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ABSTRACT
Background: Although dietary intakes and dietary intake patterns (DPs) have been associated with single metabolites,

it is unclear whether DPs are also reflected in specific metabolite patterns (MPs). Moreover, the influence of groups of

gut bacteria on the relationship between DPs and MPs is underexplored.

Objectives: We aimed to investigate the association of DPs and serum MPs and also the modifying effect of the gut

bacteria compositional patterns (BCPs).

Methods: This is a cross-sectional investigation among 225 individuals (median age: 63 y; 53% women) from the

European Prospective Investigation into Cancer and Nutrition study. Dietary intakes were assessed by three 24-h dietary

recalls, gut bacteria composition was quantified by 16S rRNA gene sequencing, and the serum metabolome was profiled

by an untargeted approach. We identified DPs and BCPs by the treelet transform analysis. We modeled associations

between DPs and 8 previously published MPs and the modifying effect of BCPs by fitting generalized linear models

using DataSHIELD R.

Results: We identified 5 DPs and 7 BCPs. The “bread, margarine, and processed meat” and “fruiting vegetables and

vegetable oils” DPs were positively associated with the “amino acids” (β = 0.35; 95% CI: 0.02, 0.69; P = 0.03) and “fatty

acids” MPs (β = 0.45; 95% CI: 0.16, 0.74; P = 0.01), respectively. The “tea and miscellaneous” was inversely associated

with the “amino acids” (β = −0.28; 95% CI: −0.52, −0.05; P = 0.02) and “amino acid derivatives” MPs (β = −0.21;

95% CI: −0.39, −0.02; P = 0.03). One BCP negatively modified the association between the “bread, margarine, and

processed meat” DP and the “amino acids” MP (P-interaction = 0.01).

Conclusions: In older German adults, DPs are reflected in MPs, and the gut bacteria attenuate 1 DP–MP association.

These MPs should be explored as biomarkers of these jointly consumed foods while taking into account a potentially

modifying role of the gut bacteria. J Nutr 2020;150:149–158.

Keywords: dietary intake patterns, gut bacteria compositional patterns, serum metabolite patterns, treelet

transform analysis, DataSHIELD

Introduction

Foods consumed are metabolized into various small molecules
or metabolites, and the presence and concentration of these
metabolites in body fluids are valuable in the assessment of
dietary intake (1, 2). Although it is vital to ascertain the effect
of single nutrients or foods, the need to explore the dietary
intake patterns (DPs) due to the complexity of consumed
foods has been emphasized (3). Similarly, exploring metabolite

patterns (MPs) is relevant due to the complex metabolism
associated with matrices of dietary exposures and the high
intercorrelations among metabolites (4). Numerous human
observational studies have addressed the relation between
DPs and several single metabolites (5–15), but few, if any,
have investigated whether DPs are reflected in specific MPs.
Because DPs represent a more comprehensive description
of dietary intake, investigating their association with MPs
might reveal groups of metabolites that could be explored
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as biomarkers of overall dietary intake and jointly consumed
foods. The relation between the DPs and MPs will also
provide further understanding and new insights into dietary
interactions.

The gut microbiota plays an integral role in influencing
metabolism through modulating the uptake, bioavailability,
and excretion of nutrients (16–21). Furthermore, it has been
reported that the gut bacteria exist in groups or communities
based on their complementary metabolic actions (18, 19).
Therefore, differences in populating groups of gut bacteria may
influence the relation between DPs and MPs.

In this study, we sought to evaluate independent associations
between DPs and previously published serum MPs and inves-
tigate whether groups of gut bacteria modify the independent
associations between DPs and serum MPs.

Methods
Study population
The study population comprised 225 participants from a substudy
set up between August 2010 and December 2012 (22) within
the European Prospective Investigation into Cancer and Nutrition
(EPIC)-Potsdam cohort (23, 24). These 225 individuals are also
the first set of participants who provided blood samples from this
substudy. The participants answered a comprehensive questionnaire
on dietary intake, sociodemographic and lifestyle factors, and medical
history, and they underwent physical examinations. The standard
procedures of the EPIC-Potsdam study were used to obtain anthro-
pometric measurements. Physical activity was objectively assessed
using the activity-monitoring instrument Actiheart. We verified self-
reported diseases through medical record reviews and from partic-
ipants’ physicians. Except for educational attainment, which was
the status of the participants at baseline recruitment in the EPIC-
Potsdam study, all variables considered in the current analysis were
based on participant status between August 2010 and December
2012.

Assessment of dietary intake
We obtained dietary intake through three 24-h dietary recalls. The
first recall was collected during the visit to the study center, and the
remaining 2 recalls were collected over the telephone on random days
that included weekends. We aggregated the dietary intake into 39 food
groups, and the average intake of the food groups over the 3 recalls as
well as total energy intake were calculated.

