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Abstract

Purpose: We present a method for generating a T2 MR-based probabilistic model of tumor 

occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve 

as a diagnostic tool to aid radiological evaluation of prostate cancer.

Materials and methods: In our study, the prostate and any radiological findings within were 

segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical 

prostatectomy. Subsequent histopathological analysis determined both the ground truth and the 

Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a 

multisubject-derived prostate template. Subsequently, a cascading registration algorithm involving 

both affine and non-rigid B-spline transforms was used to register the prostate of every subject to 

the template. Corresponding transformation of radiological findings yielded a population-based 

probabilistic model of tumor occurrence. The quality of our probabilistic model building approach 

was statistically evaluated by measuring the proportion of correct placements of tumors in the 
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prostate template, i.e., the number of tumors that maintained their anatomical location within the 

prostate after their transformation into the prostate template space.

Results: Probabilistic model built with tumors deemed clinically significant demonstrated a 

heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland 

anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions 

analyzed, 248 maintained their original anatomical location with respect to the prostate zones after 

transformation to the prostate.

Conclusion: We present a robust method for generating a probabilistic model of tumor 

occurrence in the prostate that could aid clinical decision making, such as selection of anatomical 

sites for MR-guided prostate biopsies.

Keywords

Prostate cancer; Multi-parametric MRI; Tumor occurrence probability map; Prostate registration

Prostate cancer (PCa) is one of the most common malignancies in men [1] with an estimated 

2016 incidence of 180,890 cases in the United States [2]. PCa detection primarily rests on 

measurements of prostate-specific antigen (PSA) levels in patients or digital rectal exams 

(DRE) [3–5]. Although PSA and DRE have poor specificity for diagnosing prostate cancer 

[6–8], an abnormal PSA or DRE usually results in a systematic trans-rectal ultrasound 

(TRUS)-guided template biopsy typically obtaining 12 individual cores of tissue distributed 

around the prostate [9].

However, TRUS biopsy is imperfect, often detecting clinically insignificant PCa (Gleason 6, 

< 1 cm length) disease while failing to detect clinically significant PCa (Gleason ≥ 7 and > I 

cm length) especially in the anterior, central, and apical prostate gland [10]. Here, 3T multi-

parametric MRI (mp-MRI) has been shown to significantly improve detection, grading, and 

staging of clinically significant PCa especially in the era of standardized interpretation and 

reporting criteria via Prostate Imaging and Reporting Data System version 2 (PI-RADS v2) 

[11, 12]. 3T mp-MRI also enables targeted biopsy of individually detected lesions using in 

bore MR-guided [10, 13] or MR-US fusion biopsy, increasing detection of clinically 

significant PCa [14–16] compared to traditional 12 core TRUS template biopsy alone.

Even with such advancements, up to 50% of clinically insignificant and 20% of clinically 

significant PCa are not detected on conventional mp-MRI [17]. This highlights the need for 

tools to further guide targeted biopsy and supplement clinical radiological evaluation of mp-

MRI in detection and localization of PCa. Pathologically, PCa lesion distribution in the 

prostate is inhomogeneous and may actually cluster [18, 19]. Thus, spatially selective 

biopsies can contribute to improved tumor detection [20]. A probabilistic model of tumor 

occurrence in the prostate may potentially guide both imaging and imageguided targeted 

biopsy of PCa. Additionally, correlation between tumor location and tumor characteristics 

(genotypes, molecular profiles, etc.) could further enrich the process of radiological 

evaluation of clinical findings on multi-parametric MR.

Tumor probability maps in the prostate have been developed previously through analysis of 

histopathological slides of prostatectomy specimens [21–25] or through combining 
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histology-based disease localization with an MR-based anatomical atlas [26]. In these 

studies, tumor margins were localized in histology (with sparse coverage of the prostate as a 

whole) and then transposed into a 3D space (reconstructions or 3D MRI) for building a 

volumetric probabilistic model. However, establishing tumor margins in the 3D space from 

2D whole-mount sections is a challenging task with limited accuracy. Even if a 3D MR 

space is used, visualization of internal prostate anatomy in whole-mount images is limited, 

making co-registration with MR a complex task that is quite susceptible to under/over-

estimation-related inaccuracies.

