Skip to main content
. 2019 Dec 17;61(1):42–50. doi: 10.4111/icu.2020.61.1.42

Table 2. Univariate and multivariate analysis predicting the probability of pT3 by pathologic stage.

Predictor Univariate analysis Multivariate analysis
AUC of individual predictor variables OR; p-value Base model OR; p-value Base model with %p2PSA; p-value Base model with PHI; p-value
Age 0.428 0.977; 0.289
Prostate volume 0.496 1.016; 0.093
Clinical stage 0.653 5.626; <0.001 2.726; 0.273 2.734; 0.381 2.196; 0.451
Percentage of positive biopsy core 0.598 2.105; <0.001 1.953; 0.083 1.879; 0.096 1.882; 0.085
Biopsy Gleason sum 0.753 9.492; <0.001 4.493; 0.002 1.952; 0.059 1.812; 0.061
PSA density 0.573 2.291; <0.001 1.156; 0.072 1.120; 0.125 1.156; 0.149
tPSA 0.720 1.162; <0.001 1.157; 0.062 1.182; 0.045 1.142; 0.053
fPSA 0.603 1.135; 0.293
%fPSA 0.321 0.001; <0.001 0.089; 0.568 0.758; 0.883 0.074; 0.766
p2PSA 0.774 1.068; <0.001
%p2PSA 0.850 10.948; <0.001 13.145; <0.001
PHI 0.913 1.197; <0.001 1.213; <0.001
AUC of multivariate models 0.849 0.939 0.951
Gain in predictive accuracy (%, p-value) 9.0 (<0.001) 10.2 (<0.001)

AUC, area under the curve; OR, odds ratio; PHI, prostate health index; PSA, prostate-specific antigen; tPSA, total PSA; fPSA, free PSA; %fPSA, the percentage of free PSA to total PSA; %p2PSA, the percentage of p2PSA to free PSA.

The AUC reflects the predictive values of individual variables (columns) and of the multivariate models in predicting the probability of pT3.