Laboratory analysis

Serum metabolome.
The serum samples from the 225 individuals in this study were
profiled by an untargeted metabolomic approach. Details can be
found elsewhere (25). In brief, small polar metabolites and lipids
were measured by 2-dimensional GC coupled with time-of-flight MS
and by ultraperformance LC, respectively. A total of 587 small polar
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metabolites and 1039 lipids were detected, out of which 134 small polar
metabolites and 592 lipids were identified.

Fecal DNA extraction, 16S ribosomal RNA gene

sequencing, and bioinformatics.
Participants provided fecal samples for quantification of gut bac-
teria. Feces were sampled at home, immediately frozen at −18◦C,
and delivered within 7 d to the study center, where they were
stored at −80◦C until DNA extraction. Participants were asked
to avoid the use of antibiotics for at least 7 d prior to fecal
sampling.

We extracted DNA from 180–220 mg fecal sample with the
QIAamp DNA Stool Mini Kit (Qiagen) according to the manufacturer’s
protocol (details are provided in Supplemental Methods). DNA quality
was evaluated by running samples on a gel and DNA quantity by
Qubit quantification. After PCR, the V3–V4 variable region of the
16S rRNA gene was sequenced and then made into operational
taxonomic units (OTUs) (see Supplemental Methods). DNA samples of
186 individuals were sequenced. We assigned OTUs up to the genus
level.

Statistical analyses

Participant characteristics.
Participant characteristics (n = 225) were presented as median and
IQR for continuous variables due to their non-normal distribution,
and categorical variables were expressed as counts and percentages.
This statistical analysis was conducted remotely from the home base
of the EPIC-Potsdam study using DataSHIELD-specific R functions in
R version 3.4.4 (26).

Identification of DPs and bacteria compositional patterns.
We used treelet transform (TT) analysis—a method that combines
principal component analysis (PCA) and hierarchical clustering analysis
(27)—to identify DPs and gut bacteria compositional patterns (BCPs).
TT was implemented according to the procedure described by
Rasmussen (27) using Stata SE software version 14 (StataCorp). TT
was carried out on the correlation matrices of intake of 39 food
groups (n = 225) and relative abundance of 317 identified genus-level
OTUs (n = 186). Prior to TT, the food groups were standardized,
and OTUs were zero-imputed by the count zero Bayesian-multiplicative
replacement, centered, and log-ratio-transformed. A range of 2–7 treelet
components for DPs was deemed favorable for the food groups, and
2–10 treelet components for BCPs was considered favorable for the
genus-level OTUs. The corresponding cluster tree levels (cut-levels)
of each number of components were determined in 3 successive
10-fold cross-validations in 5 and 10 Monte Carlo repetitions. We
chose the number of DPs or BCPs with the most stable cut-level
(optimal cut-level). Importantly, we assessed the stability of the
DPs and BCPs using a subsampling approach, randomly sampling
80% of the data in 100 bootstrap replications (see Supplemental
Methods).

Therefore, we performed TT on 39 food groups for 5 DPs at a cut-
level 10. We named the DPs according to the food groups contributing
to “large” (≥0.4) loadings. We computed the DP scores for each
individual by summing the standardized intake of the food groups
weighted by their loadings, across all food groups. This quantifies the
degree to which dietary intake reflected the DPs. Thus, individuals
with high scores for a DP have a greater tendency to follow that
specific DP compared with individuals with low scores. For internal
validity of our DPs, we reran TT for dietary intake in a subset of the
study sample (individuals with bacteria compositional data; n = 186),
and we compared these DPs with the original DPs in terms of their
cumulative explained variance, their interpretation, and stability. We
also computed the Pearson correlations between the DPs from the full
study sample (n = 225) and the DPs from the subset of the sample
(n = 186).

Similarly, we performed TT on 317 genus-level OTUs for 7 BCPs
at cut-level 94. We named the BCPs based on the dominating bacteria
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family. We computed the BCP scores using a similar procedure as that
for DPs.

Identification of serum MPs.
TT was used to identify MPs as previously published (25). MPs were
generated on 121 small polar metabolites and 353 lipids, producing
8 MPs: “amino acids,” “fatty acids,” “sugar compounds and car-
boxylic acids (CBAs),” “amino acid derivatives,” “sugar alcohols,”
“saturated and monounsaturated triglycerides (TGs),” “polyunsatu-
rated TGs,” and “phosphatidylethanolamines (PCs) and phosphatidyl-
cholines (PEs).” The cumulative explained variance of the first
5 MPs was 18.9% and that of the last 3 MPs was 17.8%.
The stability of “amino acids,” “fatty acids,” “sugar compounds
and CBAs,” “amino acid derivatives,” “sugar alcohols,” “saturated
and monounsaturated TGs,” “polyunsaturated TGs,” and “PCs and
PEs” was 76%, 77%, 45%, 76%, 63%, 49%, 7%, and 66%,
respectively.