In order to address these short-comings, we present a method for building a probability map/

probabilistic model of PCa occurrence based solely on tumor localization in mp-MRI. Our 

methodology calls for using 3T mp-MRI to localize tumors in the prostate and establish their 

margins. Such an approach takes advantage of the rich spatial resolution offered by 3T mp-

MRI and the full coverage of the prostate achieved in the acquired image data for 

establishing tumor margins directly in a 3D space. Since this approach still allows for 

cognitive matching with whole-mount imaging data through our an integrated matching 

process conducted jointly by radiology and pathology for establishing ground truth, we only 

rely on whole-mount histopathology data for identifying false positives, i.e., clinical findings 

on mp-MRI that are not subsequently confirmed through pathology. Finally, we demonstrate 

our methodology on a large mp-MRI dataset of 266 subjects with biopsyproven PCa, as 

discussed in the following sections.

Materials and methods

Dataset

This study was compliant with the Health Insurance Portability and Accountability Act 

(HIPAA) of 1996 and was performed under waiver from the institutional review board 

(IRB). The study cohort was composed of 266 men who underwent mp-MRI within 90 days 

of robot-assisted radical prostatectomy (RALP), all with TRUS biopsy confirmed PCa. mp-

MRI was performed using an endorectal coil and an external phase-array coil on a 3T 

magnet (Trio, Verio or Skyra, Siemens Healthcare). All prostatectomy specimens in the 

study cohort were sectioned at 5-mm intervals in the axial plane to match the 3T mp-MRI 

sections as closely as possible. Of the 266 subjects, 40 were excluded since no lesions were 

detected on 3T mp-MRI. Of the remaining 226 subjects, a total of 247 lesions (200 were 

clinically significant, i.e., Gleason 3 + 3 > 1.5 cm or ≥ Gleason 3 + 4 on histopathology) 

were detected on both 3T mp-MRI and whole-mount histopathology. The index lesion was 

not visible on 3T mp-MRI scans of 24 subjects while 70 subjects had at least 1 false-positive 

3T mp-MRI finding (83 false positives in total) that could not be confirmed by whole-mount 

histopathology. The distribution of the clinically significant tumors was as follows: Gleason 

3 + 3: 28 lesions, Gleason 3 + 4: 104 lesions, Gleason 4 + 3: 48 lesions, and ≥ Gleason 8: 20 

lesions.

The mp-MRI protocol included the following acquisition techniques—(1) high-resolution 

3D axial TSE T2, (2) axial and coronal T2 TSE (lower through-plane resolution, i.e., 3-mm 

slice thickness with no gap), (3) echoplanar diffusion-weighted imaging, and (4) dynamic 

view-sharing time-resolved angiography with stochastic trajectories gradient-echo T1-
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weighted sequence [performed over 6 min (4.75 s per acquisition) with a 15-s injection 

delay (TWIST, Siemens Healthcare)]. For the primary objectives of this study, only the high-

resolution 3D T2 acquisition was used; this was acquired as small-FOV 3D axial T2-

weighted sequence using spatial and chemical-shift encoded excitation (Siemens SPACE™, 

Siemens Healthcare, Erlangen, Germany) sequence with echo time (TE) 101 ms, echo 

repetition time (TR) 3.8–5.04 s, and echo train length (ETL) = 13. Using this sequence, 

images were acquired with 14 cm field of view, 256 9 256 matrix with in-plane resolution 

0.66 mm 9 0.66 mm and contiguous slices of 1.5 mm thickness.

The prostate capsule was segmented using semi-automated tools in ProFuse software (Eigen, 

Grass Valley, California). Clinically significant findings on MR were described using a 

published multi-parametric assessment system [15], similar to but predating PI-RADS v1.0; 

these findings were segmented manually. For a small subset (19 cases), internal prostate 

anatomy, i.e., the peripheral zone, the transition zone, the central zone, and the anterior 

fibromuscular stroma, was also manually segmented to assist with the validation of our 

prostate registration approach, as discussed below. All segmentations were performed by an 

experienced radiologist (WCL 5 years) on the high-resolution 3D T2 sequence. 

