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Abstract

Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and 

worldwide. CRC is the second most common cancer related death in both men and women 

globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may 

drive genetic and epigenetic/epigenomic alterations such as DNA methylation, histone 

modification, and noncoding RNA regulation. Current prevention modalities for CRC are limited 

and some treatment regimens such as use the NSAID aspirin may have severe side effects, namely 

gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing 

alternative strategies. Recently, increasing evidence suggests that several dietary cancer 

chemopreventive phytochemicals possess anti-inflammation and anti-oxidative stress activities, 

and may prevent cancers including CRC. Curcumin is the yellow pigment that is found in the 

rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that curcumin exhibits 

strong anticancer, anti-oxidative stress and anti-inflammatory activities by regulating signaling 

pathways such as Nrf2, NF-κB, and epigenetics/epigenomics pathways of histones modifications, 

and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/

epigenomics alterations by curcumin in CRC and their potential contribution in the prevention of 

CRC.
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1. Introduction

Curcumin is a polyphenolic derivative produced from turmeric (Curcuma longa) (1). It is the 

main active ingredient in turmeric and gives turmeric its yellow color. The IUPAC name for 

curcumin is (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, and its 

molecule structure contains a symmetric structure of two aromatic o-methoxy phenolic 

groups, linked by a diketone unsaturated carbon bridge (2). Previous reports have 

demonstrated that the curcumin content in turmeric are significantly different and affected 

by geology and environment, among other factors (3). For example, curcumin content 

reaches as high as 3.14% by weight in both turmeric and curry powders purchased from 

South California (4), while in Japan, fertilizing the plant with nitrogen, phosphorus and 

potassium in greenhouses, the content of curcumin in turmeric yields in the range of 0.12% 

to 0.21 % by weight (5). Regional similarity also found that the curcumin content grown in 

Japan, Indonesia and Vietnam is around 0.18% to 0.44%, 2.3%, and 3.2% by weight, 

respectively (6). Due to curcumin’s hydrophobic structure, rapid metabolism and systemic 

elimination occurs upon entering the human body and the bioavailability of curcumin is 

considered very poor (7). In vivo studies in rats show that oral administration of curcumin 

(500 mg/kg body weight) leads to a maximum serum concentration of 0.06 ± 0.01 μg/mL at 

41.7 ± 5.4 min. In addition, the elimination half-life for curcumin oral administration (500 

mg/kg) and IV injection (10 mg/kg) are 28.1 ± 5.6 and 44.5 ± 7.5 min, respectively (8). To 

improve the bioavailability of curcumin, piperine has been used in combination with 

curcumin, and the bioavailability could be increased by 20-fold in human clinical trials (9). 

Curcumin-loaded nanoparticles have also been developed to improve curcumin’s 

bioavailability (10). Lipidated curcumin was shown to increase the bioavailability and 

promote human health by decreasing the plasma triglyceride and increasing the free radical 

scavenging ability (11). While multiple delivery systems are designed to reach superior 

curcumin bioavailability, the mechanisms of curcumin metabolism and bioactivity are not 

fully understood.

Chronic inflammation is highly related to human digestive tract disorders including 

ulcerative colitis, Crohn’s disease and colon cancer. Risk factors such as oxidative stress, 

cytokines, duration of colon inflammation and family history are all associated with colon 

cancer incidence (12). The possible genetic mechanisms of colon cancer induced by 

inflammation include loss of function of tumor suppressor genes such as adenomatous 

polyposis coli (Apc) and p53, and elevated expression of the inflammatory genes such as 

cyclooxygenase-2 (COX-2) and nitric oxide synthase-2 (NOS-2) (13, 14). In addition, 

accumulating evidence has revealed that epigenetic mechanisms, heritable alterations that 

are not caused by changes to the DNA sequence, could play an important role in colon 

carcinogenesis (15). DNA methylation, with the addition of a methyl group to 5-cytosine in 

the CpG dinucleotide, is one of the common epigenetic mechanisms associated with aberrant 

