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Abstract

PTEN is among the most frequently inactivated tumour suppressor genes in sporadic cancer.
PTEN has dual protein and lipid phosphatase activity, and its tumour suppressor activity is
dependent on its lipid phosphatase activity, which negatively regulates the PI3K-AKT-mTOR
pathwayl2. Germline mutations in PTEN have been described in a variety of rare syndromes that
are collectively known as the PTEN hamartoma tumour syndromes (PHTS). Cowden syndrome is
the best-described syndrome within PHTS, with approximately 80% of patients having germline
PTEN mutations®. Patients with Cowden syndrome have an increased incidence of cancers of the
breast, thyroid and endometrium, which correspond to sporadic tumour types that commonly
exhibit somatic PTEN inactivation. Pten deletion in mice leads to Cowden syndrome-like
phenotypes, and tissue-specific Pfen deletion has provided clues to the role of PTEN mutation and
loss in specific tumour types. Studying PTEN in the continuum of rare syndromes, common
cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will
inform targeted drug development.

The tumour suppressor PTEN was first identified in 1997 by deletion mapping of brain,
breast and prostate cancers*®. Shortly thereafter, germline 2#7EN mutations were linked to
Cowden syndrome® and other proliferative syndromes’. The term PTEN hamartoma tumour
syndrome (PHTS) is now used to unify these seemingly disparate clinical syndromes into
one entity (see the PHTS GeneReview on the US National Library of Medicine website; see
Further information). Patients with PHTS are a rare but ideal population to study PTEN
biology and targeted drug development, as loss of PTEN function seems to be driving many
of the phenotypic features of this syndrome. As is common in most tumours, sporadic (non-
hereditary) tumours with somatic PTEN alteration also carry other genetic alterations,
making the role of PTEN more ambiguous. As discussed below, mouse models have shown
that Pren deletion alone is sufficient to cause tumorigenesis in certain tissues but not in
others. However, even when deletion of PTEN alone has minimal effects, it frequently
contributes to tumorigenesis in the context of other genetic alterations. Efforts to compensate
for loss of Pten by inhibiting the PIBK-AKT-mTOR pathway through genetic or
pharmacological means can be investigated in genetically defined mouse models. PHTS
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provides a defined population for clinical trials of pathway-targeted therapies. This Review
focuses on tumours types that occur in Cowden syndrome, that exhibit somatic PTEN
alterations and that develop in mouse models engineered to lose Pren. The intersection of
these three groups provides strong evidence for the functional importance of PTEN
alteration in specific tumour types.

PTEN biology

The PTEN gene spans 105 kb and includes nine exons on chromosome 10g23. Tumour
suppressor function requires both the phosphatase domain and the C2 or lipid membrane-
binding domain (FIG. 1), and mutations have been reported throughout the protein. The lipid
phosphatase activity of PTEN dephosphorylates the 3-phosphoinositide products of PI3K. 3-
phosphoinositides can activate important survival kinases, such as phosphoinositide-
dependent kinase 1 (PDK1; encoded by PDPKI) and AKT, as well as other proteins that are
not kinases (FIG. 1). PTEN therefore negatively regulates the AKT pathway, leading to
decreased phosphorylation of AKT substrates such as tuberous sclerosis 2 (TSC2) and
PRAS40 (encoded by AKT7151I) that control mTOR activity, p27 (encoded by CDKN1B),
p21 (encoded by CDKN1A), glycogen synthase kinase 3 (GSK3A and GSK3B), BCL-2-
associated agonist of cell death (BAD), apoptosis signal regulating kinase 1 (MAP3KS5; also
known as ASK1), WT1 regulator PAWR (also known as PAR4) and CHK1, as well as
members of the fork-head transcription factor family (for example, FOXO1, FOXO3 and
FOX04)8 and others. Changes in phosphorylation alter the activity and/or localization of
these proteins, which in turn affects processes such as cell cycle progression, metabolism,
migration, apoptosis, transcription and translation.

Although the lipid phosphatase activity of PTEN is important for its tumour suppressor
functions, other functions of PTEN may also prove to be important. For example, several
studies have demonstrated that PTEN protein phosphatase activity is important for its
functions in cell cycle arrest and inhibition of cell invasion in vitre®=13. The lipid
phosphatase activity of PTEN is thought to mostly occur at the cell membrane, but PTEN
has also demonstrated nuclear functions. The binding of PTEN to centromere protein C1
(CENP-C1) is required for centrosome stability, and its nuclear localization is required for
DNA double-strand break (DSB) repair that is mediated by DNA repair protein RAD51
(REF. 14). PTEN also regulates the tumour suppressor function of anaphase-promoting
complex (APC) and its regulator E-cadherin (encoded by CDH1) in the nucleus,
independently of its lipid phosphatase activityl®. Altered APC-CDH1 activity has been
implicated in multiple tumour types?8.

PTEN mutations and cancer.

