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Abstract

Urinary incontinence adversely affects quality of life and results in an increased financial burden 

for the elderly. Accumulating evidence su00ests a connection between neurotrophins, such as 

brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with 

regard to normal physiological function and the pathophysiological mechanisms of stress urinary 

incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction 

between BDNF and glutamate receptors affects both bladder and external urethral sphincter 

function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and 

postpartum women, potentially correlating with postpartum SUI. Experiments with animal models 

demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the 

recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF 

facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake 

inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding 

the neurophysiological roles of BDNF in maintaining normal urinary function and in the 

pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms.

Introduction

Brain-derived neurotrophic factor (BDNF) is the second most prevalent neurotrophin in the 

body, involved in neural development, the neural regulation of bladder storage and 

emptying, depression and pregnancy. BDNF is also essential for neuroregeneration. Because 

of its high prevalence, dysregulation of BDNF results in multiple disorders and can 

contribute to the development of stress urinary incontinence (SUI) and bladder pain 

syndrome/interstitial cystitis (BPS/IC). The regulation of BDNF-mediated pathways is, 
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therefore, important for the successful treatment of voiding dysfunction and urinary 

incontinence.

This Review covers four major areas. First, a current summary of neuromuscular-related 

treatments for SUI and BPS/IC that might involve the expression of BDNF. Second, an 

overview of BDNF, its signalling mechanisms, and its interactions with glutamate and 

glutamate receptors. These interactions are related to the mechanism of action of potential 

pharmacological therapies for SUI and depression. Third, a review of the literature from 

both clinical practice and animal model data correlating BDNF with postpartum depression 

and urinary incontinence. BDNF has also been implicated in voiding dysfunctions, such as 

overactive bladder (OAB) and BPS/IC, and is thought to be involved in the mechanisms of 

action of both pudendal neuromodulation (PNM) and onabotulinumtoxinA (BoNT/A). The 

fourth section summarizes and provides insight into potential future therapeutic research 

directions based on these mechanisms.

Stress urinary incontinence

SUI is defined as the complaint of involuntary urinary leakage on effort or exertion, or on 

sneezing or coughing.1 Symptoms of SUI are reported by 10–25% ofwomen.2 The incidence 

of SUI in women peaks between 45 and 49 years of age,3 and white race, obesity, pregnancy 

and vaginal childbirth are all potential risk factors for SUI.4,5 Over US$12 billion are spent 

annually for the treatment of SUI in the USA.2 The quality-of-life effects of SUI include the 

avoidance of social and recreational activities, fear of unpleasant odour, fear of urine loss 

during vaginal intercourse and secondary depression, when SUI is severe.6

Injury to the urinary continence mechanism through its structural support (pelvic floor 

muscles and connective tissue) and/or its neuromuscular component (external urethral 

sphincter and pudendal nerve) can result in SUI.7 Childbirth has long been an associated risk 

factor for the development of SUI, and vaginal delivery confers a threefold greater risk of 

developing SUI than caesarean section.8 Vaginal childbirth can result in SUI through 

damage to ligaments, fascial support and levator ani muscles.9 Furthermore, vaginal 

childbirth can compress and injure the pudendal nerve as the nerve passes between the 

sacrospinous and sacrotuberous ligaments.10,11

Allen et al.12 demonstrated that a longer second stage of labour and a higher birthweight 

baby are correlated with SUI and can increase pudendal nerve terminal motor latencies, 

which are demonstrative of nerve injury and dysfunction. Electromyographic evidence of 

reinnervation of the pelvic floor muscles was found in 80% of women studied postpartum.12 

Persistently prolonged pudendal nerve terminal motor latencies were observed 5 years after 

vaginal delivery, with evidence of partial reinnervation after pudendal nerve injury, and were 

more marked in women with SUI.11 Pudendal nerve damage with resultant SUI can persist 