gene expression in cancer. Specifically, CpG hypermethylation in promoter regions is 

believed to play a crucial role in suppressing gene expression, perhaps by blocking 

transcription factor binding (16). Grimm et al. and our group identified aberrant methylation 

in a well-established Apc(min/+) intestinal tumorigenesis model using methylated DNA 

immunoprecipitation (MeDIP) and next-generation sequencing approaches (17, 18). 
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Katsurano et al. observed that aberrant DNA methylation accumulates in epithelial cells 

during DSS-induced inflammation (19). More recently, Abu-Remaileh et al. used whole-

genome bisulfite sequencing to demonstrate that inflammatory signals establish a novel 

epigenetic landscape that silences gene sets important for cellular transformation in an 

AOM/DSS-induced CRC model (20). Current studies suggest that gut microbiota also plays 

important roles during the development of colon cancer (21, 22). To reduce colon cancer rate 

by anti-inflammatory intervention, therapeutic treatments including utilizing bioactive 

phytochemicals appears to be logical. Curcumin has been demonstrated to reduce colitis-

accelerated colon cancer in both in vitro and in vivo models (23-25). More details regarding 

colon cancer carcinogenesis and its prevention by curcumin will be discussed subsequently.

2. Epigenetics/epigenomics of colon cancer carcinogenesis

Alterations in epigenetics have been reported for several age-related diseases, including 

CRC (26). The estimated loss of epigenetic control may be one to two fold higher than that 

of somatic DNA mutations in colon cancer (27). The NF-κB and STAT3 signaling pathways 

play particularly important roles in the transformation of inflammation into cancer, and both 

are critical in cellular signal transduction and appears to be constitutively activated in cancer 

by abnormal changes including epigenetics. The NF-κB and STAT3 signaling pathways 

contribute to the microenvironment for tumorigenesis through secretion of a large number of 

pro-inflammatory cytokines and their crosstalk in the nucleus makes it even more difficult to 

treat colon cancer (28).

In CRC, three molecular carcinogenesis pathways have been identified; (1) chromosomal 

instability (CIN), (2) microsatellite instability (MSI), and (3) CpG island methylator 

phenotype (CIMP), each account for ~85%, 15%, and 17%, respectively (29, 30). Around 

30–40% of proximal site colon tumors and 3–12% of distal colon and rectal tumors are 

characterized by high CIMP, in which numerous CpG islands are methylated and several 

tumor suppressor genes or ncRNA are inactivated (31). Based on CIMP profiles, primary 

CRC may be clustered into three distinct but relatively homogeneous subclasses: CIMP1, 

characterized by intense methylation of multiple genes, MSI and BRAF mutations; CIMP2, 

including methylation of a limited group of genes, increased methylation level for age‐
related genes, and mutation in KRAS; and CIMP negative, characterized by rare methylation 

with p53 mutation (29). CIMP1 and CIMP2 phenotypes are more often expressed in the 

proximal colon; CIMP1 has a good prognosis, whereas CIMP2 has a poor prognosis (32). 

Lind and colleagues found frequent promoter hypermethylation of CNRIP1, FBN1, INA, 

MAL, SNCA, and SPG20 in both CRCs (65–94%) and adenomas (35–91%), whereas 

normal mucosa samples were rarely (0–5%) methylated (33).

Chromatin remodeling together with DNA CpG methylation, are two of the key mechanisms 

of regulating gene expression (34, 35). Chromatin remodeling consists of modifications at 

conserved lysine residues on the tails of histone proteins. Lysine acetylation generally 

enhances transcription by weakening the association of the histones with DNA and 

permitting the accessibility of transcription factors to bind to promoter/enhancer regions and 

subsequent transcriptional activation. SOCSs and SHP1 genes play an important role as 

tumor suppressors in CRC cells (36-38). Xiong and colleagues reported that trichostatin A 
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(TSA), a histone deacetylase inhibitor (HDACi), increased the mRNA levels of SOCS1 and 

SOCS3. The induction of SOCS1 and SOCS3 expression by TSA in human CRC cells was 

due to increased acetylation of histone H3 and H4 in their promoter regions (39).