Germline mutations resulting in the loss of PTEN function or in reduced levels of PTEN are
found in approximately 80% of patients with Cowden syndrome?, and PTEN deletion,
mutation or alteration occurs in many sporadic tumours!’. The Sanger Institute maintains a
database of PTEN mutations with 1,904 annotated mutations for 30 tumour types (see the
Catalogue of Somatic Mutations in Cancer (COSMIC) website; see Further information).
From this database, it is clear that in sporadic tumours, mutations, small insertions and
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deletions occur throughout the length of PTEN, although there are higher frequency
mutations, known as mutation hotspots, at specific amino acids. However, mutations at these
hotspots are not specific for a particular type of cancer. For example, more than 250 different
PTEN mutations have been described for endometrial tumours, but 19% of the 632 reported
mutations correspond to Arg130 within the phosphatase catalytic site. Mutations in Arg130
occur in other tumour types (such as 4% of central nervous system (CNS) tumours), but they
are most frequent in endometrial and ovarian tumours (19%). Mutant PTEN was reported in
18% of CNS tumours, with the highest frequency (6% of PTEN mutations) corresponding to
Arg.

Germline PTEN mutations in PHTS are found throughout most of the PTEN coding region,
with the exception of exon 9, which encodes the carboxy-terminal 63 amino acids'8; 40%
occur within exon 5, which encodes the phosphatase domain8. In sporadic tumours, only
2% of reported sporadic PTEN mutations occur within exon 9 and 27% occur within exon 5.
Correlations between specific PTEN mutations and disease severity in PHTS have been
suggested319. However, larger data sets and more detailed functional mapping of PTEN will
certainly allow more informed models. Allelic or total deletion of PTEN is a frequent
occurrence in cancers such as breast and prostate cancer, and melanoma and glioma (see the
Tumorscape website; see Further information). A subset of patients with Cowden syndrome
carries germline mutations in the P7EN promoter or in potential splice donor and acceptor
sites20, Splicing alterations can lead to exon skipping that alters PTEN function, but
promoter methylation has been shown to decrease apparently normal PTENZ2L. In mice,
decreasing PTEN dosage correlates with increasing tumour susceptibility?2:23, This suggests
that reduced levels of normal PTEN are insufficient for its tumour suppressor function and
raises the possibility that regulation of PTEN activity could be an important driving
mechanism for cancer.

PTEN dosage.

There are multiple mechanisms for the regulation of PTEN, including transcription, mMRNA
stability, microRNA (miRNA) targeting, translation and protein stability. PTEN is
transcriptionally silenced by promoter methylation in endometrial, gastric, lung, thyroid,
breast and ovarian tumours, as well as glioblastoma?4-3°, In glioma, lung and prostate
cancer, PTEN expression is decreased by overexpression of miRNA 21 (miR-21), miR-25a,
miR-22 or the miR-106b-25 cluster31-33, PTEN can also be post-translationally regulated
by phosphorylation, ubiquitylation, oxidation, acetylation, proteosomal degradation and
subcellular localization (reviewed in REFS 34,35). Although many of these post-
translational changes in PTEN have been shown to alter various cellular phenotypes /in vitro,
most have not been validated as key regulators of PTEN in human cancer or mouse models.
PTEN amino acids Lys13 and Lys289 are monoubiquitylated, which leads to nuclear import
in vitro, and Lys289 mutations have been observed in Cowden syndrome and associated with
nuclear exclusion36, No Lys289 mutations have been reported in sporadic cancers, although
Lys13 mutation was found in four of 632 endometrial cancers (see the COSMIC database;
see Further information).
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Cancers classically associated with PHTS

Germline PTEN mutation in Cowden syndrome can lead to decreased or absent expression
or activity of the mutant allele. Initial efforts to model Cowden syndrome in mice used
genetic deletion of a single allele of Pren, as loss of both alleles is embryonic lethal. These
Pten heterozygous (Pter~) mice recapitulated some of the neoplastic phenotypes observed
in patients with Cowden syndrome, such as breast and endometrial tumours and intestinal
polyps37-39, However, the genetic background of Preri~ mice is a strong determinant of
susceptibility to specific tumour types (BOX 1). Some strains exhibit tumour types that are
not typically associated with Cowden syndrome, such as prostate and adrenal tumours and
lymphoma?9, whereas other strains show a reduced incidence of tumours types that are
normally associated with Cowden syndrome, such as breast and endometrial tumours®2.
Decreasing PTEN dosage has been shown to correlate with increasing tumour formation in
mice, supporting the value of Prerr*/~ mice as models for Cowden syndrome.

Somatic PTEN alteration is common in many sporadic tumour types*2, some of which also
occur with germline PTEN alteration in Cowden syndrome (TABLE 1). This suggests that
PTEN alteration may be an aetiological factor in these tumour types. Various tissue-specific
and/or inducible homozygous deletions of Pferrhave been generated in mice to model
sporadic PTEN loss in tumorigenesis. In the endometrium*3, mammary gland** and
prostate*®, and in T cells*6, homozygous deletion of Pren led to rapid tumour formation in
the targeted tissue. Tumours took longer to develop after Pten deletion in the liver?/,
bladder*® and lung*®. By contrast, when Prenwas deleted in pancreatic p-cells®C or the
intestine®, no malignant tumours developed, although intestinal polyps were common, as
observed in Cowden syndrome. Loss of other tumour suppressors or the activation of
oncogenes can nonetheless combine with PTEN loss to cause cancer in these organs. The
following sections describe the intersection of PHTS, sporadic cancer and mouse models to
delineate the role of PTEN alteration in specific cancers.