≥7 years after childbirth.13 External urethral sphincter electromyographic activity was 

significantly reduced in third trimester primigravidas compared to nulligravidas, and these 

changes persisted 6 months postpartum.14 In addition, women with SUI who have had 

previous anti-incontinence surgery have more significant neural injury than those without 

previous anti-incontinence surgery,15 implicating pudendal nerve damage as a likely 

aetiological factor in SUI after childbirth.
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The decision to initiate treatment for SUI depends upon the degree to which the patient is 

bothered by the symptoms. Among currently available treatments for SUI, only a few 

address the neuromuscular component of the continence mechanism. Pelvic-floor-muscle 

exercises and behavioural modifications are neuromuscular rehabilitative therapies, and they 

remain first-line treatments for SUI. Miller et al.16 conducted a small, randomized trial and 

found that women who were trained to contract their pelvic floor muscles during a cough, 

sneeze or laugh had less urine loss than those women who did not contract their pelvic floor 

muscles. Postpartum pelvic floor physical therapy is effective in the prevention and 

treatment of SUI by virtue of increasing pelvic muscle strength.17 However, cure rates 

remain low following pelvic physical therapy years after childbirth compared with those 

associated with surgical treatment options, su00esting incomplete repair of the 

neuromuscular continence mechanism with pelvic floor physical therapy alone.

Duloxetine is a dual serotonin and norepinephrine reuptake inhibitor that acts to stimulate 

pudendal motor neurons and to increase both external urethral sphincter and pelvic floor 

muscle contractility.18 Duloxetine has some efficacy in the treatment of SUI, and decreases 

incontinence episode frequency compared with placebo, although it remains unapproved for 

this indication in the USA, in part because of the 23% incidence of nausea associated with 

its use.19 Mariappan et al.20 performed a meta-analysis of available randomized trial data 

and concluded that duloxetine decreased the frequency of SUI episodes and improved 

quality of life, with mild nausea noted commonly. Duloxetine appears to act in part via a 

BDNF-related mechanism, so the ubiquity of BDNF could account for these systemic side 

effects.

Imipramine has also been used to treat SUI, and is thought to reduce incontinence by 

increasing urethral resistance. Lin et at.21 demonstrated a 35% cure rate among women 

given 25 mg imipramine orally, three times a day for 3 months, and success correlated with 

higher urethral closure pressure. As with duloxetine, a BDNF-mediated mechanism could be 

involved in the pharmacological response to imipramine.

Bladder pain syndrome/interstitial cystitis

Bladder pain syndrome (BPS) is defined by the International Continence Society as 

suprapubic pain related to bladder filling, accompanied by other bladder storage symptoms, 

such as increased urinary frequency and urgency, in the absence of proven infection or other 

obvious pathology.1 BPS/IC represents a broader group of patients who have not only 

suprapubic pain but also pain or discomfort throughout the pelvis and/or lower abdomen and 

back.22 The urgency seen with BPS/IC is constant, and these patients void to avoid or relieve 

pain. The prevalence of BPS/IC in women in the USA is 3.4–7.9 million, or approximately 

6.5% of all adult women.23 The diseases most commonly associated with BPS/IC include 

fibromyalgia (22%), chronic fatigue syndrome (20%) and irritable bowel syndrome (27%).24 

These associations su00est the strong likelihood that chronic neuropathic pain persists in 

patients with BPS/ IC. Cystoscopy is recommended to determine if any of these patients 

have ulcerative interstitial cystitis, a subtype defined as having lesions that are inflamed, 

friable and denuded.
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The pathogenesis of BPS/IC is thought to result from one or more aetiologies, such as a 

defect in epithelial permeability, mast-cell activation and neurogenic inflammation.25 In 

support of neurogenic inflammation as the cause, increased sympathetic neural activity is 

seen in BPS/IC,26 tri00ering inflammation through the release of neurokinin A, substance P 

and calcitonin gene-related peptide.27 Mast-cell degranulation and urothelial injury with 

increased permeability have been shown to result from the actions of these neuropeptide 

mediators. Bladder biopsies from patients with BPS/IC demonstrate elevated levels of nerve 

growth factor (NGF).28 The central nervous system (CNS) upregulation and subsequent 

chronic neuropathic pain seen in patients with BPS/IC is thought to continue after the tissue 

damage resolves, and associated pelvic floor dysregulation often persists as a maladaptive 

mechanism.29

The American Urological Association guideline for the diagnosis and treatment of BPS/IC, 

published in 2011, recommends that pain management be considered throughout the various 

courses of treatment to maximize function and minimize pain and adverse effects.30 First-

line conservative therapies include dietary restriction of caffeine and citrus fruits and 

behavioural modifications, such as pelvic-floor-muscle relaxation during urination and 

defecation, and stress reduction. Second-line treatments include pelvic-floor physical 

therapy, implementing myofascial release of tri00er points. In addition, oral therapies such 

as amitriptyline, gabapentin, hydroxyzine and pentosan polysulfate can be tried. If first-line 

and second-line treatments have failed to provide adequate symptomatic control, cystoscopy 

under anaesthesia with short-duration, low-pressure hydrodistention can be undertaken. 