Chromosomal anomalies (deletions, translocations, copy number alterations), DNA 

mutations and epigenetic dysregulation of the miRNAs or genes involved in their biogenesis 

have been found during tumor progression (40-43). The best‐characterized miRNAs 

dysregulated by DNA hypermethylation in tumors including CRC, and the functional 

consequences in tumor cells have been reviewed recently (44). Loss of miR-133a and gain 

of miR-224 are associated with CRC tumorigenesis. Reduced expression of miR-143 and 

miR-145 were found in CRC and adenomatous polyps (45). The level of miR92 and 

miR173p has been reported to be significantly higher in the plasma of colon cancer patients 

compared with healthy controls, and is implicated as potential markers for CRC (46). The 

expression of the miR-17-92 cluster, which encodes for a total of fifteen miRNAs, and 

miR135 are also significantly increased in CRC patients (47).

3. Colon cancer prevention by curcumin via non-epigenetic and 

epigenetic mechanisms

Curcumin has many biological anti-cancer activities in colon cancer, including induction of 

apoptosis, anti-oxidation and anti-inflammation. In this section, we will highlight the 

potential mechanisms of CRC prevention by curcumin, focusing on apoptosis, antioxidative, 

anti-inflammatory and epigenetic regulation in in vitro studies.

3.1 Cancer prevention through non-epigenetic pathways

A number of studies have demonstrated that curcumin can induce apoptosis and cell cycle 

arrest in many colon cancer cell lines, including human colon cancer HT-29 (48, 49), SW480 

(50, 51), CT26 (52), HCT-116 (53-56), HCT-15 (57), COLO 205 (58, 59), LoVo (60) and 

DLD-1 cells (61). The molecular mechanisms by which curcumin induces apoptosis or cell 

cycle arrest vary, depending on the cell type and the doses of curcumin. Generally, 

curcumin-induced apoptosis or suppressed proliferation involves inhibition of Wnt/β-

Catenin pathways (50, 62), mitochondria-mediated apoptotic pathway (60, 63), oxidative 

stress (53), accumulation in G2/M phase (64, 65), targeting CDK2 (54), modulating EGFR 

and IGF‐1R (66) and activation of Caspase-3, −7 and −9 (55, 59, 67).

High expression of NADPH oxidase 1 (NOX1) promotes proliferation of colon cancer cells 

by regulating ROS-dependent signal transduction (68). Curcumin possesses antioxidant and 

radical scavenging properties (69, 70). Curcumin may protect colon cells from oxidative 

stress by free radical scavenging and colon repair mechanism (52). Curcumin also is a fairly 

strong Nrf2 activator, resulting in induction of Nrf2-mediated antioxidant and detoxifying 

enzymes (71-75). Many studies have also shown that curcumin and its derivatives possess 

great anticancer effects in colon cancer, due to induction of ROS production, ROS-

dependent mitochondrial dysfunction, and ER stress-dependent apoptosis accompanied with 

cell cycle arrest (56, 76-78). This latter phenomenon is probably due to much higher doses 

as compared to the lower doses needed to activate the Nrf2 mediated anti-oxidative stress 
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pathway (79). In addition, curcumin as a well-known anti-inflammatory agent, possesses 

very strong anti-inflammatory activities (80, 81). Curcumin regulates its anti-inflammatory 

effects by downregulating inflammatory transcription factors, cytokines and redox states 

(82), as well as interrupting the NF-κB signaling pathway, a major transcription factor in 

inflammation (83-85). Curcumin could also exhibit its anti-inflammatory activities through 

Nrf2-mediated pathways, since in LPS-stimulated Nrf2−/− macrophages curcumin’s 

inhibition of cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and inducible nitric oxidte 

(iNOS) mRNA was dampened as compared to the LPS-stimulated Nrf2+/+ macrophages 

(86).