Breast cancer.

Female patients with Cowden syndrome have a high risk (an estimated 25-50% risk) of
developing breast cancer over the course of their lifetime, and male patients with Cowden
syndrome are also thought to be at an increased risk®2. PTEN loss can also occur in other
populations at a high risk of breast cancer, such as those that carry germline mutations in
BRCA1 in which PTEN deletions have been described®3, and can also occur in those at an
indeterminate risk. For example, despite the fact that less than 5% of sporadic breast
tumours harbour PTEN mutations, loss of PTEN immunoreactivity is observed in nearly
40%°*. This highlights the importance of immunohistochemistry methodology in
determining PTEN status®°. Moreover, about 40% display loss of heterozygosity (LOH) at
10923 (REF. 56), and aberrant promoter methylation was identified in nearly 50% of
tumours?®. As PTEN loss and FRBB2 mutations both activate the AKT signalling pathway,
perhaps it is not surprising that many tumours that exhibit loss of PTEN are also oestrogen
receptor (ER)-positive and ERBB2-negative®?,

Pter*~ mice can develop mammary tumours at high frequencies depending on their genetic
background3®. Deletion of both Ptenalleles in the mammary epithelium leads to altered
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mammary development and high-frequency, early-onset tumours in mice**. Loss of a single
Prten allele accelerated tumorigenesis in a Wnt-induced mammary tumour model, and most
tumours lost the remaining Pren allele®’. Similar results were observed when breast-specific
Prten deletion was coupled with overexpression of Erbb2 (REF. 58). In two other models,
subtle decreases in PTEN expression increased the risk of tumour formation in the absence
of any other introduced mutations?223, These mouse studies suggest that decreased PTEN
expression leads to an increased risk of breast tumour formation. Attenuated PTEN
expression by gene mutation, LOH or promoter methylation may indeed be a driving
alteration in breast cancer, making PTEN signalling pathways or pathways downstream of
PTEN potential targets for breast cancer therapy.

cancer.

The lifetime risk of endometrial cancer for patients with Cowden syndrome is estimated to
be 5-10%°2:59, and 35-50% of sporadic endometrial carcinomas have PTEN mutations
(TABLE 1). Mutations in PTEN are also observed in endometrial hyperplasia, which is
thought to be a precursor lesion for endometrial carcinoma®®-62, Many endometrial tumours
have short insertion or deletion frameshift mutations that are typical of microsatellite
instability. In particular, PTEN frameshift mutations are observed in endometrial carcinomas
that are associated with hereditary non-polyposis colon cancer syndrome (HNPCC)83, In
addition, polymorphisms in DNA mismatch repair genes affect the risk of endometrial
tumours®4, suggesting that the alterations in P7EN that contribute to endometrial tumours
can arise as a result of compromised DNA repair mechanisms. In endometrial tumours,
activation of AKT is associated with loss of PTENS®,

In mice, loss of Prenis sufficient to cause endometrial carcinogenesis. Depending on strain
background, Pfer*'~ mice can develop endometrial hyperplasia with high penetrance, which
in some cases can progress to endometrial carcinoma as the mice age3°. In this model, most
malignant tumours lose the remaining Pten allele3?, leading to AKT activation and
subsequent ERa. phosphorylation and activation®6, Consequently, ER antagonists can
substantially decrease hyperplasic lesions and tumour formation in these mice®®. Likewise,
inhibition of mMTOR, downstream of PTEN-AKT, can prevent the progression of
endometrial hyperplasia®’.

The role of DNA repair in the maintenance of PTEN integrity is also highlighted in mouse
models of endometrial cancer. Familial mutations in the DNA mismatch repair gene MLH1
underlie HNPCC, and deletion of M/A1in Prent'~ mice accelerated endometrial carcinoma
formation®8. M/h1 deletion was associated with earlier LOH for the remaining Pren allele®,
suggesting that Pfen may be particularly susceptible to disruptions in DNA repair.

Thyroid cancer.

Thyroid tumours were one of the first tumour types to be associated with Cowden
syndrome®®. Subsequently, about 25% of benign thyroid adenomas and several sporadic
malignant thyroid tumour types were found to have PTEN LOH, with PTEN mutations
occurring less frequently’%:71, Complete loss of PTEN expression occurs in less than 10% of
thyroid tumours, but occurs at a higher frequency in the anaplastic subtype’2. A more recent
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study found methylation of the PTEN promoter in more than 50% of thyroid tumours of
various histologies, particularly follicular carcinoma, and loss of PTEN immunoreactivity
correlated significantly with promoter methylation?4. In addition, P7TEN is rearranged in
most papillary thyroid carcinomas, and in a subset of normal thyroid samples, leading to
putative non-functional PTEN73.