Neuromodulation and intradetrusor BoNT/A are recommended as fourth-line and fifth-line 

treatments, respectively, and both BDNF and glutamate appear to have roles in the 

mechanism of action of these treatments.

Brain-derived neurotrophic factor

Neurotrophins, including BDNF, NGF, neurotrophin-3 (NT-3) and neurotrophin-4/5 

(NT-4/5), are a group of related proteins that share similar characteristics and biological 

functions.31 The actions of neurotrophins depend on interactions with the transmembrane 

receptor proteins p75 neurotrophin receptor (p75NTR) and tropomyosin-related kinases 

(Trks).32 Neurotrophins have specific binding affinities for Trk receptor isoforms: NGF 

binds to Trk-A, BDNF and NT-4/5 bind to Trk-B and NT-3 binds to Trk-C and, to a lesser 

extent, Trk-A.31 Phosphorylation of Trk receptors upon binding of neurotrophins leads to 

activation of three main intracellular signalling pathways: the phosphatidylinositol 3-kinase 

(PI3K)–Akt pathway, Ras–mitogen-activated protein kinase (MAPK) pathway and the 

phospholipase Cγ (PLCγ)–Ca2+ pathway.33,34 The activation of the Ras–MAPK pathway 

promotes cell survival, cell differentiation and synaptic plasticity through extracellular 

signal-regulated kinase (ERK) and MAPK/ERK kinase (MEK).34 p75NTR, a member of the 

tumour necrosis factor receptor family, binds all neurotrophins with similar affinity and 

participates in the process of cell apoptosis.35

BDNF and glutamate receptor signalling

Signalling in lower urinary tract reflexes—BDNF has a neuromodulatory role at the 

spinal cord level, enhancing glutamate-mediated responses that have a key role in 
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maintaining lower urinary tract function (Figure 1). Frias et al.36 demonstrated that, although 

acute intrathecal BDNF injection induced detrusor overactivity in normal rats, treatment 

with a Trk-B receptor antagonist improved bladder function and relieved inflammation in 

rats with cyclophosphamide-induced cystitis in an animal model of BPS/IC. Similarly, ERK 

is upregulated in the lumbosacral spinal cord during bladder inflammation, and blocking the 

BDNF–Trk-B pathway via intravenous Trk-B–Ig2 treatment reduces detrusor overactivity 

and suppresses ERK activation in animal models of cystitis.37,38 In the rat model of 

cyclophosphamide-induced cystitis, phosphorylated ERK expression is strongly upregulated 

within the urothelium, and treatment with an ERK phosphorylation inhibitor improves 

bladder function.39 This finding su00ests that the BDNF–Trk-B signalling-mediated Ras–

MAPK pathway exerts regulatory effects on bladder function, and that dysregulation of this 

mechanism can cause bladder inflammation and detrusor overactivity. Further experiments 

with the animal model of cyclophosphamide-induced cystitis seemingly contradict this 

mechanism by demonstrating that, although BDNF mRNA expression is significantly 

increased in bladder tissue, BDNF protein dramatically decreases.40 However, BDNF 

protein expression is increased in dorsal root ganglion cells of bladder afferents, su00esting 

that BDNF acts on bladder innervation, rather than the detrusor muscle itself, to modulate 

lower urinary tract reflexes.40 Upregulation of BDNF in the dorsal root ganglion is linked to 

the PI3K–Akt pathway, which is regulated by the NGF–Trk-A signalling cascade,41 

su00esting an interaction between NGF and BDNF in their neuromodulatory function 

(Figure 1).

Glutamate, a major excitatory neurotransmitter, exerts actions through both ionotropic and 

metabotropic glutamate receptors.42 N-methyl-D-aspartate (NMDA) receptors and a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mediating ligand-

gated, nonselective cation channels, are two major subtypes of inotropic glutamate receptors.
42,43 Glutamate acts to control lower urinary tract function in the pontine micturition center, 

in the lumbosacral dorsal horn, in parasympathetic preganglionic neurons and in Onuf’s 

nucleus.44 Intrathecal administration of NMDA or AMPA receptor antagonists in 

unanaesthetized decerebrate rats significantly depresses bladder contractions and external 

urethral sphincter activity.45,46 Similar results have also been achieved using intrathecal 

metabotropic glutamate receptor antagonists,47–49 and intracerebroventricular injection of 

NMDA or AMPA receptor antagonists,50 su00esting that glutamate receptors at both spinal 

and supraspinal levels exert an excitatory neuromodulatory influence on both micturition 

and the guarding reflex.