3.2 Cancer prevention through epigenetic regulations

We have previously reported that curcumin reduced the CpG methylation in the promoter of 

DLEC1 (Deleted in lung and esophageal cancer 1), a tumor-suppressor gene, with 

corresponding increase in mRNA expression in human colon HT29 cells (87). The 

demethylation was associated with reduced protein expression of DNMTs and HDACs and 

this was similarly observed in another study using in DNMT1 and DNMT3B knockout 

HCT116 cells (88). Microsatellite instability, a hypermutable phenotype, is observed in 15% 

of CRCs, out of which 12% are resulted from hypermethylation of the promoter of MLH1 

(mutL homolog 1) (89). Clinical tissues with sporadic deficient mismatch repair in 

colorectal cancer have hypermethylation in MLH1 promoter, which may cause microsatellite 

instability, leading to BRAF mutations and double-hit somatic mutations of MSH2 and 

MSH6 (90). Curcumin abrogates G2/M arrest and enhances apoptosis in MLH1- or MSH2-

knockdown HCT116 cells and RKO cells (91). In this context, the apoptosis inductive 

mechanism of curcumin may be associated with hypomethylation of MLH1 promoter and 

disruption of microsatellite instability (89-91). Combination of curcumin with UCN-01, an 

inhibitor of the cell cycle check point kinase Chk1, increases apoptosis even in MLH1+ and 

MSH2+ cells, potentially via epigenetic mechanism, which could be a promising treatment 

modality for CRC (91).

Decreased expression of miR-491 and increased expression of PEG10 (paternally expressed 

gene), β-catenin, and Wnt have been identified in colon cancer tissues (92). In HCT116 

cells, it has been reported that curcumin increases miR-491 expression, suppressed PEG10 

expression and consequently silences the Wnt/β-catenin signaling pathway as a mechanism 

of inducing apoptosis and inhibiting cells proliferation (92). Curcumin can also inhibit the 

AP-1 transcription factor components c-Jun and c-Fos, and bind to the promoter of pri-

miR-21 which arrests cells in the G2/M phase, inhibits cell migration/invasion in vitro 

(HCT116 and RKO cells), and suppresses tumor growth and metastasis in vivo (93). 

Through inhibition of miR-21, curcumin could increase the protein expression of Pdcd4 

(colorectal tumor suppressor programmed cell death protein 4) (93).

Study by Roy et al. showed that difluorinated curcumin (CDF), a synthetic analog of 

curcumin, demethylated miR-34a and miR-34c promoter, restoring the expression of 

miR-34a and miR-34c that were down-regulated in colon cancer cell lines (HCT116 and 

SW620) and colon cancer tissues (94). The up-regulation of miR-34 by CDF resulted in 

decreased expression of its target gene Notch-1. Elevated Notch-1 expression in CRCs 
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inhibits apoptosis (95, 96) while promoting epithelial to mesenchymal transition and 

stemness (97, 98). Another study showed that CDF could inhibit miR-21and restore 

expression of PTEN (phosphatase, and tensin homolog), normalizing the dysregulated 

miR-21-PTEN-Akt axis in chemo-resistant HCT116 and HT29 cells (99). In RKO and 

SW480 cells, curcumin and curcumin analog, RL197, have been shown to inhibit cell 

growth and induce apoptosis through suppressing miR-27a and miR-20a/miR-17-5p and 

downregulating the specificity protein transcription factors (Sp1, Sp3, and Sp4) (100). The 

proposed mechanisms include induction of reactive oxygen species (ROS) (100).

