
ARTICLE OPEN

Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism
causes defects in bone formation and homeostasis through
primary cilium formation
Akiko Suzuki1,2, Kenichi Ogata 1,2, Hiroki Yoshioka 1,2, Junbo Shim1,2, Christopher A. Wassif3, Forbes D. Porter3 and Junichi Iwata1,2,4,5

Human linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism
or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the
development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an
altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during
bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an
enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol
biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues
were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a
consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation.
Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol
metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results
indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.
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INTRODUCTION
Cellular cholesterol amounts are regulated by multiple steps of
biosynthesis and feedback mechanisms.1 Infants with cholesterol
metabolism aberrations have malformations in the craniofacial
region.2–5 For example, mutations in genes involved in cholesterol
synthesis (DHCR7, SC5D, and DHCR24) have been found in patients
with Smith-Lemli-Opitz Syndrome (SLOS) lathosterolosis, and
desmosterolosis, who display craniofacial bone abnormalities.1 In
addition, high-cholesterol diets during pregnancy are known to be
a risk factor for birth defects, including craniofacial bone
abnormalities.6,7 Despite these findings, it remains unclear how
cholesterol metabolism contributes to craniofacial bone forma-
tion, particularly intramembranous ossification.
The 7-dehydrocholesterol reductase (DHCR7) catalyzes the final

step of cholesterol biosynthesis;8 mutations in DHCR7 cause
cholesterol deficiency and an excess of cholesterol precursors,
resulting in craniofacial deformities (e.g., microcephaly, cleft
palate, craniosynostosis, and micrognathia), intellectual disability,
and behavioral problems in humans.9,10 Dhcr7−/− mice show a
suckling defect, weight less, immature lungs, distended bladders,
and variable craniofacial abnormalities.11 The molecular mechan-
ism of craniofacial anomalies in these conditions is still elusive. The
insulin-induced genes 1 and 2 (INSIG1 and INSIG2) are endoplas-
mic reticulum (ER) retention proteins that play roles in both the

regulation of the activity of the 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase and the translocation of the
sterol regulatory element-binding protein (SREBP) to the nucleus
for gene regulation.12 Mice deficient for Insig1 and Insig2 (Insig1−/

−;Insig2−/− mice), which are negative regulators of cholesterol
biosynthesis,13 show high-cholesterol levels in craniofacial tissues
and display craniofacial deformities such as midfacial cleft, cleft
palate, calvarial deformities and micrognathia, while mice
deficient for either Insig1 or Insig2 are normal.3,12 These
craniofacial deformities are rescued by the normalization of
cholesterol levels in Insig1/2 null mice;3 however, it remains elusive
how high-cholesterol levels cause craniofacial deformities and
which cells are responsible for the craniofacial anomalies seen in
Insig1/2 null mice.
Primary cilia, microtubule-based organelles that function in

sensory and signaling pathways, are enriched with cholesterol-rich
microdomains (known as lipid rafts) that recruit or retain receptors
and ciliary membrane proteins.14 An association between lipid
rafts and ciliary membrane proteins has been suggested in other
organisms, including vertebrate photoreceptors,15 Chlamydomo-
nas reinhardtii,16 mammalian spermatozoa,17 and Leishmania
major.18 Defects of primary cilia cause various deformities,
including craniofacial abnormalities (altogether known as ciliopa-
thies, a group of genetic syndromes associated with defects in
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primary cilia).19,20 The broad-spectrum phenotypes in Dhcr7−/−

mice and individuals with SLOS11 (e.g., presenting with craniofa-
cial anomalies such as craniosynostosis, hypertelorism, and cleft
palate, as well as immature lungs and enlarged bladders) are
similar to those seen in ciliopathies. The phenotypic similarity
between ciliopathies and cholesterol synthesis defects suggests
that cholesterol metabolism (level and function of mature
cholesterol and cholesterol intermediates) can regulate bone
development through modulation of primary cilium formation
and function. While over the past decade the underlying
mechanism of ciliopathies has focused on the inner structures of
primary cilia such as intraflagellar transport (IFT) and kinesin (KIF)
proteins,21 little is known about the role of the surface membrane
characteristics of primary cilia in ciliogenesis.
In this study, we investigated the link between cholesterol

metabolic aberrations and craniofacial bone abnormalities by
employing both loss-of-function and gain-of-function mouse
models: mice with a deletion of Dhcr7 and mice with a deletion of
Insig1/2, respectively. To identify the bone abnormalities with either
low or high-cholesterol levels, we carried out microCT, skeletal
staining, and histological analyses in these mice. Our study aims to
elucidate how Dhcr7 and Insig1/2 regulate bone formation.