Regulatory mechanisms—In the CNS, the regulatory mechanisms involving BDNF and 

glutamate receptors have been extensively investigated (Figure 2). Presynaptic BDNF–Trk-B 

signalling in glutamatergic terminals increases Ca2+ concentration, facilitates glutamate 

release and elevates NMDA receptor activity.51–53 BDNF activates postsynaptic Trk-B 

receptors and leads to increased tyrosine phosphorylation and the activation of NMDA 

receptors through the Src family nonreceptor-type tyrosine-protein kinase Fyn.54–56 

Furthermore, in cultured neocortical neurons of wild type mice, BDNF increases AMPA 

protein expression, but in the neocortical neurons of homozygous Fyn knockout mice, 

Song et al. Page 5

Nat Rev Urol. Author manuscript; available in PMC 2020 January 07.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



BDNF treatment does not affect AMPA protein expression, su00esting that Fyn plays a key 

role in BDNF-mediated AMPA regulation.57

The PLCγ pathway of BDNF-Trk-B signalling promotes the influx of Ca2+ through 

transient receptor potential (TRP) channels, followed by the increased inward flow of Ca2+ 

through NMDA receptors.58 The latter can further activate calcium/calmodulin-dependent 

protein kinase II (CaMKII), which modulates the activity and trafficking of both NMDA and 

AMPA receptors.59,60 Recent findings su00est that the Ras–MAPK pathway mediates the 

transcription of NMDA receptor subunits by activating cAMP-responsive element-binding 

protein (CREB) and early growth response protein 3 (EGR3) in the nucleus, increasing 

NMDA receptor expression.61

Activation of glutamate receptors can in turn modulate BDNF expression, and is thought to 

result in neuroprotection (Figure 2). Stimulation of AMPA receptors activates the Src family 

nonreceptor tyrosine-protein kinase Lyn, which subsequently activates ERK in the Ras–

MAPK pathway and promotes BDNF gene transcription.62,63 BDNF can further activate 

Trk-B receptors in an autocrine fashion.63 AMPA receptor agonists increase the influx of 

Ca2+ through NMDA receptors and/ or activation of L-type voltage-gated Ca2+ channels, 

followed by increased BDNF mRNA expression through a CREB-dependent mechanism.
64,65

Modulation of CNS disorders—The interaction between BDNF and glutamate receptors 

is associated with both physiological and pathophysiological activities within the CNS. 

Regulated by BDNF–Trk-B signalling, NMDA and AMPA receptors participate in the 

synaptic plasticity of long-term potentiation and long-term psychological depression.66 

Abnormalities in this regulatory mechanism could contribute to neuronal dysfunction and 

neurodegeneration.67 For example, in the hippocampus of patients with seizure disorders, a 

high level of BDNF and Trk-B expression was found, which is thought to induce increased 

NMDA receptor currents.68

Antidepressants for depression and SUI

The role of BDNF and glutamate signalling—An insufficiency of BDNF is thought to 

have a critical role in the pathophysiology of depression: BDNF is significantly decreased in 

the hippocampus, serum and plasma of patients with depression, as well as in animal models 

of depression,69,70 and the local application of exogenous BDNF to the hippocampus 

produces antidepressant effects.71 Furthermore, antidepressant treatment with selective 

serotonin (5-hydroxytryptamine) reuptake inhibitors (SSRIs) significantly enhances BDNF 

levels, and BDNF blockade attenuates the effects of antidepressant therapy.72–76 Treatment 

with SSRIs can increase extracellular serotonin concentration and activate glutamate 

receptors, which is followed by the influx of Ca2+, which further induces CREB-mediated 

BDNF transcription.77 The increased BDNF expression that results in turn enhances Ras–

MAPK and PI3K–Akt signalling cascades, which are implicated in the treatment response to 