Despite the high prevalence of PTEN alterations in human tumours, Pren*”~mice only
develop thyroid lesions with late onset and low frequency’. However, homozygous deletion
of Ptenin mouse thyroid cells led to the development of goiters and benign follicular
adenomas in female mice’®. Decreased gene dosage of PTEN may nonetheless promote
thyroid carcinogenesis, because hemizygous deletion of Pren accelerated thyroid
adenocarcinoma formation that was induced by a dominant-negative mutant thyroid
hormone receptor-B, and increased metastases to the lung’8. In addition, hemizygous
deletion of Pren also cooperated with loss of p27 to accelerate thyroid tumorigenesis’4.
These data suggest that Pfern mutation alone may not drive thyroid carcinogenesis in mice,
but can contribute to the malignant phenotype in the setting of other genetic alterations.

Central nervous system tumours.

PTEN loss is observed in benign and malignant brain tumours. Lhermitte—-Duclos disease is
a rare benign tumour (a dysplastic gangliocytoma of the cerebellum) that frequently occurs
in patients with Cowden syndrome and is associated with a high rate of morbidity®2. PTEN
LOH occurs in more than 70% of glioblastomas, with mutation of the remaining PTEN
allele found in 44%77. Decreased PTEN expression is characteristic of tumour progression,
as lower grade gliomas express higher levels of PTEN than glioblastomas’87°.
Independently of tumour grade, higher PTEN expression levels significantly correlated with
increased overall survival’®. miR-26a, which targets P7EN mRNA for degradation, is
amplified in glioma and often associated with P7TEN LOH, suggesting that in this tumour
type, multiple mechanisms may coexist to attenuate PTEN expression3L.

Pter= mice do not develop brain tumours, but homozygous deletion of Pzenin mouse brain
resulted in abnormalities that resembled those occurring in patients with Lhermitte—Duclos
disease®081, Deletion was associated with an increase in neural stem cells82 (BOX 2).
Deletion of Pren alone in adult mouse glial cells does not lead to glioma formation, but Pten
deletion can contribute to rapid glioma formation in the context of additional genetic
alterations. For example, Pten deletion accelerated high-grade malignant astrocytoma
formation in the presence of activated HRAS1 (REF. 83), and Pfern hemizygosity accelerated
astrocytoma formation by SV40 T antigen®. Heterozygous deletion of Pten also accelerated
glioblastoma formation that is induced by brain-specific heterozygous or homozygous
deletion of 7rp53 (REFS 85,86) or heterozygous deletion of both 7rp53and
neurofibromatosis 1 (NVf2)87. Deletion of Pren accelerated glioma progression that is induced
by overexpression of platelet-derived growth factor (PDFG). Overexpression of miR-26a
also accelerated PDGF-induced glioma and decreased survival. This effect was dependent on
PTEN, validating the Pten-targeting role of miR-26a in gliomas3Z.
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Pten loss in non-PHTS-associated cancers

Prostate.

Melanoma.

Prostate tumours have not been associated with Cowden syndrome, perhaps owing to their
high incidence in the general population. One of the early cytogenetic abnormalities
identified in prostate cancer was the deletion of chromosome 10q88, and nearly a decade
later frequent PTEN loss in primary prostate cancer was mapped to this region8°. Prostate
cancer is the most common malignancy in men, and the role of PTEN in prostate
tumorigenesis and tumour progression has been extensively studied in mice.

Pter*= mice develop prostate tumours from 9 months of age’4. Homozygous deletion of
Ptenin the mouse prostate led to prostatic intraepithelial neoplasia (PIN) lesions at 6 weeks
of age that progressed to invasive and metastatic prostate carcinoma within a few weeks*®.
In this model, prostate tumours responded to androgen ablation, which prolonged survival.
However, highly proliferative prostate tumours were observed in these mice at necropsy,
suggesting that this is a faithful model of disease progression in humans, in which androgen-
independent tumours arise after androgen-ablation therapy°.

Pter*= mice have been crossed with various other strains of genetically engineered mouse
(GEM) models that represent the genetic or phenotypic changes that are observed in human
prostate cancer. In many cases, concurrent Pten hemizygosity coupled with deletions in
other genes accelerates tumorigenesis. For example, concurrent deletion of Cakn1b, which is
often lost in human prostate tumours, accelerated prostate tumorigenesis’4. Concurrent
deletion of the transcription factor Nkx3.1 decreased survival, increased metastasis and
resulted in tumours with androgen independence, which is associated with a poor prognosis
in patients with prostate cancer®l. A Tmprss2—Erg translocation, which was recently
described in human prostate tumours®2, in mice can cooperate with Pren hemizygosity to
accelerate invasive prostate adenocarcinoma®3:94, Heterozygous deletion of Pren also
accelerated prostate tumorigenesis and decreased survival in the transgenic adenocarcinoma
of the mouse prostate (TRAMP) mouse model®. The use of Pren hypomorphic alleles
demonstrated that decreasing PTEN levels correlate with increased progression of prostate
tumours in the mouse9, suggesting that Pfen may be haploinsufficient for prostate
tumorigenesis and/or prostate tumour progression.