RESULTS
Dhcr7 deficiency increases osteogenesis
Dhcr7−/− knockout (KO) mice presented microcephaly, acceler-
ated bone formation, and thicker calvaria bones at birth with
complete penetrance, and died within 1 day after birth (Fig. 1a–c
and Supplementary Fig. S1). The accelerated bone formation
resulted in immature suture fusion after culturing calvaria explants
for 3 days (Supplementary Fig. S1d). To examine the cellular
mechanism of how cholesterol metabolic aberrations cause
accelerated bone formation in Dhcr7−/− mice, we carried out
biological analyses, namely BrdU incorporation assays and Ki67
immunohistochemistry for cell proliferation, TUNEL assays for
apoptosis, and von Kossa staining for mineralization, and
immunoblotting for type I collagen for osteogenic differentiation.
We found that osteogenic differentiation, but not cell proliferation
and apoptosis, was increased in Dhcr7−/− frontal bones (Fig. 1d, e
and Supplementary Fig. S2). Next, to determine the regulatory
mechanism of osteogenic differentiation, we performed quantita-
tive RT-PCR (qRT-PCR) analyses for osteogenic factors (Runx2, Alp,
Col1a1, Col1a2, Bglap, Sparc, Sp7, and Spp1) using frontal bones
from Dhcr7−/− mice at embryonic day (E) E14.5, E15.5, E16.5, and
postnatal day (P) P0 (Fig. 1f and Supplementary Fig. S3). Col1a1
gene expression was significantly and consistently upregulated in
Dhcr7−/− frontal bones compared to controls at E14.5-P0.
Expression of RUNX2, COL1A1 and SP7 (aka Osterix) was
increased, and the area with these positive signals was expanded
compared to controls and correlated with increased expression of
these genes in Dhcr7−/− frontal bones (Fig. 1f, g). Next, we
evaluated the effect of loss of Dhcr7 on osteogenic differentiation
using cultured osteoblasts from P0 frontal bones. The Dhcr7−/−

osteoblast characteristics (no proliferation defect but accelerated
osteogenic differentiation through upregulated Col1a1 expres-
sion) were well conserved in cultured primary osteoblasts (Fig. 1h
and Supplementary Fig. S3). Taken together, our results indicate
that a failure in cholesterol synthesis causes accelerated osteo-
genesis through upregulated Col1a1 expression.

Insig1/2 deficiency suppresses osteogenesis
To determine the tissue-specific contribution of high-cholesterol
status to craniofacial deformities, we employed Insig1/2 condi-
tional knockout (cKO) mice12 in cranial neural crest (CNC) cells22,
which give origin to the majority of craniofacial bones.23 Insig1/2
cKO mice were viable, but they exhibited very thin frontal bones
at birth and later in life (Fig. 2a, b), while the other craniofacial

structures derived from CNC cells in these mice were intact. To
examine the cellular mechanism of how high-cholesterol amount
results in decreased bone formation in Insig1/2 cKO mice, we
carried out biological analyses, as performed in Dhcr7−/− mice. We
found that osteogenic differentiation, but not cell proliferation
and apoptosis, was decreased in Insig1/2 cKO frontal bones
(Supplementary Fig. S4). We also found that Col1a1 gene
expression was significantly and consistently downregulated in
frontal bones of Insig1/2 cKO mice at E14.5, E16.5 and P0 (Fig. 2c),
with protein expression correlating with gene expression (Fig. 2d).
Expression of COL1A1 and SP7, but not RUNX2, was decreased,
which was correlated with the expressions of these genes in
Insig1/2 cKO frontal bones (Fig. 2e). We further evaluated the
effect of loss of Insig1/2 on osteogenic differentiation using
cultured osteoblasts from Insig1/2 cKO mice (Fig. 2f and
Supplementary Fig. S4). The Insig1/2 cKO osteoblast characteristics
(no proliferation defect but reduced osteogenic differentiation
through decreased Col1a1 expression) were well conserved in
cultured primary osteoblasts. Since COL1 expression was
decreased in Insig1/2 cKO mice, the abnormalities may resemble
osteogenesis imperfecta, which is a congenital bone disorder
characterized by thinner and fragile bones that affects 6–7 in 100
000 individuals worldwide.24 Altogether, our results indicate that
either too much or too little cholesterol causes calvarial bone
abnormalities through dysregulation of Col1a1 expression.

Ciliogenesis is altered in either Dhcr7- or Insig1/2-deficient mice
As cholesterol is abundant in cellular membranes, we carefully
investigated cellular membranous structures and found that there
were fewer and shorter primary cilia in Dhcr7−/− osteoblasts
compared to controls (Fig. 3a–c). Ciliogenesis starts with the
interaction of the basal body (mother centriole) with primary ciliary
vesicles (CVs), which can be labeled with RAB11,25 and then the
axoneme grows within the ciliary membrane while fusing with
secondary CVs, which can be labeled with RAB8.26 The elongated
primary cilium eventually fuses with the plasma membrane, allowing
the distal part of the cilium to interact with the extracellular
milieu.19,27 To track ciliogenesis in Dhcr7−/− osteoblasts, CVs were
immunostained with anti-RAB11 and anti-RAB8 antibodies. We
found that RAB11-positive primary CVs accumulated in the cells and
that RAB8-positive secondary CVs failed to gather at sites of cilium
formation in Dhcr7−/− osteoblasts (Fig. 3d, e).
On the other hand, Insig1/2 cKO osteoblasts displayed multiple

