section, we demonstrate the application of
this workflow to analyses of the additive manufacturing sim-
ulation dataset described in “Additive Manufacturing
Simulation Dataset.”.

The first step in the workflow is a data check to ensure that
the data points are reliable and consistent. The additive
manufacturing dataset described in “Additive Manufacturing
Simulation Dataset” has been made publicly accessible [68]
and consists of 1799 individual synthetic microstructures de-
rived from simulations performed with varying AM process-
ing parameters. A check of the data revealed some of the
downloaded data to be corrupt (could not be opened), and a
small number of microstructures showed unusually large
grains that typically extended in length over the entire domain
(in one direction). These instances were considered as outliers
and eliminated from the analyses presented here. The total
data for analyses reported in this paper consisted of 1599
structures.

The second step of the workflow addresses microstructure
quantification. As mentioned earlier, this step is central to the
extraction of transferrable materials knowledge needed in
multiscale materials modeling efforts [69]. Although it is pos-
sible to select a number of different measures for the quanti-
fication of the microstructure in this work, the most logical
choice here would be chord length distributions (CLDs). This
is because the main microstructure feature of interest is the
grain size and shape distributions and their anisotropy. Also,

chord lengths connect directly to plastic properties of interest
through established models such as the Hall-Petch models
[70]. Furthermore, the computational cost of computing the
CLDs is substantially low (order of the number of voxels in
the microstructure); this is a significant criterion for this work
as we intend to analyze a very large ensemble of microstruc-
tures. A chord is defined as a line segment within the micro-
structure contained within a single grain whose endpoints lie
at grain boundaries. Relatedly, chord length is defined as the
length of any such chord. CLD quantifies the probability of
finding a chord of a specified length within a microstructure.
CLDs can be resolved directionally [59] by treating chords
exclusively in only one direction. Figure 5a illustrates the
sampling of representative chords in X and Y directions in a
voxelized microstructure, where the length of each chord is
indicated by its color (shorter chords are blue and longer
chords are yellow). In this plot (as well as the case study
presented later), the microstructures are digitized and the
length of a chord is simply taken as the number of pixels
composing each chord. It should be noted that the chords in
the edge grains are not included in the analyses (see Fig. 5a).
Figure 5b shows corresponding CLDs resolved along X and Y
directions of the micrograph. The broader CLD in the Y direc-
tion indicates that the grains are elongated in the Y direction
compared to the X (see also Fig. 5a).

The variation in directionally resolved CLDs along the
three reference orthogonal directions, among the four synthet-
ic structures in Fig. 3, is presented in Fig. 6. The color desig-
nations of each microstructure in Fig. 3 are continued in the
line colors of the corresponding distributions in Fig. 6. Solid
or dotted lines within Fig. 6 correspond to differing
(orthogonal) directions. As can be observed, there is a drastic
difference between the CLDs in the volume fraction (i.e., fre-
quency) of chords whose length is of the size of one voxel.
This particular statistic relates to the fraction of sites (i.e.,
voxels) within the virtual microstructure retaining their initial
(unique) site identifiers, presumably due to the absence of a
sufficiently strong interaction with the heat source. Physically,
this lack of interaction is due to the combined effects of the
molten zone geometry and the overlap distance between suc-
cessive passes of the heat source. The experimental analog of
these synthetic phenomena is commonly referred to in the AM
community as “lack-of-fusion” defects that result in porosity
and regions of unmelted powder inclusions [27, 38, 51]. In
Fig. 6, it is seen that the “lack-of-fusion” regions are some-
what equiaxed (i.e., no significant sensitivity to any directions
associated with the CLDs for each microstructure), and de-
crease monotonically in extent from 25% to 5% for cases 1,
2, and 3, respectively, and were not observed at all in case 4.
This is consistent with the increase in melt pool size, as one
goes from case 1 to case 4.