Despite the fact that melanomas have not been associated with Cowden syndrome, sporadic
melanomas frequently have a loss of PTEN through LOH, deletion and mutation®’. PTEN
can also be epigenetically silenced in melanoma, as decreased PTEN transcript levels were
associated with PTEN promoter methylation®8, PTEN methylation also correlated with
decreased survival®®. In another study, low PTEN expression was associated with melanoma
ulceration, which is characteristic of aggressive tumours, but did not significantly correlate
with overall survivall9, A link between DNA damage and PTEN mutation in melanoma has
been suggested by Wang er a/101, who showed that more than 50% of the melanomas from
patients with xeroderma pigmentosum showed P7EN mutation types that are typically
associated with ultraviolet radiation exposurel01,

Nat Rev Cancer. Author manuscript; available in PMC 2020 January 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hollander et al.

Page 8

In mice, Pten deletion in pigmented mouse cells does not lead to the development of
spontaneous melanoma, despite an increase in the number of dermal melanocytes. However,
in this model, topical carcinogen treatment led to melanoma formation in nearly 50% of the
mice within 20 weeks192, In conjunction with Cakn2a (encoding p14ARF) deletion, nearly
10% of Prer*’~ mice developed spontaneous melanomal03. Simultaneous activation of
BRAF and deletion of Prenin melanocytes leads to early onset spontaneous melanomas,
with metastasis to the lymph nodes and lung1%4. Notably, the mTOR inhibitor rapamycin
increased survival in these mice by more than twofold104. These mouse studies indicate that
Prenis probably not a driving mutation in melanoma, but can contribute to a malignant
phenotype in the presence of other genetic alterations.

Lung cancer.

Lung cancer has rarely been described in Cowden syndrome5 and somatic PTEN
mutations occur at a low frequency in small-cell lung cancer (SCLC)1% and non-small-cell
lung cancer (NSCLC)197. However, other mechanisms to diminish PTEN function may be
more important in lung cancer. For example, 24% of early NSCLC samples lack PTEN
expression, which correlated with PTEN promoter methylation3C. In a later study, PTEN
protein expression was reduced or lost in 74% of lung tumours, and was associated with low
or aberrant 7P53 staining%8. Levels of miR-21 were upregulated in lung tumours compared
with normal lung tissue in 74% of cases and were correlated with decreased levels of PTEN
mRNA and advanced tumour stage32.

PTEN function may determine treatment outcome in lung cancer. Mutant epidermal growth
factor receptor (EGFR) is a frequent driving mutation in lung cancer in never-smokers9,
whose tumours initially respond to treatment with EGFR inhibitors. However, resistant
tumours emerge through multiple mechanisms, one of which might be homozygous deletion
of PTENMO, Regardless of EGFR status, PTEN promoter methylation is significantly
associated with poor outcome in surgically treated early stage lung cancer!1l,

Pter*= mice have not been reported to develop lung tumours. However, lung-specific
homozygous deletion of Ptenin alveolar type Il cells led to lung adenocarcinoma in 87% of
mice at 40-70 weeks of age, and increased both the number and size of urethane-induced
lung adenomas?®. Lung-specific homozygous deletion in bronchiole epithelium cells did not
produce tumours in mice, but accelerated tumours driven by mutant Kras, and dramatically
decreased survivalll2,

Pancreatic cancer.

Pancreatic cancer is not associated with Cowden syndrome, and mutations in PTEN are rare
in sporadic cancers. However, pancreatic tumours frequently have altered localization of
PTEN, suggesting that subcellular sequestration of PTEN may decrease its function!13. In
mice, homozygous deletion of Pfenin the pancreas leads to metaplasia, which progresses to
carcinoma in about 20% of micel14. Pten deletion in pancreatic B-cells only, does not lead to
tumour formation®0. However, co-deletion of Smad4, the common mediator of signal
transduction by transforming growth factor-g (TGFp), does lead to tumour formation, which
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is accompanied by increased active AKT and mTOR signalling?1°. These results suggest
that PTEN might contribute to pancreatic cancer.

Studies of human cancer and mouse models suggest that alterations in P7EN might have
some role in pancreatic tumours13-115 Jiver tumours#7:116-119 pladder tumours?#8:120-122.
adrenal pheochromocytomas?23, leukaemial24.125 and lymphoma?0:46.126-128 However, in
most cases the available human data do not support PTEN as a major factor in these tumour
types. Supporting data are included in TABLE 1.

Drug development for PTEN-deficient disorders

Mouse models of tumorigenesis and diseases such as Cowden syndrome can not only help to
discern cause—effect and mutation—disease relationships, but can also be used for preclinical
testing and to validate targets for cancer therapy and prevention. For example, deletion of
Aktlin Pten-heterozygous mice prevents endometrial and prostate tumorigenesis, and
heterozygous deletion of Mtoror Mist8 (a component of both mTOR TORC1 and TORC2
complexes) prolongs the life of mice with prostate tumours that are associated with prostate-
specific deletion of Prert29:130. A hypomorphic mutation in PopkZ (REF. 131) and a
pharmacological inhibition of mTOR32 both prevent the formation of multiple tumour types
in Prent!~ mice. These data suggest that inhibitors of pathway components such as AKT1,
mTOR or PDK1 might be developed for cancer prevention in or the treatment of patients
with germline or tumour-specific P7TEN mutations. Inhibitors of MTOR, such as rapamycin
(also known as sirolimus) and its analogues, temsirolimus and everolimus, can prevent
tumorigenesis in multiple mouse models of cancer. For example, everolimus reduced the
progression of endometrial hyperplasia, and sirolimus reversed premalignant lesions and/or
decreased proliferation in prostate tumours in Preri’~ mice87:133, Metformin, an activator of
AMP-activated protein kinase (AMPK) that leads to inactivation of mTOR, delayed tumour
onset in Prer— micel34,