and longer primary cilia compared to controls (Fig. 4a–c), and
RAB8-positive CVs were abnormally fused with each other (Fig.
4d). The osteogenic and primary cilium phenotypes in Insig1/2
cKO osteoblasts were recapitulated with transfection of an
adenovirus-Cre system (Supplementary Fig. S5). In addition,
multiple basal bodies were detected, consistent with the presence
of multiple primary cilia in Insig1/2 cKO osteoblasts (Fig. 4e and
Supplementary Figs. S5 and S6). We then hypothesized that gene
expression of molecules involved in the formation of the
pericentriolar material (PCM) complex (i.e., Atf5, Aurka, Bbs4,
Cdk5rap2, Cep152, Cep192, Cpap, Lck, Nin, Pcm1, Pcnt, Plk1, Plk4,
Sass6, Stil, Tube1, Tubg1, Tunks, and Tunks2), which is important for
proper centriole formation, was altered in Insig1/2 cKO osteoblasts.
Previous studies indicate that overexpression of Plk1, Plk4, Stil and
Sass6 induces the formation of multiple centrioles.28–35 Among
them, by conducting a bioinformatics promoter analysis we found
that the Plk4 promoter contained two potential sterol regulatory
elements (SREs) for the SRE-binding protein (SREBP) binding. To
access the binding experimentally, we carried out chromatin
immunoprecipitation (ChIP) assays for the sites [site 1; GTGGA-
GAGT (-244 bp to -252 bp) and site 2; TCACTCAGC (–1295 bp to
–1303 bp)] in Insig1/2 cKO and control osteoblasts and found
increased binding of SREBP1 and SREBP2 to the SREs in Insig1/2
cKO osteoblasts (Fig. 4f). Indeed, expression of the Plk4 gene was
significantly and specifically upregulated in Insig1/2 cKO
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osteoblasts compared to controls (Fig. 4g), while the expression of
other PCM-related genes was not altered (Supplementary Fig.
S6b). We further confirmed that PLK4 protein expression was
increased in the mutant osteoblasts compared to controls (Fig.
4h). Taken together, our results indicate that Dhcr7 and Insig1/2
play an important role in primary cilium formation.

WNT/β-catenin and hedgehog signaling pathways are down-
stream signaling cascades responsible for the bone phenotype of
Dhcr7- and Insig1/2-deficient mice
We examined how the ciliary phenotypes resulted in osteo-

genic abnormalities. The primary cilia coordinate with multiple
signaling pathways such as hedgehog (HH) and WNT during

0

1

2

3

4

5

0

Run
x2 Alp

Col1
a1

Col1
a2

Bgla
p

Spa
rc

Sp7
Spp

1

Run
x2

Col1
a1

Col1
a2

Bgla
p

Spa
rc

Sp7
Spp

1

0.5

1.0

1.5

2.0

2.5

WT Dhcr7 KO
b

c

D
hc

r7
 K

O
W

T

50 µmP0

d
W

T
D

hc
r7

 K
O

 

P0 100 µm

E16.5E14.5
***

*** ***

***
*** **

f

h WT KO

D
ay

 0
D

ay
 7

D
ay

 1
4

WT KO

e

COL1

GAPDH

WT KO

WT
Dhcr7 KO

g

W
T

D
hc

r7
 K

O

WT Dhcr7 KOa

RUNX2 COL1A1 SP7

50 µm

R
el

at
iv

e 
ex

pr
es

si
on

**

R
el

at
iv

e 
ex

pr
es

si
on

Alp
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mice. GADPH was used as loading control. f Quantitative RT-PCR of the indicated osteogenic genes at E14.5 (left) and E16.5 (right) in WT (blue
bars) and KO (red bars) mice. n= 6 per genotype per stage. **P < 0.01; ***P < 0.001. g Immunohistochemistry analysis for RUNX2, COL1A1 and
SP7 (Osterix) in newborn WT and KO mice. Nuclei were counterstained with 0.04% methylene blue. Scale bar, 50 µm. h Alkaline phosphatase
(left) and Alizarin Red (right) staining of osteoblasts isolated from newborn WT and KO calvaria after induction of osteogenic differentiation at
Day 0, 7, and 14.
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osteogenesis.36–38 To investigate HH signaling in Dhcr7−/−

calvaria, we analyzed Gli1 and Ptch1 levels by qRT-PCR, which
are readout gene expressions for HH signaling activity.39–43 We
found that expression of these genes was significantly down-
regulated in Dhcr7−/− calvaria (Fig. 5a). Furthermore, we
employed Gli1-LacZ reporter mice to evaluate the HH signaling
activity in vivo. We found that HH signaling was compromised in
the calvaria of Dhcr7−/− mice compared to controls (Fig. 5b). To
further confirm the reduced HH signaling activity in the calvaria of
Dhcr7−/− mice, we performed cell fractionation and the con-
sequent immunoblotting analyses for GLI1. Previous studies
indicate that in the absence of HH ligands, GLI1 is truncated
and degraded by the proteasome in the cytoplasm, while GLI1
translocates into the nucleus in the presence of HH ligands by
escaping from degradation.44,45 As expected, full-length GLI1 was
decreased in the nuclear fraction from Dhcr7−/− osteoblasts
(Fig. 5c).

Next, we investigated the HH signaling activity in Insig1/2 cKO
mice. We carried out qRT-PCR for Gli1 and Ptch1 in Insig1/2 cKO
calvaria and found that expression of these genes was significantly
upregulated in Insig1/2 cKO mice (Fig. 5d). Furthermore, we
performed LacZ staining for Gli1 expression in Insig1/2 cKO;Gli1-
LacZ and control mice. As expected, Gli1-LacZ expression was
increased in the calvaria of Insig1/2 cKO;Gli1-LacZ mice compared
to that of control mice (Fig. 5e). Next, to examine whether Col1a1
expression was regulated through HH signaling, we conducted
promoter analyses for GLI binding on the Col1a1 promoter and
found that the Col1a1 promoter contained a putative GLI-binding
site (GGCCACGCA; −68 bp to –60 bp) (Supplementary Fig. S7a).
ChIP assays validated that GLI binding to the Col1a1 promoter
region was correlated with the activity of HH signaling in
osteoblasts from Dhcr7−/− and Insig1/2 cKO mice (Fig. 5f, g).
Thus, HH signaling activity was correlated with the primary