SSRIs in patients with depression.77–79

The mechanism of action of duloxetine—Duloxetine is used for the treatment of 

depression, and also has a therapeutic effect in the treatment of lower urinary tract disorders 
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(Figure 3).80–82 Serotonin and norepinephrine terminals within the spinal cord are associated 

with lower urinary tract reflex pathways, as urine storage and emptying are both modified by 

serotonin and norepinephrine agonists and antagonists.83–85 Serotonin and norepinephrine 

receptors have been found in Lissauer’s tract and the sacral parasympathetic nucleus, which 

contain bladder primary afferent fibres and preganglionic neurons, respectively.86 In general, 

serotonin relaxes detrusor muscle and increases bladder capacity during urine storage, 

possibly by enhancing AMPA and NMDA signalling in the dorsal root ganglion, which 

facilitates the sympathetic storage reflex.86,87 Thus, duloxetine has been studied in animal 

models of urinary incontinence and has been used clinically to treat mixed urinary 

incontinence.88–90 Although duloxetine decreases bladder excitation, it has no effect on 

bladder contraction amplitude or duration, indicating that the mechanism of action is via 

afferent modulation within the dorsal horn of the spinal cord.18

Onuf’s nucleus, the location of pudendal motor neurons, is densely populated with serotonin 

and norepinephrine terminals.91 During urine storage, duloxetine treatment leads to 

increased levels of serotonin and norepinephrine within the sacral spinal cord, potentiating 

excitation of glutamate signalling and activating the pudendal nerve to prevent urine leakage.
92 In contrast, during urinary expulsion, serotonin and norepinephrine have little effect upon 

the voiding phase, owing to the absence of excitatory glutamatergic activation.92 

Consequently, duloxetine has been used to successfully treat SUI by increasing urethral 

outlet resistance without impairing bladder emptying.

Importantly, the effects of increased serotonin and norepinephrine, caused by duloxetine 

treatment, are not mediated through direct muscle contraction, but rather through the 

regulation of other receptors.86,92 Because duloxetine treatment significantly elevates BDNF 

expression and facilitates glutamate signalling, mechanisms which increase BDNF within 

the spinal cord could be another therapeutic avenue for the treatment of SUI, without the 

side effects of duloxetine.

BDNF and postpartum SUI

BDNF levels decrease in pregnancy—Clinical studies have demonstrated that BDNF 

levels are significantly decreased between the thirtieth and thirty-seventh weeks of 

pregnancy, and that they can remain low for 2–3 months postpartum.93,94 An investigation 

ofwomen pregnant for ≥28 weeks confirmed that serum BDNF levels are half those observed 

in nonpregnant women.95 Garcés et al.96 demonstrated in both rats and humans that, 

although BDNF mRNA expression is significantly increased with advancing gestation, 

serum protein levels remain low throughout almost the entire pregnancy. Dysregulation of 

BDNF expression during gestation is associated with multiple disorders, including, anxiety 

and depression,97,98 preeclampsia,99 intrauterine growth restriction,100 gestational diabetes 

and preterm deliveries.96,101

The mechanism underlying the decrease in peripheral BDNF during gestation is unclear. 

Although depression can lead to decreased BDNF in both the CNS and serum, serum BDNF 

was also found to be decreased in pregnant women without psychiatric conditions.95 Nearly 

all the BDNF in serum is transported and released by platelets. Platelet counts decrease in 

pregnancy,102–104 su00esting that low platelets could be a mechanism for decreased BDNF 
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during gestation. However, Lommatzsch et al.93 failed to show a significant correlation 

between BDNF and platelet counts in pregnant women. Alternative mechanisms for the 

decrease in BDNF during pregnancy, none of which provides a full explanation, include fetal 

sequestration, haemodilution and decreased gonadal steroids.105–107

Reduced levels of BDNF are seen in both the central and peripheral nervous systems in 

depression, so the downregulated serum BDNF levels observed during and after pregnancy 

could put women at risk for developing mood disorders. An investigation of 40 pregnant and 

40 nonpregnant women demonstrated that the reduced BDNF levels in pregnant women 

correlated with depression during and after pregnancy.93 The results of a cross-sectional 

study of 190 postpartum women su00ested that women with decreased BDNF expression 

were more vulnerable to postpartum mood disorders.98 Vega et al.94 further demonstrated 

that significantly increased BDNF levels during and after pregnancy were detected during 

aerobic exercise, which could reduce the incidence of depression in these women.