Multivariable adjusted linear regression.
To test the cross-sectional associations between the DP scores (main
independent variables) and MP scores (dependent variables), we
built generalized linear models (Gaussian family and identity link)
using DataSHIELD-specific R functions (26) in R version 3.4.4. We
interpreted p values <0.05 as statistically significant. Regression models
were computed separately for each DP–MP association. We calculated
3 models with different adjustments for covariates. Model 1 was
unadjusted, and model 2 was adjusted for the remaining DPs because
treelet component scores are sometimes correlated. Model 3 was
further adjusted for the minimal sufficient set of covariates: age; sex;
BMI (in kg/m2); smoking status; educational attainment; occupation;
total energy intake; physical activity-induced energy expenditure;
and prevalent hypertension, myocardial infarction, stroke, type 2
diabetes mellitus, cancer, or gastrointestinal diseases. This minimal
sufficient set of covariates was obtained after entering a number of
variables (or factors) that have been reported in previous studies to
be associated with the DPs and MPs into a causal directed acyclic
graph. This set of covariates thus represents the relations among the
DP, MP, and the covariates. The factors that have been reported to
be associated with DPs in general are age, sex, BMI, smoking status,
educational attainment, occupation, physical activity, and prevalent
diseases. In addition to diet, the factors that are related to MPs
and metabolite profiles in general are postprandial interval, time
of blood sampling, age, sex, BMI, smoking status, alcohol intake,
educational attainment, occupation, physical activity, and prevalent
diseases.

Because both DP scores and MP scores are standardized values, the
coefficients obtained from these regression analyses are standardized
coefficients. Also, because the relationship between DPs and MPs may
be nonlinear, we fitted second-order polynomial regression models for
the associations between the DPs and MPs that are nonsignificant in
model 1 and adjusting for all covariates.

To address our second objective—determining whether BCPs
modified the associations between the DPs and MPs—we constructed
interaction models of the product variable of each DP and BCP pair
and included covariates. These covariates were the DP and the BCP,
the remaining DPs and BCPs, the minimal adjustment set for DP–
MP association, and the minimal adjustment set of covariates for
BCP–MP association. Except for bacterial diversity, both minimal
adjustment sets of covariates were identical. Therefore, the interaction
model of DP1 and BCP1 included their product variable; DP1; BCP1;
remaining DPs and BCPs; age; sex; BMI; smoking status; educational
attainment; occupation; total energy intake; physical activity-induced
energy expenditure; and prevalent hypertension, myocardial infarction,
stroke, type 2 diabetes mellitus, cancer, gastrointestinal diseases, and
bacterial diversity (Shannon diversity index); this was also the case for
other DP–BCP pairs.

Effect modification was present if the coefficient of the product
term was statistically significant at P < 0.05. To exclude the
mediating role of BCP in the association between DPs and MPs, we

TABLE 1 Basic characteristics of the study population
comprising 225 older German adults1

Characteristics Values

Women, n 119 (53)
Age, y 63 [15.2]
BMI, kg/m2 26.7 [5]
Education, university 93 (41)
Occupational status, full-time2 81 (36)
Smoking, current smokers 29 (13)
Energy intake, kcal/d 1949 [740]
Energy expenditure,3 kcal/d 578 [393]
Hypertension 114 (51)
Type 2 diabetes 17 (8)
Myocardial infarction 5 (2)
Stroke 4 (2)
Cancer 21 (9)
Gastrointestinal diseases 53 (24)

1Values are number (%) or median [IQR].
2Full-time = ≥35 h/wk.
3Physical activity-induced energy expenditure.

regressed the BCPs on DPs as one of the causal steps to confirm
mediation.

Results
Participant characteristics

The basic characteristics of our study population (n = 225)
are presented in Table 1. There were relatively more women
than men. Our study participants, on average, were aged 63 y,
moderately overweight, consumed 1949 kcal/d, and expended
578 kcal/d through physical activity. Approximately 1 in 10
were smokers, and ∼2 in 5 had a university education as well as
full-time jobs. Hypertension and gastrointestinal diseases were
more prevalent than other diseases.

Dietary intake and identification of DPs

Supplemental Table 1 shows the description of the 39 food
groups, which are similar to the food groups that have been
previously published (28). The study participants habitually
consumed relatively low amounts of leafy vegetables, root
vegetables, cabbage, legumes, nuts and seeds, other fruits,
pasta and rice, other cereals, poultry, offal, fish, other fats,
soft drinks, and tea. However, they often consumed potatoes,
fruiting vegetables, other vegetables, and fruits (Supplemental
Table 2).