Subsequently, MR findings were cognitively matched with the whole-mount histopathology 

ground truth based on cystic, cellular, and stromal features keeping the relative distance 

offset between MR slices consistent. The matching process was conducted by an 

experienced radiologist (DJAM 10 years) and pathologist (JH 15 years) in a joint review of 

MR findings with pathological findings to designate each lesion detected on 3T mp-MRI as 

true or false positive in comparison to whole-mount histopathology. Representative images 

of tumors on high-resolution T2 MR and images of whole-mount prostate sections are 

shown in Fig. 1.

With the 3D contours of both the prostate and suspicious lesions on mp-MRI, and the 

corresponding tumor label information derived from pathology, the probability map that 

models of tumor occurrence in the prostate was built using the following techniques.

Prostate MR registration

One basic component of probabilistic model building in the prostate is the registration of 

prostate anatomy across different subjects to the space of a common template. Using the 

high-resolution 3D T2-weighted images and the corresponding prostate segmentation for 

every subject, we proposed a registration framework which used an enriched template with 

the following components—(1) an intensity-based affine prostate template, (2) an intensity-

based non-rigid prostate template, and (3) a binary segmentation (mask) of the non-rigid 

prostate template, and a cascading registration pipeline involving affine registration followed 

by a non-rigid B-spline registration of candidate prostate images to the enriched template.

First, the candidate prostate and its corresponding segmentation were affinely registered to 

the prostate template and its prostate segmentation mask. The registration process was 

initialized by aligning the centroids of the prostate segmentation in the candidate and 

template to improve the performance of the affine registration step. Multi-resolution 

registration over four resolutions via a smoothing image pyramid were then performed to 

obtain the final affine transformation, where the iteration number was fixed to a maximum of 
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100 iterations per resolution. A multi-metric cost function was used for the registration, 

which consists of the sum of the following two components:

1. Image intensity-based mutual information (MI), with a histogram bin size of 32, 

between the T2 image and the affine template image.

2. Sum of square difference (SSD) between the distance transform of the subject 

prostate segmentation and the template prostate mask.

The weights used for both MI and SSD were 1 and 0.01, respectively, which were 

empirically determined.

The affine registration was subsequently followed by a non-rigid B-spline registration; here, 

the candidate prostate was deformed to the same shape as the template. The non-rigid 

registration only included the prostate, other areas of the images were masked by the 

corresponding prostate segmentation mask. Multi-resolution registration was then performed 

over four resolutions via a smoothing image pyramid to register the subject to the template, 

where the intensity-based mutual information of the mask images, with a histogram bin size 

of 32, were used as cost function. A maximum of 2000 iterations was used as the stopping 

criteria for each resolution. The B-spline transformation model used 4-mm control point 

spacing.

The implementations of the affine and B-spline registration modules were taken from the 

ELASTIX registration toolbox [27, 28].

Prostate template model

We constructed an enriched prostate template model using 19 randomly chosen subjects 

from our dataset. For this purpose, we adapted a previously described approach for building 

average brain models [29].

The high-resolution T2-weighted images and prostate segmentation of a randomly chosen 

subject (from the subset of 19 subjects used to build the template) served as the affine 

template component for our enriched template prostate model, and as an initial non-rigid 

template and prostate segmentation mask. As part of the template building process, all other 

datasets were then affinely registered to this template. Using the parameters of affine 

registration as an initial transform, the non-rigid template component of our enriched 

template prostate model was constructed through an iterative process as follows:

1. Each of the 19 subjects was registered to the template through a non-linear B-

spline deformation.

2. The average deformation field was then computed from all the deformation fields 

previously computed, and then applied to all 19 subject prostate images.

3. The non-rigid template intensities were computed as the median of the deformed 

image intensities.

4. The average deformation field was also applied to all prostate segmentation 

masks; the template mask was identified as the regions where at least 10 of the 

deformed prostate segmentations overlapped.
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The final template model was generated over 5 such iterations.