The second most apparent variation between CLDs shown
in Fig. 6 is in regard to the value of the highest frequency
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(corresponding to the most populous chords), excluding chord
lengths of the size of one voxel. In general, it is seen that the
chord length corresponding to the highest frequency is around
5 voxel lengths, but the frequency varies from 15% to 7% for
the four cases shown. It should be noted that higher frequen-
cies for the peak of the distribution generally correspond to
narrower distributions (as each distribution is normalized such
that the sum of the frequencies adds to one), implying that the
grains within the microstructure are more similar to one an-
other in both size and shape. Additionally, a slightly larger
variation between the CLDs resolved in all three directions
was observed for cases 1 and 2, in comparison to cases 3
and 4. This can be attributed to the fact that cases 3 and 4
implemented a crosshatching scan pattern, which is expected
to produce more isotropic grain structures. Most interestingly,
the tails of the distributions (capturing the decay in the

distributions) vary significantly for the different microstruc-
tures, and are likely influenced by the changes in the size of
the molten zone. In general, the parallel build pattern exhibits
a sharper decay (narrower distribution of grain sizes) com-
pared to the cross-hatching build pattern.

While some, but not all, experimental AM processing condi-
tions can produce columnar grains that extend over several build
layers, builds of this type would certainly produce heavily
skewed Z-direction CLDs in comparison to those of the X and
Y directions. However, in the simulations presented here, a max-
imum of no more than a 20% sublayer remelting was imposed.
This was done to reduce the propensity for overwhelmingly bi-
ased Z-directional CLDs and produce microstructures which are
in effect more reminiscent of powder-fed processes; e.g., directed
energy deposition (DED) or laser-engineered net shaping
(LENS)AM techniques. These processes often create buildswith
larger layer heights and significantly less remelting of prior layers
than those of powder-bed systems [26].

As mentioned previously, CLDs are computed in each or-
thogonal direction (X, Y, and Z) and are then concatenated one
after the other in a specific sequence to produce a large feature
vector for each microstructure. The largest possible chord
could, in theory, be equal to the dimensions of a microstruc-
ture in a given direction producing 300, 300, and 200 chord
length statistics (in the X, Y, and Z directions, respectively).
However, the maximum chord lengths in the ensemble of
1599 microstructures studied were identified to be 210, 203,
and 90 voxels in X, Y, and Z directions, respectively. The
CLDs in each direction were therefore truncated at these levels
for all microstructures studied. The three CLDs for each mi-
crostructure were then concatenated to produce one large fea-
ture vector of 503 chord length statistics (the sum of 210, 203,

Fig. 5 Illustration of chord length distributions: amicrograph with example chords drawn in X and Y directions; b chord-length distributions in X and Y
directions for the micrograph in a (Color figure online)

Fig. 6 Chord length distributions in three orthogonal reference directions
(X, Y, and Z) for the four synthetic microstructures shown in Fig. 3 (Color
figure online)
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and 90 chord length statistics obtained for each microstruc-
ture). It is unwieldy to utilize such high-dimensional represen-
tations in the practical extraction of P-S linkages. Therefore, a
dimensionality reduction is performed as a next step of the
workflow using principal component analysis (PCA).

PCA is a data-driven linear transformation to a new
orthogonal framework that captures variance in a dataset
with the minimum number of dimensions [18]. Although
a number of options exist for dimensionality reduction,
PCA was chosen here because it offers the following ben-
efits: (i) it is a distance-preserving transformation, which
allows a highly accurate and low-cost computation of a
difference measure between any two microstructures
using just the low-dimensional representations, (ii) it pro-
vides an orthogonal basis for representing the microstruc-
ture statistics which should lead to robust representations
of process-structure-property (PSP) linkages, (iii) easy ac-
cess to highly efficient computational toolsets for comput-
ing PCA on large datasets [67, 71, 72], (iv) a remarkable
ability to recover the original high-dimensional micro-
structure statistics with only a handful of PC scores as
long as the eigenvectors found in the PCA are stored
[47], and (v) prior success in establishing robust PSP
linkages in a wide range of multiscale materials phenom-
ena [47, 73, 74]. Consequently, for each microstructure
indexed by m, its feature vector (set of three chord length
distributions representing a total of 503 chord length sta-
t is t ics) denoted by CLDm can be approximately
decomposed into a linear combination of basis vectors
(called principal components) and weights (i.e., PC
scores) [74] such that