Several compounds that have been designed to inhibit the PI3K-AKT-mTOR pathway in
cancer are in clinical development, including newer mTOR inhibitors that target the ATP-
binding domain. Some of these have cross-reactivity with class | PI3Ks and other proteins
with PI3K domains (TABLE 2). These pathway inhibitors may be useful in the prevention of
malignancy or in treating existing tumours. Patients with germline mutations of PTEN could
be an ideal population to test these inhibitors, as pathway activation is a feature of both
benign and malignant tumours in Cowden syndrome. Easily accessible benign tumours in
the skin and gastrointestinal tract of patients with Cowden syndrome could provide /in vivo
evidence of target modulation and be a reliable surrogate for cancer cells.

Of all of the pathway inhibitors in development, inhibitors of the TORC1 complex, such as
sirolimus and its analogues, are the most developed and have established safety profiles that
are most relevant for rare syndromes. For example, sirolimus was tested in a Phase I trial of
patients with tuberous sclerosis, which, like Cowden syndrome, is a highly morbid familial
syndrome in which the loss of a tumour suppressor gene leads to mTOR activation!3. In
patients with tuberous sclerosis, prolonged use of sirolimus seemed to be safe and showed
preliminary efficacy in shrinking angiomyolipomas and improving pulmonary function!3°,
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Treatment with everolimus similarly caused a sustained decrease in subependymal giant-cell
astrocytomas (SEGAS) in patients with tuberous sclerosis!38. A case report also showed that
sirolimus decreased tumour burden in a child with Proteus syndrome and a germline PTEN
mutation37. Sirolimus is currently being tested in patients with Cowden syndrome (clinical
trial number:).

In cancer, temsirolimus and everolimus are approved for the treatment of advanced renal cell
carcinoma, and are being tested as single agents, and in combination, in various other
malignancies. The activity of rapamycin analogues as single agents in common cancers has
been modest, however, which could be related to feedback activation of AKT through insulin
receptor substrate 1 (IRS1) or through direct phosphorylation at Ser473 by TORC2 (REF.
138) (FIG. 2). Feedback activation of AKT has been observed in PTEN-null glioblastoma
biopsy samples from patients treated with sirolimus, and was associated with a shorter time
to disease progression. Nonetheless, the modest results of clinical trials with TORC1
inhibitors in cancers in which PTEN inactivation is common suggest that the inhibition of
TORCL1 alone is insufficient to induce meaningful tumour regression139.140,

The next generation of pathway inhibitors includes dual PI3K-mTOR inhibitors, PI3K
inhibitors, AKT inhibitors and mTOR complex catalytic site inhibitors (reviewed in REFS
141-143). These compounds may better compensate for the loss of PTEN by targeting more
upstream components of the pathway and may circumvent feedback AKT activation.
However, these agents are likely to be more toxic than the pure TORCL1 inhibitors and are
also likely to be less useful for cancer prevention in patients with rare syndromes.

Trial design considerations for PHTS and PTEN-deficient cancers.

Given the rarity of Cowden syndrome, cancer prevention trials pose a challenge. Pilot
studies using pathway inhibitors that focus on tissues at risk for malignant transformation
are more feasible. For example, a trial evaluating the effects of a pathway inhibitor on
endometrial hyperplasia or fibrocystic changes of the breast in patients with Cowden
syndrome would be a useful proof-of-concept, but this would require multiple biopsies,
which might be objectionable to patients with Cowden syndrome who do not have cancer.
Molecular imaging to assess tumour metabolism using fluorodeoxyglucose (FDG)-positron
emission tomography (PET) or tumour cell proliferation using deoxyfluorothymidine
(FLT)-PET might be useful surrogates for patients with Cowden syndrome who are
unwilling or unable to undergo biopsies. Trials in patients with Cowden syndrome could also
test pathway inhibitors as a means of ameliorating the severe but non-malignant
manifestations of the disease, such as Lhermitte—Duclos disease, in which improvement in
neurological function could be measured clinically. Selecting objective and reliable clinical
end points for these studies is challenging, but pharmacodynamic end points and assays that
are validated in trials of patients with Cowden syndrome could be applied to general
oncology trials.