Probabilistic model building

Using the multi-subject-derived prostate template model and the inter-subject prostate 

registration described above, each of the 240 candidate prostates from the dataset was 

registered to the template. Volumetric contours of each lesion (both true and false positives 

with respect to pathology) were then deformed into the prostate template space using the 

corresponding transformations computed from the registration process. The average 

processing time for registration, the candidate prostate and the template, and subsequent 

transformation of the volumetric lesions into the prostate template space was < 330 s, as 

measured on Windows platform, 16 MB RAM, 8 cores @ 3392 MHz). The final 

probabilistic model was computed by evaluating the probability of tumor occurrence at each 

voxel in the prostate template as the sum of all deformed tumor contours overlapping at that 

voxel divided by the total number of subjects used to build the probabilistic model. Using 

this approach, models were built for different sub-populations of tumors from the entire 

dataset. In this study, probabilistic models of tumor occurrence were created for the 

following tumor sub-populations—index tumors as determined by pathology, all tumors as 

confirmed by histopathology, false positives, and histopathology-confirmed tumors stratified 

by Gleason grade.

Validation

In order to validate the accuracy of our probabilistic model building methodology, we 

evaluated how well the anatomical location of the lesion within the prostate (with respect to 

the four zones) is maintained when its tumor margins are transformed from the candidate 

prostate (on which it was originally segmented) to the prostate template, i.e., does a 

peripheral zone lesion remain in the peripheral zone of the prostate template after 

registration? For this purpose, we first established anatomical zones in the prostate template 

as follows.

Each of the 19 subjects with prostate zone segmentations was registered to the template as 

previously described. The prostate zone segmentations were then transformed to the same 

physical space as the prostate template. While segmentations of the same zone across 

different subjects are expected to overlap, they are not perfectly aligned owing to inter-

subject differences in anatomical shape and size. Hence, we computed the probability of a 

prostate template voxel belonging to a specific zone as M/N, where N = 19 and M was the 

number of subjects whose corresponding zone segmentations overlap at that voxel. For 

example, all 19 peripheral zone segmentations overlapping at a voxel in the interior of the 

prostate zone result in a probability of 1.0 that the voxel in question belongs to the 

peripheral zone. However, closer to the peripheral zone border, 10 peripheral zone 

segmentations and 9 transition zone segmentations may overlap at a voxel; this voxel thus 

has a 0.53 probability (10/19) of belonging to the peripheral zone and a 0.47 probability 

(9/19) of belonging to the transition zone.

Using this approach, the probability of each voxel in the prostate template belonging to the 

peripheral zone, the transition zone, the central zone, and the anterior stroma was computed 
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and served as a fuzzy zonal probability map for the prostate template. Once the map was 

created, every lesion was transformed into the same physical space as the prostate template, 

and the mean zone probability of all voxels belonging to any lesion was computed for the 

peripheral zone, transition zone, central zone, and the anterior stroma. The highest zone 

probability of the lesion was used as an estimate of its anatomical location within the 

prostate template and compared to the anatomical location reported by the reading 

radiologist.

A correct placement was defined as the event where the highest computed zone probability 

of a lesion matched the reported anatomical zone for the lesion. A partially correct 

placement was defined as an instance where the highest zone probability of a lesion did not 

match the reported anatomical zone for the lesion, but the computed zone probability of the 

reported anatomical zone was non-zero. Any other event was defined as an incorrect 

placement. To simplify the validation, only those lesions which were reported as occurring 

entirely within a single prostate zone were analyzed. Additionally, only those lesions within 

the template mask (areas where the prostate segmentation of at least 10 candidates 

overlapped) were included. Using this inclusion criteria, 250 lesions visualized on MR 

(including index tumors, secondary tumors and false positives) were evaluated. The accuracy 

proportion and 95% confidence interval estimates for the number of correct lesion 

placements after applying our registration methodology were computed.

Given that the prostate registration approach involves deforming the prostate surface contour 

onto the template prostate surface, the effect of this on the internal prostate anatomy was 

also examined. A discrete (non-fuzzy) zonal atlas for the prostate template was also created 

by using the fuzzy zonal probability map and assigning each voxel to the zone with the 

highest zonal probability. The 19 candidate prostates were then registered to the template 

and the alignment between the internal anatomy of the prostate template and the internal 

anatomy of the candidate prostates was also evaluated using the Dice similarity coefficient 

[30].