CLDm≈∑
N

j
αm

j A j þ A0 ð4Þ

where Aj denotes the jth principal component (each Aj is a
vector of 503 statistics), A0 (also a vector of 503 statistics)
is the mean CLD of all the microstructures in the dataset,
and αm

j denotes the jth PC score (for the microstructure

indexed by m). More importantly, N denotes the trunca-
tion level in the orthogonal decomposition, and is selected
based on the variance captured by the principal compo-
nents. Since PCA prioritizes the (orthogonal) principal
components in such a way that they sequentially explain
the next greatest variance in the dataset, the value of N is
typically very small. For the present case study, the per-
centage of variance explained by each principal compo-
nent is depicted in Fig. 7. It is seen that the first four
principal components explain well over 99% of all vari-
ance in the dataset. This is indeed a significant dimension-
ality reduction (from 503 to just 4).

Although the PCA described above results in dramatic and
objective (data-driven) dimensionality reduction, it is also

remarkable in its ability to reconstruct the original CLD. An
example of this is demonstrated in Fig. 8. The PC scores for a
randomly chosen 801th microstructure (i.e., m=801) are
α801

j ¼ −0:0743;−0:1741;−0:0553; 0:0061ð Þ. Each plot in

Fig. 8 represents a systematic reconstruction of the original
data point using one PC score at a time using Eq. (4). Note that
the contributions drop dramatically as we add the higher prin-
cipal components. The final reconstructed CLD (using four
PC scores) and the original CLD of the microstructures are
highlighted in the green box. The mean error between the
reconstructed and the original CLD was 5.96e−4.

The ability to reconstruct the original data point is mainly
due to the use of the stored principal components (basis vec-
tors of the orthogonal decomposition in Eq. (4)). These basis
vectors carry embedded information on the main differences
between the individual data points and the ensemble mean in
their original dimensionality. Figure 9 provides the plots of the
basis vectors for the first four principal components obtained
in the present case study. Each of the basis vector plots pro-
vides a “fingerprint” of the changes it will induce in the CLD.
For example, an increase in the first PC score would signifi-
cantly reduce the short chords and increase the medium-sized
chords (∼7 to ∼25 pixels long). Similarly, an increase in the
second PC score would significantly reduce the very short
chords (about 1–2 pixels long) and increase the short chords
(∼2 to ∼10 pixels long). It is also seen that the first three PC
scores do not carry much information related to the anisotropy
(differences in the CLDs in the three directions included in the
analyses for eachmicrostructure); only the fourth PC begins to
carry some of this information.

Once the reduced-order representations are established, the
next step of the workflow is to build a model using machine
learning methods. The reduction of dimensionality from 503
to 4 has significantly reduced the difficulty associated with
this step. The P-S linkage of interest in the present case study
was extracted using a regression technique. Regression typi-
cally consists of four primary steps [75]: (1) defining depen-
dent (output) and independent (input) variables, (2) identify-
ing the form of the function (linear, parabolic, exponential,

Fig. 7 Accumulated variance captured by the different principal
components (PCs) retained in the reduced-order representation (Color
figure online)
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etc.), (3) computing the regression function, and (4)
performing error analysis.

In the present case study, the multivariate polynomial regres-
sion was used to establish a surrogate model for the PC scores of
the final microstructures (treated as outputs of the model) as a
function of the processing parameters identified in Table 1 (treat-
ed as inputs). Although a large number of choices exist, the
polynomial regression was used as it is readily accessible in
commonly used analytics packages [71, 76], computationally
cheap, and has been seen to provide robust PSP linkages in prior
work [73]. In many ways, multivariate polynomial regression is

the simplest model form to explore as a first choice in model
building. The goal here is to learn from the aggregated simulation
datasets previously generated using the SPPARKS code [77], so
that one may make predictions for new combinations of process
parameters in the future without even having to run a SPPARKS
simulation. The model being built takes the form:

α j ¼ f j T ;V ;W ;D; L;HAZð Þ ð7Þ

where αj is the jth PC score, T is temperature, V is scanning
velocity, W is melt pool width, D is melt pool depth, L is melt
pool length, and HAZ is the width of the heat-affected zone.
Once the PC scores are predicted, the CLD can be reconstructed
as shown earlier in Fig. 8, using the stored values ofAj (including
A0).