4. Colon cancer prevention by curcumin in in vivo animal studies: 

epigenetics/epigenomics

Curcumin’s preventive effects against inflammation-associated colorectal carcinogenesis 

have been widely studied in various animal models, among which azoxymethane (AOM) 

and/or dextran sulfate sodium (DSS) induced mouse model is one of most commonly used 

animal model to recapitulate the pathogenesis of CRC in patients (101-103). This multistep 

carcinogenesis process usually involves a single AOM injection (an initiation factor that 

induces aberrant crypt foci (ACF) by causing DNA damage) and DSS in the drinking water 

(a promotion factor that induces colitis by imposing inflammatory damage in the epithelial 

lining of the colon). We have recently reported using this model the molecular mechanisms 

of inflammation-associated colon carcinogenesis utilizing next generation RNA sequencing 

(RNA-seq) and its prevention by combination of curcumin and aspirin in C57BL/6 mice 

(104). In the study, diets supplemented with 0.02% aspirin (ASA), 2% curcumin (CUR) or 

0.01% ASA+1% CUR were given to mice from 1 week prior to AOM initiation through the 

end at 22 weeks post AOM initiation. The results showed that CUR had a superior inhibitory 

effect in colon carcinogenesis compared to that of ASA. Additionally, the combination of 

CUR and ASA at a lower dose level exhibited similar efficacy to that of a higher dose of 

CUR at 2%. RNA-seq analysis revealed that the low-dose combination of ASA and CUR 

modulated a larger set of genes than the single treatment of ASA or CUR. Pathway analysis 

showed these differentially expressed genes were found in several cellular functions which 

are specifically in the inflammatory networks and liver metastasis in CRC. We also 

identified a small subset of genes as potential molecular targets involved in the preventive 

action of the combination of ASA and CUR. This study provides the first evidence in 

support of the chemopreventive effect of a low-dose combination of ASA and CUR in CRC, 

and a framework for identifying the mechanisms underlying the carcinogenesis process from 

normal colonic tissue to tumor development. Surprisingly, when we conducted a second 

study of CUR and ASA in CF-1 mice, the results show that only aspirin but not curcumin 

inhibited DSS-induced inflammation and AOM+DSS induced carcinogenesis (unpublished 

results). The different results between CF1 versus C57BL/6 mice are not clear, however, 

could be due to differences in genetic background and or obesity (CF-1 mice are generally 

inactive and obese as compared to C57BL/6) or other factors, and further study would be 

needed.

In a similar follow-up study, we focused on the epigenetic/epigenomic mechanisms of colon 

cancer prevention by curcumin in AOM-DSS-induced CRC in C57BL/6 mice (23). We 
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performed RNA-seq and DNA CpG methyl-seq and identified lists of differentially 

expressed and differentially methylated genes in pairwise comparisons and several pathways 

involved in the potential cancer prevention effects of curcumin were uncovered. These 

pathways include LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative 

stress response, production of NO and ROS in macrophages and IL-6 signaling. Among the 

differentially expressed and methylated genes, Tnf (also known as Tnf-α) stood out with 

decreased DNA CpG methylation of Tnf in the AOM-DSS group and reversal of the AOM-

DSS-induced Tnf demethylation by curcumin. These observations of Tnf methylation 

correlated with increased and decreased Tnf expression in RNA-seq. In addition, the DNA 

methylation level of a group of inflammatory genes was decreased in the AOM+DSS group 

but restored by curcumin and the results were validated by pyrosequencing. Our study shows 

for the first time that global epigenomic changes in DNA CpG methylation particularly in 

the inflammatory response from colitis-associated colon cancer and the reversal of their CpG 

methylation alterations by curcumin, which could potentially contribute to the overall cancer 

chemopreventive effect of curcumin in this CRC mouse model.

Other investigators in the past decades also performed several in vivo studies of cancer 

prevention effects of curcumin with the AOM/DSS model. As early as in 1994, a study by 

Huang et al. showed that administration of 0.5-4% curcumin in the diet decreased the 

number of AOM-induced colon tumors by 51-66% when fed during the initiation period 

(105). Other forms of curcumin such as tetrahydrocurcumin and phytosomal curcumin also 

have the ability of preventing AOM/DSS induced colon carcinogenesis (106, 107). As for 

the mechanisms of action, it has been reported that curcumin prevents colon carcinogenesis 

through decreasing the expression of Tnf-α, NF-κB, IL-6, COX-2, NOS, and IFN-γ (102, 

106, 108, 109). Other studies suggest that curcumin, in combination with turmeric oils, have 

superior cancer preventive effects than curcumin alone (110, 111). MaFadden et al. reported 

that curcumin reduced colonic tumor burden, in association with increased colon bacteria 

richness and relative abundance of Lactobacillales, and decreased Coriobacterales order 

(112).