cilium phenotype of Dhcr7−/− and Insig1/2 cKO mice. However,
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previous studies show that upregulated and downregulated HH
signaling cause defective and normal craniofacial bone formation,
respectively.46–48 This suggests that altered HH signaling was not
responsible for the bone phenotypes in Dhcr7−/− and Insig1/2
cKO mice.
We, therefore, investigated another candidate cilium-mediated

signaling that regulates intramembranous ossification, WNT/
β-catenin signaling,49 in Dhcr7−/− and Insig1/2 cKO mice. Recent
studies indicate that primary cilia negatively regulate WNT/β-catenin
signaling.37,50,51 To investigate the activity of WNT/β-catenin
signaling pathway, we conducted quantitative RT-PCR for Axin2, a
readout of WNT/β-catenin signaling activity, and found that its
expression was upregulated and downregulated in Dhcr7−/− and
Insig1/2 cKO osteoblasts, respectively (Fig. 6a, b and Supplementary
Fig. S8). To validate the relationship between WNT/β-catenin
signaling and cholesterol metabolism, we treated primary osteo-
blasts from Dhcr7−/− and Insig1/2 cKO mice with either WNT3A or
lithium chloride (LiCl), a known WNT/β-catenin signaling activator.
While both WNT3A and LiCl induced Axin2 expression five-fold in
wild-type controls, Axin2 expression was upregulated and down-
regulated in Dhcr7−/− and Insig1/2 cKO osteoblasts, respectively (Fig.
6c, d). We confirmed that in mice with Topgal reporter for the WNT/
β-catenin signaling activity, its activity was increased at osteogenic
front of the calvaria in Dhcr7−/− mice compared to control mice (Fig.
6e). Next, to examine whether Col1a1 expression was regulated
through WNT/β-catenin signaling, we conducted promoter analyses
for β-catenin binding on the Col1a1 promoter and found four
putative β-catenin binding sites (Supplementary Fig. S7b). To
evaluate these predicted binding sites, we conducted ChIP assays
for β-catenin binding to the Col1a1 promoter region, and found that
β-catenin bound at binding sites 1 and 4, and the binding was

correlated with the activity of WNT/β-catenin signaling in osteo-
blasts from Dhcr7−/− and Insig1/2 cKO mice (Supplementary Fig. S9).
Lastly, to test the functional significance of WNT/β-catenin signaling,
we generated and investigated compound mutant mice with a
haploinsufficiency of Axin2 in the Dhcr7 mutant background and
found that normalized WNT/β-catenin signaling restored the
accelerated bone formation in Dhcr7−/− mice (Fig. 6f–h). Altogether,
these findings are well supported by the fact that WNT/β-catenin
signaling positively regulates osteogenesis.52

The bone phenotype in Dhcr7- and Insig1/2-deficient mice is
restored by the normalization of aberrant cholesterol metabolism
with simvastatin
To test whether abnormalities in primary cilium and bone

formation can be restored by the normalization of aberrant
cholesterol metabolism, we treated Dhcr7−/− and Insig1/2 cKO
osteoblasts with simvastatin, which can normalize cholesterol
metabolic aberrations by inhibiting the activity of the HMG-CoA
reductase. Simvastatin treatment restored primary cilium forma-
tion in cultured osteoblasts from Dhcr7−/− mice (Fig. 7a–c). In
addition, the in vivo administration of simvastatin to Dhcr7−/−

mice (10 mg·kg−1 body weight per day, intraperitoneal injection
to a pregnant mouse, E12.5-E18.5) could normalize the acceler-
ated bone formation in newborn mice (Fig. 7d, e). We confirmed
that expression of genes related to bone formation and WNT
signaling was restored in Dhcr7−/− mice treated with simvastatin
(Fig. 7f). These results indicate that cholesterol intermediates
caused the bone defects in Dhcr7−/− mice. In Insig1/2 cKO mice,
simvastatin treatment restored both the increased number and
length of primary cilia (Fig. 8a, b) and the reduced bone formation
in Insig1/2 cKO osteoblasts (Fig. 8c). Importantly, simvastatin
treatment (10 mg·kg−1 body weight per day from P7 to P42)
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improved the decreased bone formation in these mice (Fig. 8d). As
expected, the expression of genes related to osteogenesis, cilia
and WNT signaling was normalized in Insig1/2 cKO mice treated
with simvastatin (Fig. 8e). Taken together, our results indicate that
proper cholesterol metabolic status is crucial for normal primary
cilium formation, which is responsible for osteogenesis in
osteoblasts (Fig. 9).

DISCUSSION
Previous studies show that cholesterol metabolism is important
for the formation and homeostasis of bone and cartilage during
endochondral ossification.53,54 For example, mice with a deletion
of Scap, a regulator for cholesterol biosynthesis, in either
postcranial somatic lateral plate mesodermal cells (ScapF/F;Prx1-

Cre mice) or chondrocytes (ScapF/F;Col2a1-Cre mice), display
compromised chondrogenesis and disorganized growth plates,
resulting in short limbs.54 By contrast, increased intracellular
cholesterol in mice deficient for Insig1/2 in postcranial somatic
lateral plate mesodermal cells (Insig1F/F;Insig2−/−;Prx1-Cre mice)
or chondrocytes (Insig1F/F;Insig2−/−;Col2a1-Cre mice) show
defects in growth plate organization and chondrogenesis, also
resulting in short limbs.54 Thus, either too much and too low of
cholesterol results in short limbs through defective endochon-
dral ossification. In this study, we aimed to study the role of
cholesterol in intramembranous ossification using both gain-of-
function (Insig1/2 cKO mice) and loss-of-function (Dhcr7−/− mice)
mouse models, and found that cholesterol metabolism plays a
role in intramembranous ossification in a dose-dependent
manner. These findings suggest that effects of abnormal
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cholesterol metabolism differ between intramembranous and
endochondral ossification.
7-DHC is a cholesterol intermediate as well as a precursor of