Changes in BDNF levels in animal models of SUI—Animal models have provided 

valuable insights into the likely mechanisms of SUI-related maternal injuries during vaginal 

delivery. Bilateral pudendal nerve crush (PNC) in rats produces a reversible model for 

postpartum SUI that replicates the pudendal nerve injury in Alcock’s canal during vaginal 

childbirth.108–110 In this model, BDNF expression increases in the external urethral 

sphincter 1 day after PNC,111 promoting pudendal neuroregeneration via the retrograde 

transport of BDNF from the external urethral sphincter to its innervating motor neuron cell 

bodies within Onuf’s nucleus.112 Similarly, BDNF expression is enhanced in the target 

muscle after other peripheral nerve injuries, such as in the gastrocnemius muscle following 

sciatic nerve injury.113

Vaginal distension, another animal model of SUI, leads to hypoxia and overstretching of the 

external urethral sphincter and urethral smooth muscle, mimicking the urethrovaginal 

damage that occurs during the second phase of labour.114 In contrast to PNC, BDNF is 

downregulated within the external urethral sphincter following vaginal distension.111 

Although BDNF promotes the regeneration and survival of injured peripheral nerves, it 

inhibits agrin-induced acetylcholine receptor clustering, which is considered to be essential 

for development and repair of neuromuscular junctions.115,116 In addition, BDNF is 

dramatically reduced during myogenic differentiation in cultured myoblasts. Knocking down 

the BDNF gene leads to enhanced myogenic differentiation of myoblasts, implying that 

BDNF is inhibitory to myogenic regeneration and differentiation.117 Thus, external urethral 

sphincter recovery after vaginal delivery could be maximized by reduction of BDNF 

production in the external urethral sphincter, despite the need for BDNF upregulation in 

pudendal nerve cell bodies for pudendal neuroregeneration after injury in childbirth.

Combining PNC and vaginal distension in the same animal produces a more persistent and 

durable injury to the continence mechanism, and is considered to be a more clinically 

relevant SUI model than either injury alone.111,114,118 In this combination injury model, 

BDNF is only mildly upregulated compared with uninjured controls, and upregulation is 

much reduced compared with PNC alone.111 The inadequate enhancement of BDNF after 

combined PNC and vaginal distension could facilitate external urethral sphincter restoration, 
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but at the same time impair pudendal nerve regeneration.109 This mechanism could partly 

explain the persistent external urethral sphincter denervation, despite normal 

electromyography, that is observed 9 weeks after the combined injury.119 Insufficient 

pudendal nerve regeneration could also explain the prolonged pudendal nerve latencies that 

are observed in patients with SUI 7 years after vaginal delivery.11,13 Consistent with the 

hypothesis that pudendal nerve regeneration is mediated by BDNF, the direct application of 

BDNF to the pudendal nerve after PNC with vaginal distension in rats enhanced recovery of 

the pudendal nerve and restoration of external urethral sphincter anatomy and function.120

Taken together with reduced BDNF levels during late pregnancy and postpartum, data from 

animal models su00est that postpartum BDNF levels are insufficient for complete pudendal 

nerve regeneration after vaginal delivery even if SUI resolves. We hypothesize that, with a 

partially denervated external urethral sphincter, women might or might not have SUI 

symptoms postpartum. However, innervation of the external urethral sphincter probably does 

not completely recover. As a result, the effects of ageing, with changing perimenopausal 

oestrogen levels, predispose women to develop SUI because of insufficient pudendal 

neuroregeneration, as supported by epidemiological research.121,122

BDNF and pudendal neuromodulation

Although not currently approved by the FDA, clinical studies have su00ested that pudendal 

neuromodulation could be an effective treatment for patients with lower urinary tract 

symptoms including urgency/frequency and urge urinary incontinence.123 A prospective, 

single-blinded, randomized crossover trial, involving 30 patients with voiding dysfunction, 

compared the symptom reduction rate between pudendal neuromodulation and sacral 

neuromodulation, an FDA-approved treatment for urgency/frequency and urge urinary 

incontinence. The overall reduction in voiding symptoms was 63% with pudendal 

neuromodulation and 46% with sacral neuromodulation.124 Peters et al.125 further 

demonstrated that, among 84 patients with BPS/IC or OAB, 71% reported a ≥50% level of 

symptom improvement with pudendal neuromodulation. Patients who fail sacral 

neuromodulation can alternatively respond to pudendal neuromodulation.125

The exact mechanism of the effects of pudendal neuromodulation on lower urinary tract 

function remains unclear. Using a model of bladder overactivity in cats, Mally et al.126 

demonstrated that metabotropic glutamate receptor 5 (mGluR5) antagonism significantly 