5. Colon cancer prevention by curcumin: clinical studies

Curcumin as the treasure of the dietary supplement world has been studied for its potential 

health benefits primarily in cell culture and animal models. Although the therapeutic use of 

curcumin was studied as early as 1748 (113), the first study referring to the use of curcumin 

for human disease was published in 1937 (114). Over the past quarter century, many 

scientists performed clinical studies with curcumin in both healthy humans and in patients, 

in the management of oxidative and inflammatory conditions, anxiety, metabolic syndrome, 

hyperlipidemia, ulcerative colitis and some other digestive disorders, as well as arthritis 

(115). As discussed above, curcumin’s pleiotropic activities emanate from its capability of 

modulating many signaling molecules such as pro-inflammatory cytokines, adhesion 

molecules, apoptotic proteins, C-reactive protein, NF–κB, 5-LOX, prostate-specific antigen, 

phosphorylase kinase, Tgf-β, triglyceride, ET-1, creatinine, HO-1, AST, and ALT in human 

participants (116). However, the poor bioavailability of curcumin appears to be the most 

challenging barrier for advancing to human studies due to its poor absorption, rapid 

metabolism, and fast systemic elimination (7).
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Most recently, we performed a simple pharmacokinetics (PK)-pharmacodynamics (PD) 

acute study with health human subjects (117). We found that the plasma levels of curcumin 

were below our LCMS detection limit (0.1 ng/ml) and only curcumin glucuronide, a 

metabolite of curcumin, was detected (117). Similar observations were reported in other 

studies (118). However, we also found that curcumin administration increased the mRNA 

expression of antioxidant genes NRF2, HO-1 and NQO1 while suppressing the expression 

of epigenetic gene histone deacetylases including HDAC1, HDAC2, HDAC3 and HDAC4 in 

leucocytes. HDACs are a class of epigenetic enzymes that remove the acetyl groups from an 

ε-N-acetyl lysine amino acid on a histone protein. And histone modifications are among the 

most important epigenetic changes, because it can alter gene expression and modify cancer 

risks (119). This result suggests that curcumin can elicit the in vivo biological responses like 

antioxidant and epigenetic effects which could contribute to the overall beneficial effects of 

curcumin in normal healthy population, despite the very low blood levels of curcumin (117). 

Bora-Tatar et al. reported that among 33 carboxylic acid derivatives, curcumin was the most 

effective HDAC inhibitor, and that it was even more potent than valproic acid and sodium 

butyrate, which are well-known HDAC inhibitors (120). In another study, it was reported 

that the protein levels HDACs 1, 3, and 8 were significantly decreased by curcumin, 

resulting in increased levels of histone H4 acetylation (121). Similarly, Chen et al. reported 

significant decrease in the expression of HDAC1 and HDAC3 were also detected after 

treatment with curcumin (122).

To date, majority of curcumin studies in humans have been in populations with existing 

health problems, especially some inflammatory related diseases such as Crohn’s disease, 

ulcerative colitis, ulcerative proctitis, and colon cancer. Perhaps this is because studies with 

healthy people can be challenging where the benefits may not be as immediate and 

measurable if biomarkers are normal at baseline. Some promising effects have been 

observed in patients with various pro-inflammatory diseases including ulcerative colitis, 

ulcerative proctitis, irritable bowel syndrome, Crohn’s disease, gastric inflammation and 

even colorectal cancer (116, 123-126). The biological effects of curcumin in healthy 

volunteers, CRC patients, Crohn’s disease, ulcerative proctitis, ulcerative colitis, 

inflammatory bowel disease, irritable bowel syndrome and the potential molecular targets 

are summarized in Table 1. As shown in Table 1, the clinical trials conducted thus far 

indicate the potential therapeutic benefits of curcumin against a wide range of human 

inflammatory-driven diseases including colon cancer. Moreover, these human studies 

indicate curcumin’s ability to modulate multiple biomarkers such as tumor necrosis factor 

(TNF-α), interleukin [IL]-1β, IL-6, IL-10, among others. Some of the potential pitfalls of 

performing the anti-cancer treatment studies of CRC patients with curcumin could be due to 

the advanced stages of CRC with many genetic mutations, epigenetics changes and 

chromosomal instability, the doses selected, the curcumin products used with varied 

curcumin content, and the etiology/genetic background of the patients, among others. 