vitamin D; 7-DHC is converted to pre-vitamin D3 by ultraviolet

light on the skin and further converted to active vitamin D3 in the
liver and kidney.55 Previous studies indicate that suppression of
DHCR7 activity results in upregulated vitamin D3 levels in vivo
after birth.56–58 While patients with SLOS show a high level of
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vitamin D3 compared with healthy individuals, calcium home-
ostasis is not affected.59 As vitamin D3 biosynthesis is inactive
during embryogenesis due to lack of exposure to ultraviolet light,
and because only maternal 25-hydroxyvitamin D is a source of
vitamin D,60,61 the effect of vitamin D3 on bone development
would be minimal. By contrast, while the maternal cholesterol
supply partially restores the exogenous cholesterol supply in
embryos, embryonic tissues still need to synthesize cholesterol
through endogenous cholesterol synthesis pathways in each

organ to compensate for the gap between the external supply and
their needs.62–64 This could be a possible reason why cholesterol
metabolic anomalies cause different degree/severity of malforma-
tions in different tissues in mice and humans.
Primary cilia transduce extracellular cues as a mechanical

sensor, as well as a chemical sensor, for morphogens and growth
factors.65,66 Therefore, both endochondral and intramembranous
ossification are affected in mice with defective primary cilia.38 For
example, mice deficient for Kif3a, a ciliary protein, in osteoblasts
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display decreased bone formation and osteopenia.67 A deficiency
for cilia-related protein SPEF2 results in osteoblast differentiation
defects.68 In this study, we found that HH and WNT/β-catenin
signaling is inverted in conditions of the primary cilia in Dhcr7−/−

and Insig1/2 cKO mice during intramembranous ossification. While
both WNT/β-catenin and HH signaling pathways are essential for
endochondral ossification as well as for the differentiation and
maturation of cultured osteoblasts,36 previous mouse genetic
studies suggest that WNT/β-catenin signaling may be more
dominant than HH signaling for osteogenesis in intramembranous
ossification during skull formation.
In regard to HH signaling, previous studies show that HH

signaling is compromised in Dhcr7mutant mammalian models; for
example, HH signaling is inhibited in Dhcr7−/− mouse embryonic
fibroblasts (MEFs)69, as well as in mice deficient for Dhcr7
(Dhcr7ΔEx8/ΔEx8 mice).70,71 Our results show that the number of
ciliated cells, as well as the length of cilia, is decreased in Dhcr7−/−

osteoblasts, which is responsible for diminished HH signaling.

Previous studies indicate that HH signaling is not dominant in
regulating intramembranous ossification; for example, mice with
loss of Ihh (Ihh−/− mice), which is expressed at the osteogenic
front in cranial bones,72,73 develop small but normal calvaria,47,48

and osteogenesis is not affected during intramembranous
ossification.74 Mice deficient for Smo (Smon/c;Wnt1-Cre mice)
display small but normal skulls in contrast to other severe
craniofacial defects.75 In addition, mice deficient for Shh (Shhn/c;
K14-Cre mice and ShhF/F;K14-Cre mice), which is specifically
expressed in the epithelium in craniofacial regions, show normal
skull formation while they exhibit cleft palate.2,76,77 Thus, loss-of-
function of HH signaling does not affect calvaria formation. By
contrast, gain-of-function of HH signaling results in defective bone
formation; for example, mice with an ectopic HH signaling
activation in CNC cells (Smo+/M2;Osr2-IrsCre) show cleft palate
and osteogenesis defects such as the absence of the palatine
processes of the premaxilla and maxilla and a short mandible with
ossification defects.46 In addition, overexpression of Shh in the
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epithelium (K14-Shh transgenic mice) results in craniofacial bone
defects, cleft palate, short limbs, and polysyndactyly through the
increased and expanded SHH signaling activation in the
mesenchyme.78 Taken together, although HH signaling may
contributes to intramembranous ossification at some degree,
upregulation and downregulation of HH signaling in Dhcr7−/− and
Insig1/2 cKO mice is not in agreement with the hypothesis that HH
is a factor responsible for cilia-mediated osteogenesis during
intramembranous ossification.
As to WNT/β-catenin signaling, previous studies show that it

positively regulates osteogenesis; for example, constitutive active
WNT/β-catenin signaling in bones results in increased osteogen-
esis in mice,79–81 and WNT/β-catenin signaling inhibition results in
a failure of osteogenesis; for example, mice with inactivated
β-catenin in mesoderm-derived osteoblast and chondrocyte
progenitor cells (Catnbyc/c;Dermo1-Cre mice) show drastically
diminished osteogenesis and ectopic cartilage formation in both
intramembranous and endochondral ossification.82 Kif3a−/− and
Kif3aF/F;Wnt1-Cremice as well as MEFs or embryonic stem (ES) cells
from Kif3a−/−, Ofd1−/− and Ift88orpk/orpk mice with no functional
primary cilia show hyper-activated WNT/β-catenin signaling,
compared to ciliated control cells,83,84 as seen in Dhcr7−/−

osteoblasts. Thus, WNT/β-catenin signaling is well correlated with
the osteogenic phenotype in Dhcr7−/− and Insig1/2 cKO mice
during intramembranous ossification.
In summary, we demonstrated the biological significance of

intracellular cholesterol metabolism in the regulation of osteogen-
esis and ciliogenesis using Dhcr7−/− and Insig1/2 cKO mice and

derived cultured osteoblasts. Dhcr7−/− osteoblasts displayed fewer
and shorter primary cilia compared to controls, while Insig1/2 cKO
osteoblasts exhibited supernumerary and longer primary cilia
compared to controls. Our work places a new focus on primary
cilium formation regulated by cholesterol metabolism in the bone.
The principles learned from this study promise to be fertile ground
for future molecular genetic studies of craniofacial bone develop-
ment, and may lead to the development of innovative preventive
and therapeutic approaches for bone diseases and ciliopathies
related to cholesterol metabolic aberrations.