The models explored in this work were evaluated for accu-
racy using both a data splitting approach [66] and a leave-one-
out cross validation (LOOCV). Data splitting allows an unbi-
ased evaluation of the model for new inputs that were not uti-
lized in the model development. For this purpose, the dataset is
divided into non-overlapping calibration (training) and valida-
tion (test) sets. (Note that “calibration set” and “training set” as
well as “validation set” and “test set” are used interchangeably
in this work.) More specifically, the data points corresponding
to values of variables V = 7.5 andW = 70, comprising a total of
684 synthetic structures, were selected as the validation set. The
remaining dataset of 915 structures composed the calibration
set used to build the models for each αj. Note that the validation
set was excluded even in the dimensionality reduction step.
Thus, the validation conducted here is a validation of the entire
workflow, including all the choices made for microstructure
quantification (CLDs), dimensionality reduction (PCA), and
model forms (multivariate polynomials). Although one can im-
plement a number of other strategies to obtain the split between

Fig. 8 Demonstration of the PC
decomposition of CLD using the
first four PC scores. Final
reconstructed CLD and the
original CLD are compared in the
green frame (Color figure online)

Fig. 9 Basis functions associated with first four PCs. Vertical axes
represent the change in frequency from the mean value A0 in Eq. 4
(Color figure online)
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calibration and validation datasets, the above strategy was pre-
ferred in this study due to its ability to evaluate critically the
model predictions for new inputs not included in the model
building effort.

However, the simple data splitting strategy described above
would often be inadequate in extracting a robust reduced-
order model. This is because there is a danger that the model
is likely over-fitted in the model building process. This often
occurs because all measures of error typically reduce, when
the numbers of parameters in the model are increased. It is
therefore important to implement some means of a cross-
validation along with the model building trials. For example,
since there is only a limited set of distinct values for most
input variables employed in this work (see Fig. 3b), indiscrim-
inate use of higher-order polynomials would result in rank
deficiency in the regression step. Suitable restrictions were
placed on polynomial terms that would be explored in the
model building process. In order to specifically avoid over-
fitting, leave-one-out cross validation (LOOCV) was per-
formed within the calibration set, when the model is trained
using 914 data points and the error is computed for the data
point set aside, then the process is repeated 915 times. Error
estimates are therefore computed both with and without
LOOCV for a very large set of multivariate polynomial com-
binations within the set constraints. Amodel was then selected
based on the combination of lowest MAE and highest R2 of
the built model, and its cross-validation (CV) errors were also
checked to ensure there is no overfitting, e.g., the CV errors
are within the same range of errors as the built model. Table 2
summarizes these error measures for each accepted model for
four PCs and their CV. The error measures presented in this
work have been normalized to aid in their interpretation. It
was decided to use maximum distance between data points
(range of original data) as the normalization factor. As a final
step, the best models identified in the model building step are
then used to predict the outputs for the validation set (this
contains the 684 data points that were hard-split from the full
dataset). The errors computed for the validation set are sum-
marized in Table 3.

The truncation level of PCs in the model as well as the
degree of polynomial were varied to arrive at an optimized
data-driven model. After numerous iterations between the
steps of the workflow, it was identified that the first four

principal components provided the best balance between the
accuracy of the model and the number of features used. It is
somewhat remarkable that specific values of acceptable error
in the present study were not pre-determined. Rather, the spe-
cific models that exhibited the lowest errors (computed using
the measures defined earlier) for the validation set, were iden-
tified and selected.