All analysis was performed with software developed in-house. Registration modules were 

incorporated into our software from ELASTIX registration toolbox v4.4. Probabilistic model 

visualizations were rendered using 3D Slicer v4.4 [31]. Stata 13.0 statistical software 

(StataCorp LP, College Station, TX) was used to estimate accuracy proportion and exact 

binomial 95% confidence interval estimates.

Results

Probabilistic model visualization

Using our probabilistic model building approach outlined in previous sections, probabilistic 

models were built for different sub-populations of tumors. One such probability map that 

was generated with all tumors localized on high-resolution 3D T2 sequence and correlated 

with WMHP is shown in Fig. 2. A map created from only those clinically significant tumors, 

i.e., index tumors as determined through histo-pathologic criteria, is shown in Fig. 3. A map 

generated from all index tumors with Gleason grade 3 + 4 is shown in Fig. 4. Finally, a map 

created using false positives, i.e., clinical findings on MR that were not correlated with 
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histopathology, is shown in Fig. 5. All probability maps are color coded to indicate varying 

degrees of tumor occurrence, i.e., varying number of overlapping tumor contours at different 

regions within the prostate template.

Validation of prostate registration

As part of the validation of the registration approach used for building the tumor occurrence 

probability map, the anatomical location of the lesion in the prostate template was compared 

to its originally reported location in the candidate prostate. As seen in Table 1, our proposed 

registration approach to building the probability map of prostate tumor occurrence was 

found to have a high degree of accuracy in transforming lesions from candidate prostates to 

the corresponding anatomical location in the prostate template. The estimated proportion of 

correct/partially correct placements was 0.992 with a 95% confidence interval estimate of 

(0.971, 0.999).

Since the prostate registration approach described in this study involved deforming the 

candidate prostate surface onto the template prostate surface, we examined the effect of such 

surface deformation on the internal prostate anatomy. Table 2 shows the average DICE 

similarity coefficient between the prostate template and the 19 candidate prostates used to 

create it in different regions. The largest overlap was noted in the peripheral and transition 

zones while the smallest overlap was noted in the central zone and the anterior stroma. 

Strong overlap was also noted when considering the central zone and transition zone 

together (central gland).

Discussion

Both MR Imaging and MRI-guided targeted biopsy, while significantly improving PCa 

detection over traditional TRUS-guided systematic biopsies, still miss an estimated 20% of 

clinically significant PCa [10, 15]. In this study, we presented a novel method for generating 

a volumetric T2-weighted MR-based probabilistic model of PCa occurrence in the prostate 

gland. Such probabilistic models have many potential uses including selection of anatomical 

sites for maximal yield of MR-guided targeted biopsy specimen collection by increasing 

sampling in regions of the prostate where tumor occurrence probability is high, highlighting 

true/false positives hot spots for aiding diagnosis where clinical findings are borderline, and 

correlating tumor location with clinical and tumor characteristics (genotype, molecular 

profile, etc.).

Previous approaches at building such probabilistic models have relied solely on images of 

whole-mount sections for establishing tumor margins, i.e., ground truth while using an 

artificial or MR 3D space. While this approach has merit, it is also vulnerable to 

inaccuracies from over-estimated or under-estimated volumetric tumor contours derived 

from 2D tumor contours on whole-mount sections that do not capture the entire extent of the 

lesion. Establishing correlations between MR slices and whole-mount sections is not a trivial 

task; internal prostate anatomy is not distinctly visualized on whole-mount sections and the 

prostate sectioning plane may not be exactly transversal.

Nagarajan et al. Page 8

Abdom Radiol (NY). Author manuscript; available in PMC 2020 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While cascaded algorithms for prostate registration are not new [26, 32], previous attempts 

have also placed more emphasis on very precise registration. While such registration is 

desirable, it places an undue burden on manual steps to accurately delineate the margins of 

different zones or localize different anatomical landmarks for every subject prostate to be 

registered to the template. We note that such manual steps are time consuming and 

imprecise, and are not required to achieve a prostate registration that is suitable for building 

a probabilistic model. A simpler approach involving fewer and easier manual tasks that 

achieved reasonable overlap of internal prostate anatomy across different subjects may be 

enough to build a probabilistic model of tumor occurrence.