decreases the bladder inhibition effects of pudendal neuromodulation. The same group also 

showed that serotonergic 5-HT3 receptors are involved in the mechanism of action of 

pudendal neuromodulation.127 Moreover, using single time-point pudendal nerve motor-

branch electrical stimulation, bladder contractility was temporarily inhibited, and the 

expression of BDNF in Onuf’s nucleus was significantly enhanced. This response su00ests 

that BDNF could also be involved in determining the efficacy of pudendal neuromodulation, 

and implicates the synergetic effects of BDNF, glutamate and serotonin in the mechanism of 

action of pudendal neuromodulation.128
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BDNF treatment of voiding dysfunctions

Neurotrophins, especially NGF, have been found in high levels in the urine of patients with 

OAB and BPS/IC.129,130 The urinary NGF:creatinine ratio is elevated in women with 

BPS/IC and correlated with severity of pain.131,132 Likewise, recent evidence su00ests that 

the urinary BDNF level is upregulated in OAB patients.133 Thus, both NGF and BDNF have 

been recognized as promising biomarkers for the diagnosis of OAB.134

Intratrigonal injection of BoNT/A has been used to treat OAB, neurogenic detrusor 

overactivity and BPS/IC.135 In a 12-month follow-up study, Pinto et al.136 demonstrated that 

intravesical BoNT/A treatment relieved BPS/IC symptoms and significantly suppressed 

urinary levels of NGF and BDNF. The same group reported that patients with ulcerative and 

nonulcerative BPS/IC responded to BoNT/A injections with dramatically improved bladder 

function and reduced urinary NGF, BDNF and glial-cell-derived neurotrophic factor levels.
137 BoNT/A decreases acetylcholine release from parasympathetic fibres, thereby reducing 

detrusor overactivity.138 Bladder sensory activity is also reduced by BoNT/A treatment and 

this effect is thought to be caused by suppression of calcitonin gene-related peptide and 

transient receptor potential vanilloid-1 receptors and purinergic receptors.139–142 BoNT/A 

injections also prevent glutamate neurotransmitter release in bladder dorsal root ganglion 

cells, su00esting a probable connection to the BDNF-mediated signalling pathway.143

Conclusions and future directions

BDNF is involved in both normal and abnormal lower urinary tract function. Clinical 

evidence demonstrates a connection between BDNF and SUI, OAB and BPS/ IC.134 

Investigations with animal models demonstrate that increased BDNF levels facilitate 

external urethral sphincter reinnervation, and that BDNF is essential for normal sphincter 

function.109 In addition, BDNF activates glutamate receptors in the dorsal root ganglion, 

thereby participating in the regulation of bladder contraction.36,44,77 Modulating BDNF 

could have a role in the treatment of SUI and other lower urinary tract dysfunctions.

Nonetheless, much research remains to be completed before these findings can be applied to 

clinical practice. A systematic review published in 2013 summarized eight case-control 

studies of the accuracy of diagnosis of OAB using urinary NGF levels, but did not perform a 

meta-analysis because of the inconsistency of the reported data. Thus, the use of urinary 

NGF levels was not recommended as an adjunct for OAB diagnosis.144 Moreover, although 

the dysregulation of BDNF-mediated glutamate receptor signalling might lead to 

dysfunction of micturition and continence, the mechanism underlying this process has not 

been fully elucidated. How the interaction between BDNF and glutamate receptors within 

the spinal cord and dorsal root ganglion results in normal or abnormal voiding is not well 

known. Future translational research into the role of BDNF could impact our understanding 

of the mechanism of OAB and BPS/IC development and pave the way for development of 

more effective treatments.

Further research is also needed both in animal models and clinical studies linking pregnancy, 

vaginal delivery, BDNF regulation and the development of SUI. For example, clinical trials 

could be performed to determine if the reduction in BDNF levels during or after pregnancy 
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is associated with postpartum SUI. Animal studies could be used to test alternative methods 

of upregulating BDNF in pudendal nerve cell bodies without causing an increase in the 

external urethral sphincter. Electrical stimulation is one such potential treatment, as animal 

experiments have demonstrated that a single subthreshold pudendal nerve stimulation 

session can upregulate BDNF in Onuf’s nucleus for up to one week.128 Despite the great 

need for future research, initial studies in animals have set the stage for the modulation of 

BDNF as a treatment for SUI and other lower urinary tract dysfunctions, and future work 

will focus and clarify this concept in preparation for translation to the clinic.
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Key points