Resulting acceptable third-order polynomial models
consisted of over 70 terms and coefficients. Although all
70+ terms of the model were used in this work, the authors
acknowledge that optimization can be performed on the model
to arrive at a more compact form with a smaller number of
terms. Removing polynomial terms based on their coefficient
decimals (e.g., smaller coefficients) resulted in increasedmean
error of predicting PC1 scores for test set from 0.0032 to
0.0132. Simply eliminating one term at a time also did not
improve the results. Therefore, better optimization techniques
are needed if one would like to obtain a model with fewer
number of terms. However, since the computational cost of
the reduced-order model produced in this work is minimal,
there is no significant benefit to such pruning of the model
terms.

Figure 10 shows parity plots of model fit for the first four
PC scores and provides a visual depiction of the model accu-
racy relative to each PC score for both the training and test
datasets. The diagonal straight line in the parity plots depicts a
perfect match between actual data and predictions obtained
using the surrogate model. Populations closer to the line are
indicative of a more accurate prediction. The models for the
first two PC scores show higher accuracy predictions than for
the third and fourth PC scores. As discussed earlier, the con-
tributions from the third and fourth PCs were generally sig-
nificantly less than those of the first two PCs (see Fig. 8).
Therefore, although the accuracies of the models for these
two PC scores are lower than that of PC1 and PC2, they are
still acceptable as they only provide a secondary or tertiary
tuning of the reconstructed CLDs.

The P-S linkage for the simulated additive manufacturing
microstructures presented here consists of a large table of
coefficients of polynomials, as well as the basis functions
and the mean value A0. These tables are not presented here
due to their size; however, the authors are willing to share the
results upon request.

Table 2 Error metric values of the acceptable models for PC1, PC2,
PC3, and PC4

PC R2 CV—R2 MAE CV-MAE MAESDE CV-MAESDE

PC1 0.9945 0.9934 0.0118 0.0129 0.0106 0.0118

PC2 0.9776 0.9729 0.0290 0.0317 0.0250 0.0278

PC3 0.9292 0.9153 0.0426 0.0466 0.0308 0.0337

PC4 0.8766 0.8529 0.0517 0.0563 0.0392 0.0430

Table 3 Error metric values of the validation of the models for PC1,
PC2, PC3, and PC4

PC Test—R2 Test—MAE Test—MAESDE

PC1 0.9884 0.0168 0.0124

PC2 0.9487 0.0378 0.0277

PC3 0.9048 0.0440 0.0337

PC4 0.7349 0.0688 0.0523

64 Integr Mater Manuf Innov (2017) 6:54–68



In order to demonstrate the predictive capability of the
model produced in this work, the reconstructed CLDs from
the predicted PC scores were compared directly with the orig-
inal CLDs. The distribution of the mean absolute errors from
such comparisons is shown in Fig. 11. The highest normalized

mean absolute error was 0.28, while the normalized mean
error was less than 0.10 on average. The original and predicted
CLDs for these two cases are shown as inserts in Fig. 11.
Overall, it is shown that the data-driven models produce ex-
cellent predictions for the majority of data points evaluated. It

Fig. 10 PC model prediction vs.
actual data for PC1, PC2, PC3,
and PC4 values. Red and blue
circles are calibration and
validation data points,
respectively (Color figure online)

Fig. 11 Histogram of normalized
mean of absolute error in
reconstructed CLDs for
microstructures in the test dataset.
Insets show comparisons of
original and reconstructed CLDs
for microstructures with a typical
mean average error (top) and the
maximum error (bottom) (Color
figure online)
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should also be noted that these CLDs can also be used to
reconstruct an actual microstructure. While not pursued here,
such reconstructions have been successfully demonstrated in
literature [78–80].