The location of PTEN mutations or relevant epigenetic modifications may assist the choice
of therapy for PTEN-deficient malignancies. For example, if mutations occur in the C-
terminal PEST domain and spare the phosphatase domain, treatment with a proteasome
inhibitor might rescue PTEN from degradation. Moreover, treatment with statins might
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increase the expression of PTEN through peroxisome proliferator-activated receptor-y
(PPARG)-mediated promoter activation14, and demethylating agents or histone deacetylase
inhibitors might reverse epigenetic silencing. Three recent studies suggest that PTEN is
required for homologous recombination, which could be exploited therapeutically. In one
mouse study, T cell-specific Pten deletion resulted in lymphomas with T cell receptor ( 7¢n)-
Myc translocations resulting from aberrant 7cr recombinationl4®. In PTEN-deficient
endometrial cancer cell lines, decreased homologous recombination underlies sensitivity to
polyadenosine diphosphate ribose polymerase (PARP) inhibitors46. APten deletion decreased
homologous recombination in mouse astrocytes through the downregulation of the DNA
repair protein RAD51. These studies raise the possibility that PARP inhibitors may have
efficacy for PTEN-deficient tumoursl4’, owing to generalized defects in homologous
recombination.

As PTEN loss mediates resistance to targeted therapies against receptor tyrosine kinases,
combinations of PI3K or AKT inhibitors with cell surface receptor inhibitors might be
effective. For example, acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer
and trastuzumab in ERBB2-amplified breast cancer are associated with Pren loss and/or
maintenance of AKT activation10:148.149 "|nhibition of multiple nodes of the signalling
cascade may effectively overcome acquired resistance. Alternatively, targeting of parallel
networks by targeting the PI3K—-AKT pathway and the MEK-ERK (MAPK1, MAPK3 and
MAPK1) pathway may also overcome acquired resistance, have antitumour activity and
ultimately accelerate the development of these agents to treat patients with germline or
somatic loss of PTEN.

Perspectives and conclusions

The comparison of sporadic tumours carrying PTEN alteration, tumours that occur with
germline PTEN mutation in Cowden syndrome, and tumours that develop in Pten-deficient
GEM strains provides evidence that the development of many different tumour types seems
to be driven by the loss of PTEN function. mTOR inhibitors have been approved for the
treatment of advanced renal cell carcinoma and SEGA that is associated with tuberous
sclerosis. Upstream pathway inhibitors of PI3K and AKT are in clinical development, both
in combination with traditional chemotherapy and with inhibitors of parallel pathways such
as MEK-ERK. This is a reasonable approach as P7EN mutations and subsequent activation
of the AKT-mTOR pathway provide survival signals that are associated with resistance to
therapy. However, one key question that remains to be answered is whether tumours that
develop as a consequence of PTEN attenuation are addicted to that signal. Given that PTEN
alteration is so prevalent in many human tumour types, validating PTEN as a target during
different stages of tumorigenesis is crucial to validating any downstream targets. Mouse
models could be used to show whether re-expression of Ptenin Pten-deficient tumours leads
to tumour regression, as is the case for 7rp53-null lymphomas and sarcomas upon 7rp53 re-
expression!0, or whether it is context-dependent as is the case for the reconstitution of
Trp53in lung tumourst51:152  |dentification of novel PTEN functions and crucial signalling
events downstream of PTEN could provide additional targets and new therapeutic
approaches.
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is becoming clear that PTEN may have many important functions, any or all of which

might contribute to its tumour suppressor activity. Pten deletion clearly contributes to
tumorigenesis in multiple tissues in mice. The continued characterization of specific human
PTEN mutations is driving the discovery of novel PTEN functions that might correlate with
specific tumour risk in Cowden syndrome and might have implications for sporadic tumours.
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At a glance

PTEN hamartoma tumour syndrome (PHTYS) is a group of syndromes
characterized by benign growths and a high risk for cancers of the breast,
endometrium and thyroid. Cowden syndrome is the best characterized of
these and 85% of patients have germline P7TEN mutations. The range of
abnormalities in patients with PHTS varies from patient to patient.

Somatic PTEN mutations and deletions, and inactivation of PTEN by

methylation or microRNA silencing, are common in multiple tumour types.

These include the classical PHTS-associated tumours like breast,
endometrium and thyroid, but also tumours of the central nervous system,
prostate, lung, pancreas, liver and adrenal glands, as well as melanoma,
leukaemia and lymphoma.

Mouse models of Cowden syndrome, in which a single allele of Prenis
deleted or mutated, exhibit characteristic Cowden syndrome phenotypes.
Tumour types are very much dependent on the genetic background of the

mice suggesting that there may be genetic risk factors for PHTS penetrance in

humans.

Tissue-specific deletion of Prenin mice can lead to rapid, slow or no tumours,
depending on the tissue type. In some cases, tissue-specific Pten deletion can

cooperate with other genetic alterations to enhance tumorigenesis. These
mouse models have validated mutation or loss of P7EN as an aetiological
factor in similar human tumours.

PTEN is a lipid phosphatase that acts as a negative regulator of the PI3K—
AKT-mTOR pathway, which is an important regulator of cell growth and
survival. As such, pharmacological inhibition of this pathway may be

exploited for therapy of tumours with altered PTEN, or for tumour prevention

in patients with PHTS.
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Box 1 |
What determines tumour risk in Cowden syndrome?