To this end, we present an approach to building a probabilistic model of tumor occurrence in 

the prostate based on volumetric contours of tumors visualized on high-resolution T2-

weighted MR images of the prostate from a population of subjects. To avoid the inclusion of 

false positives, i.e., suspicious findings detected on MR but not corroborated by subsequent 

histopathological analysis, only those MR findings that are cognitively matched to tumors 

localized in pathology by a matching team of an experienced radiologist and pathologist 

were used to generate the probabilistic model, as seen in Fig. 3. In this manner, 

histopathological analysis still served as ground truth but the volumetric contours of the 

tumor were already in the 3D MR space. Additionally, only the prostate and tumors were 

segmented for every subject prostate included in the probabilistic model. Our results suggest 

that the cascaded registration approach used sufficiently aligned internal prostate anatomy to 

make meaningful region-based tumor probability computations.

An examination of the probabilistic models generated in our study in Figs. 2, 3, 4, and 5 

confirmed previous findings that tumors are heterogeneously distributed within the prostate 

[18, 19]. Specifically, we observed a greater likelihood of tumor occurrence at the mid-gland 

anterior transition zone and the base-to-mid-gland posterior peripheral zone, which 

supported findings in other studies [22]. While the probabilistic model that includes all 

tumors is likely to be most useful for guiding selection of biopsy sites to focus on areas with 

higher likelihood of tumor occurrence, an examination of tumor occurrence models that 

focus on specific sub-populations could reveal correlations between specific tumor sub-types 

and regions where they are likely to occur. For instance, when stratifying tumors by Gleason 

Grade, we note a higher frequency of Gleason 3 + 4 tumor occurrence in the mid-level 

anterior transition zone. However, further analysis of the distribution of tumors stratified by 

Gleason grade was not possible as tumors with Gleason scores of 3 + 3, 4 + 3, and ≥ 8 were 

under-represented in this dataset. We intend to further investigate the correlation between 

tumor location and tumor profile through such probabilistic models derived from sub-

populations of tumors stratified by different criteria.

Given the variability in the shape, size, and percentage volume of the peripheral zone, 

transition zone, central zone, and the anterior stroma, and the simplified registration 

approach which does not explicitly deform the zones of the candidate prostates onto the 

prostate template, the quality of the probabilistic model of tumor occurrence built must be 

rigorously evaluated. We proposed a rigorous, externally validated approach to examine how 

well the anatomical location of lesions with respect to the prostate zones was maintained 

when the lesions were transformed into the prostate template space. Given that zones are not 
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explicitly registered across two prostates, the anatomical location of lesions with respect to 

the prostate zones can change during the transformation to the template space where the 

zone borders are soft, i.e., with fuzzy labels. However, our results suggest that the 

registration approach utilized in this study maintained a high degree of accuracy in retaining 

the anatomical location of the lesion relative to the prostate zones when transforming them 

to the prostate template. We also examined the effect of surfacebased registration 

components in our approach on the internal prostate anatomy. Our results suggest reasonable 

alignment between the internal prostate anatomy of different candidate prostates after 

registration to the prostate template, specifically in the peripheral and transition zones. This 

is not surprising given that these are the largest regions in the prostate and easiest to 

visualize and segment accurately.

We acknowledge that our reliance on MR to determine tumor margins is not without 

drawbacks of its own. Since not all tumors are visualized on MR, our probabilistic model is 

skewed in favor of tumors that are visible on MR alone. It is not clear if the inability to 

visualize these tumors on MR is related to the imaging technique or to tumor biology itself, 

and this will continue to be an area of focus moving forward. Another concern is that MR 

tends to under-estimate tumor volume, as shown in [33]. The impact of such tumor margin 

under-estimation on our probabilistic model needs to be investigated further. To this end, we 

aim to compare and quantify differences in probabilistic models of tumor occurrence in the 

prostate derived purely from MR to those obtained from transforming tumor margins 

localized in images of whole-mount sections to the 3D MR space in future studies. Finally, 

the current approach relies on manual segmentation of the prostate and tumors on MR which 

can be error prone and subjective in areas where margins are not well-defined. While 

automated prostate tumor detection and segmentation remains an active area of research 

[34–37], automated prostate capsule segmentation methods such as [38–40] could be 

incorporated in our proposed framework.