Nevertheless, in summary, curcumin has shown promising beneficial effects from clinical 

trials and most of these effects can be attributed to its anti-oxidative, anti-inflammatory, 

epigenetic/epigenomic and other signaling modulating properties, which would contribute to 

the overall cancer chemopreventive effects of curcumin in early stages of inflammatory-

mediated CRC (115, 116).
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6. Conclusion

Colon cancer continues to be a major public health burden. Several factors from genetics to 

diets contribute to the incidence of this malignancy. Although there have been significant 

advances in the development of targeted therapies, the 5-year prognosis for distant CRC is 

about 15% (135). With our increased understanding of the molecular and epigenetic/

epigenomic changes during CRC development, we will be able to develop new and more 

precise therapies, including relatively non-toxic dietary cancer chemopreventive regimens 

including curcumin either with individual therapy or in combination with other relatively 

non-toxic drugs such as NSAIDs (aspirin with lower doses), to prevent early stages, and or 

treat newly diagnosed inflammatory-mediated colon cancers in humans.
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Table 1.

Pharmacological effects of curcumin in clinical studies.

Diseases Dosage; duration Outcome (reference) Molecular targets

Healthy volunteer 4 g/person; 1 single dose Upregulated Nrf2/ARE genes; Downregulated HDACs 
(117)

NRF2 ↑, HO1 ↑, NQO1 
↑, HDAC 1, 2 & 3↓

Colorectal cancer

0.036–0.18 g/day; 4 mo Reduced glutathione S-transferase activity (127) GST ↓(127)

0.45–3.6 g/day; 4 mo Reduced PGE2 production (128) PGE2 ↓ (128)

0.45–3.6 g/day; 7 d Reduced the levels of M1G (129) M1G ↓ (129)

1.44 g/day; 6 mo Reduced the number and size of polyps without any 
appreciable toxicity (130)

2 or 4 g/day; 1 mo Reduced ACF formation in smokers (131)

1.08 g/day; 10–30 d Improved body weight, reduced serum TNF-α, and 
induced p53 expression (132)

TNF-α↓, Bcl-2 ↓
p53 ↑, Bax ↑(132)

Crohn’s disease 1.08 g/day, 1 mo
1.44 g/day, 2 mo

Significant reductions in CDAI and inflammatory 
indices in patients (125)

Ulcerative proctitis 1.1 g/day; 1 mo
1.65 g/day; 1 mo

Significant reduction in symptoms as well as 
inflammatory indices in patients (125)

Ulcerative colitis

2 g/day; 6 mo Prevented relapse of disease (124)

0.5 g/day; 2-10 mo Associated with clinical and endoscopic remission of 
the disease (123)

Inflammatory bowel 
disease 5-20 μM; 0.5-24 h

Suppressed p38 MAPK activation, reduced IL-1β, and 
enhanced IL-10 levels in mucosal biopsies; suppressed 
MMP-3 in colonic myofibroblasts (133)

CRP ↓, ESR ↓, CDAI ↓
(125)
p38 MAPK ↓, IL-1β↓, 
MMP-3↓, IL-10↑(133)

Irritable bowel 
syndrome

0.072 or 0.144 g STE/d; 8 wk Produced significant reduction in the prevalence of 
symptoms (134)

0.5 g in food Increased bowel motility and activated hydrogen 
producing bacterial flora in the colon (126)

↓, Downregulation; ↑, upregulation; mo, month; d, day; wk. week; h, hour.
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