From Fig. 11, it is evident that the normalized MAE for
some of the predicted CLDs in the test dataset were significant
(in excess of 0.25). It was observed that the CLDs for these
test cases were significantly outside the range of the CLDs
used in the calibration dataset. This is most conveniently vi-
sualized in PC space. Figure 12 shows a scatter plot of all
calibration and validation structures in the space of the first
two PCs. Each point in this plot corresponds to one CLD. The
red points indicate the training set. The points in the test set are
colored based on the CLD reconstruction error using theMAE
distribution shown in Fig. 11, e.g., the color bar in Fig. 12
corresponds to MAE values in Fig. 11. It can be clearly seen
from this plot that the highest error occurs in the predictions
that represent extrapolations from the calibration set. One
should therefore be cognizant of this limitation of the
reduced-order models and pay particular attention in the se-
lection of the training dataset. Indeed, one of the main advan-
tages of the protocols employed here is that the low-
dimensional representation of the microstructure using only
a few PC scores can provide this guidance.

In this work, our focus was exclusively on building a
reduced-order model for the process-structure linkage. In prior
work, we have demonstrated the viability of employing the
same overall strategy for structure-property linkages [47].
Because of the use of a consistent framework for microstruc-
ture quantification and its low-dimensional representation in
both classes of linkages, it should now be possible to establish
interoperable process-structure and structure-property link-
ages. These reduced-order PSP linkages are central to the
realization of the ambitious goals set forth in the MGI and
which is implicitly necessary in ICME frameworks. This is
because the reduced-order PSP linkages are the only practical
way forward for conducting a rapid screening of extremely

large design spaces (i.e., strategies for inverse solutions scan-
ning large spaces). Keeping in mind that the main requirement
in such efforts is objective (data-driven) guidance in down-
selection of the design space, the authors offer reduced-order
PSP linkages are the only practical way forward. Of course,
one must keep in mind the limitations on the expected accu-
racy of these models, and develop and implement strategies to
continuously refine and improve the reduced-order models
with new data (both new simulations and new experiments).
Indeed, the reduced-order models can serve as a natural bridge
between the modeling and experimental efforts identifying not
only new opportunities with high potential payoff (e.g., im-
proved properties or performance) but also providing objec-
tive guidance on where (and how much) effort should be
expended (e.g., improving fidelity mainly in the input ranges
that lead to the desired changes in the microstructure).

Conclusions

A novel workflow template is presented to extract process-
structure linkages in microstructure evolution problems
through the utilization of advanced data science techniques.
The presented workflow is scalable and expandable and can
be applied to a broad variety of microstructure evolution
datasets. This workflow consists of four modular steps: (1)
data pre-processing, (2) microstructure quantification, (3) di-
mensionality reduction, and (4) extraction and validation of
process-structure linkages. Each step of the workflow allows
selection and utilization of readily accessible codes from a
large library of repositories.

The application of this template to quantify and predict
synthetic additive manufacturing microstructures has been
demonstrated. A publicly available set of simulated additive
manufacturing microstructures has been created and shared to
support exploration of AM processing parameters and the re-
sultant grain-scale microstructural arrangements. The dataset
consisted of 1599 unique microstructures and would have
been extremely difficult to analyze effectively and compre-
hensively with conventional materials science approaches.
Using the data-science approach presented here, chord length
distribution calculations, principal component analysis, and
multivariate polynomial regression were combined to produce
a reliable reduced-order model, which was also cross-
validated.

Although the process-structure linkage obtained here using
a data science approach showed excellent results, the goal of
this work was to establish a generic workflow to extract
process-structure linkage for microstructure evolution prob-
lems. While the methods used in this case study are specific
for the datasets presented, they can be altered to suit a variety
of investigations and data types. Additionally, this workflow
can be fully automated. This test case has demonstrated that

Fig. 12 Scatter plot of PC1 and PC2 of CLDs: training set is shown in
red color; test set is colored based on the error in the CLD reconstruction
(color bar corresponds toMAE values from Fig. 11) (Color figure online)
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exploration of process-structure linkages can be conducted
most efficiently by exploiting modern data science-based
workflows, the central feature of which is their automated
consideration of a very large number of regression fits leading
to a selection of surrogate models that meet the defined error
and validation criteria.
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