Conclusion

We presented an approach for building a probabilistic model of tumor occurrence in the 

prostate using a cascaded prostate registration algorithm and tumors segmented on high-

resolution T2-weighted MRI. We validated our model building approach by testing whether 

the zonal location of the tumor was maintained when the prostate was registered to the 

template. We demonstrated our approach using a rich dataset of 266 subjects with correlated 

histo-pathology and visualized the resulting probabilistic models on a multi-subject-derived 

prostate template. Our results suggest that tumor distribution in the prostate is 

inhomogeneous; specifically, we observe a greater likelihood of tumor occurrence at the 

mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zone. Our 

longterm goal is to use such probabilistic models in helping to guide the selection of 

anatomical sites within the prostate when performing MR-US fusion-guided biopsies and in 

assisting radiological evaluation of prostate MR exams.
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Fig. 1. 
One example prostate tumor from the dataset used in this study. A single axial slice of the 

prostate, as visualized on high-resolution 3D axial TSE (turbo spin echo) T2-weighted MR 

(left) and the closest matching whole-mount section from histopathology (right). The tumor 

was localized on the left posterior region of the prostate as seen by the low MR signal 

intensity areas in the otherwise high MR signal intensity peripheral zone. The MR findings 

were confirmed through histopathology; the tumor as localized by the pathologist is 

annotated in green.
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Fig. 2. 
A probability map of all tumors (both index and secondary) localized on MR and correlated 

with whole-mount histopathology. Axial, coronal, and sagittal views allow visualization of 

tumor hotspots in the prostate template space. The color code is as follows—red indicates 

the occurrence of more than 15 lesions, yellow indicates the occurrence of 10–15 lesions, 

and blue indicates the presence of 5–10 lesions. An approximate prostate shell is shown in 

white; regions with less than 5 lesions are not shown to allow for better visualization of 

hotspots. The maximum number of tumors overlapping at any voxel within the probabilistic 

model was 21. As seen here, high-frequency tumor occurrence is noted in the posterior 

peripheral zone toward the apex and in the mid-anterior and peripheral zone.
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Fig. 3. 
A probability map of all index tumors localized on MR (axial view). The color code is as 

follows—red indicates the occurrence of more than 15 lesions, yellow indicates the 

occurrence of 10–15 lesions, and blue indicates the presence of 5–10 lesions. An 

approximate prostate shell is shown in white; regions with less than 5 lesions are not shown 

to allow for better visualization of hotspots. The maximum number of tumors overlapping at 

any voxel within the probabilistic model was 19. As seen here, high-frequency tumor 

occurrence is noted in the posterior peripheral zone toward the apex and in the mid-anterior 

and peripheral zone.
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Fig. 4. 
Probability map of index tumors localized on MR stratified by Gleason Grade 3 + 4. The 

color code is as follows—yellow indicates the occurrence of 6–10 lesions, and blue indicates 

the presence of 1–5 lesions. An approximate prostate shell is shown in white. As seen here, a 

higher frequency of tumor occurrence is noted in the mid-anterior and peripheral zone.
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Fig. 5. 
Probability map of all false positives localized on MR. The color code is as follows—yellow 

indicates the occurrence of 4–7 lesions, and blue indicates the presence of 1–4 lesions. An 

approximate prostate shell is shown in white.
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Table 1.

Results of quantitative evaluation of the quality of prostate registration approach through evaluation of whether 

lesions maintain their anatomical location after being transformed to the prostate template

Total number of lesions analyzed 250

Number of correct placements 233

Number of partially correct placements 15

Number of incorrect placements 2
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Table 2.

Average overlap between the internal anatomy of the prostate template created in this study and the 19 

candidate prostates used to create the template, as measured with the Dice similarity coefficient

Prostate region Dice similarity coefficient

Anterior fibromuscular stroma 0.28 ± 0.13

Central zone 0.38 ± 0.19

Transition zone 0.68 ± 0.11

Central gland (central zone + transition zone) 0.72 ± 0.08

Peripheral zone 0.76 ± 0.08
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