■ Interactions between brain-derived neurotrophic factor (BDNF) and 

glutamate receptors participate in regulation of lower urinary tract function

■ BDNF-mediated glutamate signalling could have a role in the 

pharmacological mechanism of action of duloxetine

■ BDNF helps to maintain the continence mechanism by facilitation of 

pudendal nerve restoration after injury during childbirth

■ Both pudendal neuromodulation and onabotulinumtoxinA injection 

demonstrate a possible BDNF-related mechanism of action

■ Manipulation of BDNF levels, by electrical stimulation or other indirect 

methods, is a potential therapeutic strategy in the management of lower 

urinary tract symptoms
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Review criteria

The primary literature was obtained by searching the MEDLINE database for the 

keywords “BDNF” and/or “bladder” in combination with the additional keywords: “stress 

urinary incontinence”, “overactive bladder”, “bladder pain syndrome/interstitial cystitis”, 

“neurogenic bladder”, “glutamate”, “depression”, “duloxetine”, “sacral 

neuromodulation” and “onabotulinum toxin-A”. Cited references are peer-reviewed full-

text manuscripts published in English.
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Figure 1 |. 
The neuromodulatory effects of BDNF in the dorsal root ganglion, in relation to lower 

urinary tract function. BDNF expression is mediated by the NGF-dependent PI3K–Akt 

pathway. Expression of NMDA and AMPA receptors is regulated by the Ras–MAPK 

pathway, and modulated by BDNF–Trk-B signalling. Abbreviations: Akt, protein kinase B; 

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived 

neurotrophic factor; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated 

protein kinase; MEK, MAPK/ERK kinase; NGF, nerve growth factor; NMDA, N-methyl-D-

aspartate; PDK, phosphoinositide-dependent kinase; PI3K, phosphatidylinositol 3-kinase; 

Ras, Ras small GTPase family proteins; Trk, tropomyosin-related kinase.
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Figure 2 |. 
Schematic diagram of the interaction between BDNF and glutamate receptors. BDNF binds 

to the extracellular domain of Trk-B receptor, activating an intracellular signalling cascade 

that includes PI3K–Akt, Ras–MAPK and the PLCγ–Ca2+ pathways. a | BDNF can facilitate 

NMDA receptor and AMPA receptor signalling through Fyn and PLCγ-Ca2+ and CaMKII 

pathways. NMDA and AMPA receptor expression is enhanced through the BDNF-mediated 

MAPK pathway. b | Glutamate receptors modulate BDNF signalling through Lyn and 

calcium signalling, which further induces BDNF expression and secretion in an autocrine 

fashion. Abbreviations: Akt, protein kinase B; AMPA, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid; BDNF, brain-derived neurotrophic factor; CaMKII, calcium/

calmodulin-dependent protein kinase II; CREB, cAMP-responsive element-binding protein; 

DAG, diacylglycerol; EGR3, early growth response protein 3; ERK, extracellular signal-

regulated kinase; Fyn, tyrosine-protein kinase Fyn; IP3, inositol trisphosphate; Lyn, tyrosine-

protein kinase Lyn; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; 

NmDA, N-methyl-D-aspartate; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; 

PLCγ, phospholipase Cγ; Ras, Ras small GTPase family proteins; Trk-B, tropomyosin-

related kinase B; TRPC3, short transient receptor potential channel 3; VGCC, voltage-gated 

calcium channel.
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Figure 3 |. 
BDNF regulation of lower urinary tract function. BDNF facilitates PN function and could 

increase EUS muscle tone (1). Retrograde transport of BDNF from the bladder to the DRG 

has a role in DOA (2). BDNF-mediated glutamate signalling participates in bladder and EUS 

contractility (3). Duloxetine promotes BDNF expression and has a critical role in 

maintaining continence (4). The mechanism of duloxetine in treating overactive bladder is to 

promote the sympathetic storage reflex and increase bladder capacity during urine storage 

(5). Abbreviations: BBB, blood–brain barrier; BDNF, brain-derived neurotrophic factor; 

CNS, central nervous system; DOA, detrusor overactivity; DRG, dorsal root ganglion; EUS, 

external urethral sphincter; NGF, nerve growth factor; PN, pudendal nerve; PNS, peripheral 

nervous system; SUI, stress urinary incontinence; Trk-A, tropomyosin-related kinase A.
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