MATERIALS AND METHODS
Animals
Dhcr7−/− mice85 were a gift from Dr. Forbes D. Porter (The Eunice
Kennedy Shriver National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, Maryland,
USA). Insig1F/F;Insig2−/− (The Jackson Laboratory, #005939)12 and
Wnt1-Cre2 (The Jackson Laboratory, #022501)22 mice were
obtained from The Jackson Laboratory and crossed to generate
Insig1/2 cKO mice. Gli1-LacZ mice (The Jackson Laboratory,
#008211)39 were obtained from The Jackson Laboratory and
crossed with Dhcr7+/− and Wnt1-Cre2;Insig1F/+;Insig2−/− mice in
order to generate Dhcr7−/−;Gli1-LacZ, Dhcr7+/+;Gli1-LacZ, Insig1/2
cKO;Gli1-LacZ, and Insig1F/F;Insig2−/−;Gli1-LacZ mice. Topgal (The
Jackson Laboratory, #004623)86 and Axin2LacZ/+ (The Jackson
Laboratory, #009120)87 mice were obtained from The Jackson
Laboratory and crossed with Dhcr7−/− mouse line to generate
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Dhcr7−/−;Topgal and Dhcr7+/+;Topgal, Dhcr7−/−;Axin2LacZ/+, and
Dhcr7+/+;Axin2LacZ/+ mice. Genotyping was performed using PCR
primers, as previously described.12,22,85 Pregnant females were
treated with simvastatin (S6196; Sigma-Aldrich) at a dose of
10mg/kg−1 body weight (BW) from E12.5 to E18.5, or from day 7
to day 42, administered by intraperitoneal injection.

Skeletal staining
The three-dimensional architecture of the skeleton was examined
by modified whole-mount Alcian blue-Alizarin Red S staining, as
previously described.88

MicroCT
MicroCT analysis was performed using a Scanco µCT40 unit in the
microCT core facility at Baylor College of Medicine. The data were

collected at a resolution of 20 µm. Three-dimensional reconstruc-
tion was performed using the BoneJ software.

Histology
H&E, BrdU staining, von Kossa staining, LacZ staining, immuno-
histochemistry, and the TUNEL assay were performed as
previously described.88,89 Antibodies used for immunohistochem-
istry were the anti-COL1A1 rabbit polyclonal (Abcam), anti-RUNX2
rabbit monoclonal (Cell Signaling Technology), anti-SP7 rabbit
polyclonal (Abcam), anti-BrdU rat monoclonal (Abcam), and anti-
Ki67 rabbit monoclonal (Abcam) antibodies (Supplementary Table
S1). Click-iT® Plus TUNEL Assay with Alexa 594 (C10618, Molecular
probes) was used to detect apoptotic cells, according to the
manufacturer’s instructions. Fluorescence images were obtained
using a confocal microscope (Ti-C2, Nikon).
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Cell culture
Primary osteoblasts were obtained from newborn frontal bones.
Briefly, the frontal bones were dissected at birth and incubated with
2mg·mL−1 collagenase II solution (Gibco) while shaking at
350 r·min−1 at 37 °C for 1 h. Cells were resuspended in minimum
essential medium alpha (MEM-α) supplemented with 10% fetal
bovine serum (FBS), penicillin/streptomycin, and L-glutamine. For
osteogenic differentiation, osteoblasts were cultured in 12-well
plates, and osteogenic differentiation was induced with osteogenic
induction medium (MEM-α supplemented with 100 µg·mL−1 ascorbic
acid, 5mmol·L−1 beta-glycerol phosphate, 10% FBS, penicillin/
streptomycin, and L-glutamine) for 28 days. To evaluate osteogenic
differentiation, alkaline phosphatase staining, Alizarin Red staining,
and von Kossa staining were performed. To induce ciliogenesis,
osteoblasts were starved of serum for 24 h, followed by immuno-
fluorescent staining or collection of RNA and protein. To evaluate
WNT signaling activity, osteoblasts were starved of serum for 24 h
and then treated with either 20mmol·L−1 lithium chloride (LiCl) or
20mmol·L−1 NaCl (a negative control) in a serum-free medium for
24 h. For WNT3A treatment, WNT3A-conditioned medium and
control medium were prepared from murine WNT3A-
overexpressing cells (L-Wnt3a cells: the American Type Culture
Collection [ATCC]) and from control L-cells (ATCC), according to
manufacturer’s instructions, and used at 10% for each assay for 24 h,
respectively. For the cell proliferation assay, osteoblasts were plated
onto 96-well plates at a density of 5 000 cells per well and then
counted by CCK8 (Dojindo Molecular Technologies) at 24, 48, and
72 h. For the BrdU incorporation assay, osteoblasts were plated onto
a 35-mm culture dish at a density of 10 000 cells per dish for 2 days,
and then 100 µg·mL−1 BrdU was added for 1 h. To generate Insig1/2
cKO osteoblasts from Insig1F/F;Insig2−/− osteoblasts, the Ad5-CMV-
LacZ-Cre virus (Vector Development Laboratory) was transduced at
300 multiplicity of infection (MOI) for 2 days. The Cre recombinase
efficiency was evaluated with LacZ staining.