A limited number of mouse studies suggest that both the type of germline Pfen mutation
and the genetic background can affect risk for specific tumour types. Comparison of three
different Cowden syndrome-specific Ptenn mutations in the same mouse strain indicated
that specific Pren mutations may contribute to risk for specific tumour types!3. In this
study, specific mutations altered the relative frequency of uterus, prostate, thyroid and
mammary neoplasms but did not alter the range of tumour types. These types of studies
may help to stratify P7EN mutations in patients with Cowden syndrome in order to
identify those at the highest risk for specific tumour types. Conversely, studies using Prten
*I-and PrenA9* (deletion of exon 5) mice indicate that genetic background is also a very
strong determinant of tumour susceptibility in micel®3. Given the diversity of the human
genome, identification of risk factors that contribute to tumour susceptibility in Cowden
syndrome might help to predict the risk of specific tumours in this population. For
example, polymorphisms in caspase 8 have been identified as risk factors for breast and
ovarian cancers in tumour-prone BRCA1 mutation carriers®*. Naturally occuring
polymorphisms within PTEN itself are found at a disproportionately high rate in patients
with Cowden syndrome, even in the absence of apparent P7EN mutation, suggesting that
certain PTEN haplotypes might function as risk-modifying factors20. However, given the
number of different PTEN mutations in Cowden syndrome that may also affect risk even
large genome-wide association studies (GWAS) might have trouble detecting additional
risk loci. Identification of risk-modifying loci in inbred mouse models for Cowden
syndrome could inform more targeted searches for human risk factors. In addition, risk
factors for Cowden syndrome tumours might also prove to be risk factors for PTEN-
mutant sporadic tumours. However, in Cowden syndrome, PTEN alteration in non-
tumour cell types, such as stroma, endothelial and immune cells, may also contribute to
increased tumour risk#6:155.156 possibly exacerbating other general risk factors.
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Box 2 |
The role of PTEN in the maintenance of tissue and cancer stem cells

The fact that loss of PTEN can cause or contribute to tumorigenesis in several tissues
suggests that PTEN might control tumour-initiating cells. In fact, Pfen deletion can
increase the self-renewal capacity of normal stem cells and increase the number of
putative tumour-initiating cells. In neural stem cells, Pfen deletion increases self-renewal
capacityl®’, which was further augmented by co-deletion of 77p53 (REF. 86). Pten
deletion in the adult subependymal zone also increased neural stem cell self-renewal,
leading to enhanced olfactory bulb mass and enhanced olfactory functionl%8. Increased
stem and progenitor cells have been reported in Pten-deficient prostate, lung, intestinal
and pancreatic tissues before tumour formation#9:114.159-161 |n hoth haematopoietic cells
and melanocytes, Pten deletion leads to normal stem cell exhaustion102:162.163 byt
paradoxically, in haematopoietic cancer stem cells, Pten deletion leads to unlimited
expansion162.164 Although still an emerging concept, the role of tumour-initiating cells
and control by PTEN is an area of intense investigation.
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Active site
amino acids 123-130 PDZ-binding domain
- 7

I Phosphatase domain C2 domain C-terminal
region

Figure 1 |. Schematic of the PTEN protein.
PTEN contains two key domains that are required for its tumour suppressor function; the

phosphatase (catalytic) domain (amino acids 14-185)65 with an active site included within
the residues 123 and 130 (REF. 166), and the C2 (lipid membrane-binding) domain (amino
acids 190-350)167. The importance of other domains such as the PDZ-binding domain (in
grey; amino acids 401-403)168, which binds proteins containing PDZ domains, and the
carboxy-terminal region (amino acids 351-400), which contains PEST sequences and may
contribute to protein stability and activity169, is less defined in the tumour suppressor
functions of PTEN.
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Figure 2 |. Canonical PTEN-PI3K-AKT-mTOR pathway.
PTEN opposes PI3K function, leading to inactivation of AKT crucial downstream target!.

When PTEN activity is decreased or absent, products of PI3K activate AKT through the
activation of its upstream kinase phosphoinositide-dependent kinase 1 (PDK1; encoded by
PDPKI)I70. Other upstream regulators of the pathway include receptor tyrosine kinases
(RTKSs) such as ERBB2 and epidermal growth factor receptor (EGFR) that are important in
breast and lung cancer, respectively (reviewed in REF. 171). Important downstream targets
of AKT (such as p27, p21, FOXO and PAWR (also known as PARA4)) are involved in
multiple functions that are crucial for tumour cell growth and survival (reviewed in REF. 8).
mTOR activity is also increased when PTEN activity is lost, and mTOR itself has important
targets, including AKT, as well as proteins required for protein translation such as ribosomal
protein S6 kinase (S6K; encoded by RPS6KB1 and TPS6KBZ2) and eukaryatic initiation
factor 4E binding protein (4EBP1; encoded by £/F4EBPI)172. mTOR exists in two different
protein complexes, TORC1 and TORC2 (REF. 173). Inhibitors of TORC1 by drugs such as
rapamycin can activate AKT by deactivating a negative-feedback loop mediated by S6K and
insulin receptor substrate 1 (IRS1)174175, Proteins that can be targeted by drugs (as outlined
in TABLE 2) are indicated in red. BAD, BCL-2-associated agonist of cell death; GSK3,
glycogen synthase kinase 3; MAP3K5, apoptosis signal regulator kinase 1.
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