Organ cultures
Calvarial explants were dissected out from newborn Dhcr7−/−

pups and incubated in BGjB medium (Gibco) supplemented with
10% FBS, 0.1 mg·mL−1 ascorbic acid, and penicillin/streptomycin,
in a rotor incubator at 37 °C for 3 days.

Immunocytochemical analysis
The ciliated osteoblasts plated onto ibiTreat 4-well μ-slides (ibidi)
were obtained through 24-h serum starvation. The antibodies
used in immunocytochemistry were the anti-γ-tubulin mouse
monoclonal (Sigma-Aldrich), anti-acetylated tubulin mouse mono-
clonal (Sigma-Aldrich), anti-RAB8 rabbit monoclonal (Cell signaling
Technology), anti-RUNX2 rabbit monoclonal (Cell Signaling
Technology), and anti-RAB11 rabbit polyclonal (Abcam) antibodies
(Supplementary Table S1). Nuclei were counterstained with DAPI.
The number and length of primary cilia were measured by NIS-
Elements (Nikon) under a confocal microscope (Ti-C2, Nikon).

Quantitative RT-PCR
Total messenger RNA was prepared as previously described.88

Quantitative RT-PCR was conducted using the following primers:
Runx2, 5ʹ-CGGACGAGGCAAGAGTTTCA-3ʹ and 5ʹ-GGATGAGGAAT
GCGCCCTAA-3ʹ; Alp, 5ʹ-CTGAAGGCTCTCTTCACTCCAA-3ʹ and 5ʹ-AG
GCGACAGGTGAAGAAACA-3ʹ; Col1a1, 5ʹ-GAAGATGTAGGAGTCGA
GGGAC-3ʹ and 5ʹ-CCTTGGAAACCTTGTGGACC-3ʹ; Col1a2, 5ʹ-CAAAG
GCGTGAAAGGACACAG-3ʹ and 5ʹ-GCCAGTGAGCCCATTTGTTC-3ʹ;
Bglap, 5ʹ-CCTAGCAGACACCATGAGGAC-3ʹ and 5ʹ-GTTTGGCTTTAG
GGCAGCAC-3ʹ; Sparc, 5ʹ-GCCTACCACAAGGCAAGGAA-3ʹ and 5ʹ-CA
GGTACCCCTGTCTCCTCC-3ʹ; Sp7, 5ʹ-GCCTGACTCCTTGGGACC-3ʹ
and 5ʹ-TAGTGAGCTTCTTCCTCAAGCA-3ʹ; Spp1, 5ʹ-AGTGACTGAT
TCTGGCAGCTC-3ʹ and 5ʹ-ATTGCTTGGAAGAGTTTCTTGCT-3ʹ; Plk1,
5ʹ- CCT TTG AGA CCT CGT GCC TA-3ʹ and 5ʹ- GGT TCT CCA CAC CTT
TAT TGA GGA-3ʹ; Plk4, 5ʹ-AGACCGGCGGGAATTTTTCA-3ʹ and 5ʹ-TA

AAGTCCTCGATCCTCTCCCC-3ʹ; Sass6, 5ʹ-GGAGAGGAGAGGGAGC
GTTA-3ʹ and 5ʹ-CCTTGGAGTCTCTTTCGCGT-3ʹ; Stil, 5ʹ-TGCCTACG
AGCCCAAATCAC-3ʹ and 5ʹ-TAGGCTTCACAGGCACACAC-3ʹ; Axin2,
5ʹ-GACGGACAGTAGCGTAGATGG-3ʹ and 5ʹ-CAGACTATGGCGGCT
TTCCA-3ʹ; Lef1, 5ʹ-CGGGAAGAGCAGGCCAAATA-3ʹ and 5ʹ-CTGGG
ACCTGTACCTGAAGTC-3ʹ; Gli1, 5ʹ-CACTGAGGACTTGTCCAGCTTG-3ʹ
and 5ʹ-AGCTGGGCAGTTTGAGACC-3ʹ; Ptch1, 5ʹ-TAGCCCTGTGGT
TCTTGTCC-3ʹ and 5ʹ-TGTGGTCATCCTGATTGCAT-3ʹ; Wnt1, 5ʹ-ACT-
CATTGTCTGTGGCCCTG-3ʹ and 5ʹ-TATGTTCACGATGCCCCACC-3ʹ;
Wnt3a, 5ʹ-GATCTGGTGGTCCTTGGCTG-3ʹ and 5ʹ- ACCCATCTATGC-
CATGCGAG-3ʹ; Wnt7b, 5ʹ-CACACTCTGGTCAACCTCCC-3ʹ and 5ʹ-
CAGCCTCTCGACTCCCTACT-3ʹ; Wnt10b, 5ʹ-TCTGGATCACTCCCTC
CCTTT-3ʹ and 5ʹ- GTTACCACCTGGCGTCCC-3ʹ;Wnt16, 5ʹ-TATGAGCT-
GAGTAGCGGCAC-3ʹ and 5ʹ- TCCAGCAGGTTTTCACAGCA-3ʹ; Fzd3,
5ʹ-GCAGATAGGTGGGCACAGTT-3ʹ and 5ʹ- ATAGGGTGGAAGGGCT
CCAT-3ʹ; Fzd7, 5ʹ-GGGGCGAGAGATGGTTTTGA-3ʹ and 5ʹ-AGGCTAC
AGACAGAGCGGTA-3ʹ; Fzd9, 5ʹ-TCACCGTGTTCACCTTCCTG-3ʹ and
5ʹ- GCTTCTCCGTATTGGTGCCT-3ʹ and Gapdh, 5ʹ-AACTTTGGCATT
GTGGAAGG-3ʹ and 5ʹ-ACACATTGGGGGTAGGAACA-3ʹ.

Immunoblotting
Immunoblots were obtained as previously described.89 The
antibodies used for immunoblotting were as follows: anti-
collagen type I rabbit polyclonal (Abcam), anti-INSIG1 rabbit
polyclonal (Abcam), anti-INSIG2 rabbit polyclonal (Abcam), anti-
DHCR7 rabbit polyclonal (Abcam), anti-GLI1 rabbit polyclonal
(Abcam), anti-non-phosphorylated (active) beta-catenin rabbit
polyclonal (Cell Signaling Technology), anti-CREB rabbit polyclonal
(Cell Signaling Technology), anti-SaK (aka PLK4) mouse mono-
clonal (Santa Cruz Biotechnology), and anti-GAPDH mouse
monoclonal (Millipore) (Supplementary Table S1). Cell fractiona-
tion was performed using a NE-PERTM nuclear and cytoplasmic
extraction kit (Thermo Scientific).

Promoter analysis
The UCSC genome browser was used to obtain the genomic
sequences of the Col1a1 murine gene (NC_000077.6) and the Plk4
murine gene (NC_000069.6), including the 5-kbp sequences
upstream of the respective transcription start sites. The sequences
were then mapped to seven additional mammalian genomes
[human (Build 38), chimpanzee (Build 2.1.4), orangutan (Build
2.0.2), rhesus macaque (Build 1.0), rat (Build 5), dog (Build 3.1), and
horse (Build equCab2)] with the BLAST tool, as previously
described.90 Multiple alignments for these sequences were
obtained using the Clustal Omega tool with default parameters
and settings. LEF1 binding motifs (minimal core sites: 5ʹ-CAAAG-3ʹ
and 5ʹ-CTTTG-3ʹ; optimal sites: 5ʹ-CTTTGWW-3ʹ and 5ʹ-WWCAAAG-
3ʹ, W= A/T), the GLI-binding motif (5ʹ-CACCACCCA-3ʹ),91,92 and the
SRE consensus sequence (5ʹ-TCACNCCAC-3ʹ)93,94 were searched in
the aligned DNA sequences, as previously described.90

Chromatin immunoprecipitation assay
At Day 3 of osteogenic differentiation, the osteoblast extracts were
incubated with either active β-catenin (Cell signaling technology),
GLI1 (Abcam), or normal rabbit IgG as a negative control (Santa
Cruz Biotechnology) overnight at 4 °C, followed by precipitation
with magnetic beads. The osteoblast extracts were incubated with
either mouse SREBP1 and SREBP2 antibodies (Santa Cruz
Biotechnology) or normal mouse IgG (Santa Cruz Biotechnology)
overnight at 4 °C, followed by precipitation with magnetic beads.
Washing and elution of the immune complexes, as well as
precipitation of DNA, were performed according to standard
procedures, as previously described.90 The putative LEF1/
β-catenin binding sites in the immune complexes were detected
by PCR using the following primers: Col1a1 site 1, 5ʹ-AGCAGACGG-
GAGTTTCTCCT-3ʹ and 5ʹ-GCAGCTGACTTCAGGGATGT-3ʹ (–117 bp
to+ 93 bp); site 2, 5ʹ-CAGGCTTCCTGCAACAAACT-3ʹ and 5ʹ-
AGGGGGTGCCTATCTGTTCT-3ʹ (–985 bp to -736 bp); site 3, 5ʹ-
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GTCCTTCCATTGCTGTCTCC-3ʹ and 5ʹ-CCATCCAAGATTCCATTGCT-3ʹ
(–1814 bp to -1569 bp); and site 4, 5ʹ-TGGAGATTCTGGCTTTTGCT-3ʹ
and 5ʹ-TGCAGCATGACAGAGAGAGG-3ʹ (–2756 bp to –2517 bp).
The putative GLI-binding sites on the Col1a1 promotor were
detected by the following primers: 5ʹ-CGGGACTTTCTCCTCGGGG-3ʹ
(–111 bp to –94 bp) and 5ʹ-GGGGTTAGCTTCGGCTCA-3ʹ (–59 bp to
–42 bp). The putative SREs on the Plk4 promotor in the immune
complexes were detected by PCR using the following primers: site
1, 5ʹ-AAACCCACTTCCGGCCTAGA-3ʹ (–322 bp to –303 bp) and 5ʹ-
TGAAAAATTCCCGCCGGTCT-3ʹ (–210 bp to –191 bp); and site 2, 5ʹ-
GCTTGCAGGATAACGTGTTCATT-3ʹ (–1402 bp to –1380 bp) and 5ʹ-
AATAAGAGGAATAGGCTAGCGGG-3ʹ (–1275 bp to –1262 bp). The
position of the PCR fragments corresponds to NCBI mouse
genome Build 38 (mm10).

Statistics
The two-tailed student’s t-test was applied for statistical analysis. A
P-value < 0.05 was considered statistically significant. For all
graphs, data are represented as mean ± standard deviation.

Study approval
All animal experiments were reviewed and approved by the
Animal Welfare Committee and the Institutional Animal Care and
Use Committee of UTHealth.
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