Five unique and distinct DPs accounting for 17.7% of the
variance in food intake were derived. All food groups were
positively correlated with their DPs. Spirits, beer, red meat,
soft drinks, and other fats characterized DP1, whereas DP2
was characterized by bread, margarine, processed meat, and
sugar and confectionery. DP3 had contributions from fruiting
vegetables and vegetable oils, DP4 from tea and miscellaneous
(yeast, spices, herbs and flavorings, condiments, soya products,
dietetic products, and artificial sweeteners), and DP5 from
pasta and rice, and sauces. These DPs were named as “alcohol
and red meat” (DP1), “bread, margarine, and processed meat”
(DP2), “fruiting vegetables and vegetable oils” (DP3), “tea
and miscellaneous” (DP4), and “pasta and rice, and sauce”
(DP5), respectively. The “bread, margarine, and processed
meat,” “fruiting vegetables and vegetable oils,” and “tea and
miscellaneous”DPs were quite stable, appearing in >70% of the
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subsampling repetitions. The amount of variation accounted for
by each of these DPs, ordered loadings of the food groups on the
DPs, and stability of the DPs are presented in Table 2. Except
for a new DP, “fish and juice,” DPs and the cumulative variance
among the subset of the study population with microbiome data
(n = 186) were generally similar to those in the original study
sample, although they were generally less stable (Supplemental
Table 3). Furthermore, the DPs from the full study sample and
those from the subset of the sample were significantly correlated
at P < 0.05 (Supplemental Table 4).

Gut BCPs

We identified 7 BCPs loaded by 93 OTUs, explaining 19.91%
of the overall variance of the 317 OTUs. All OTUs were
positively correlated with their BCPs. BCP1 was loaded by 66
OTUs; BCP2 by 9 OTUs; BCP3 by 7 OTUs; BCP4, BCP5,
and BCP6 by 3 OTUs each; and BCP7 by 2 OTUs. BCP1
was named as “Veillonellaceae, Comamonadaceae, and Family
XI-dominated”; BCP2 as “Erysipelotrichaceae, Coriobacteri-
aceae, and Lachnospiraceae”; BCP3 as “Ruminococcaceae-
dominated”; BCP4 as “Anaerovibrio, Uncultured genus in
family Rhodospirillaceae, and Brachyspira genera”; BCP5 as
“Prevotella 6, Ezakiella, and Porphyromonas genera”; BCP6
as “Butyrivibrio, Unidentified genus in family uncultured
organism, order NB1-n, and Victivallis genera”; and BCP7 as
“Enterobacteriaceae.” The “Anaerovibrio, Uncultured genus
in family Rhodospirillaceae, and Brachyspira genera” and
“Prevotella 6, Ezakiella, and Porphyromonas genera” were
quite stable, appearing in >70% of the subsampling repetitions.
The ordered loadings and stability for the BCPs are presented
in Table 3.

As shown in Supplemental Table 5, the prevalence of the 317
OTUs did not influence their loading on the BCP. In fact, out of
the 24 OTUs detected in all 186 individuals, only Bacteroides,
Blautia, Lachnoclostridium, and Ruminococcaceae UCG-002
loaded on the BCPs.

Multivariable adjusted linear regression

Association between DPs serum MPs.

For the 225 individuals with DP and MP scores, we observed
that after adjusting for other DPs and covariates, a 1 SD increase
in “bread, margarine, and processed meat” score was associated
with an increase in the score of “amino acids” by 0.35 SD (β:
0.35; 95% CI: 0.02, 0.69; P = 0.03). A 1 SD increase in “fruiting
vegetables and vegetable oils” score was associated with an
increase of 0.45 SD in the “fatty acids” score (β: 0.45; 95%
CI: 0.16, 0.74; P = 0.01). Finally, a 1 SD increase in “tea and
miscellaneous” score was associated with a 0.28 SD decrease
in the “amino acids” score (β: −0.28; 95% CI: −0.52, −0.05;
P = 0.02) and with a 0.21 SD decrease in the “amino acid
derivatives” score (β: −0.21; 95% CI, −0.39, −0.02; P = 0.03)
(Table 4). There were no nonlinear associations between any
DPs and MPs after full multivariable adjustment (data not
shown).

Modifying effect of BCPs on the associations between
DPs and MPs

Among 186 individuals, we investigated whether any BCPs
modified the previously discussed statistically significant
DP–MP associations (“bread, margarine, and processed
meat”−“amino acids”; “fruiting vegetables and vegetable
oils”−“fatty acids”; “tea and miscellaneous”−“amino acids”;
or “tea and miscellaneous”−“amino acid derivatives”).

There was a significant negative modifying effect of “bread,
margarine, and processed meat” DP and “Butyrivibrio, Uniden-
tified genus in family uncultured organism, order NB1-n, and
Victivallis genera” BCP on “amino acids” MP (β-interaction:
−0.31; 95% CI: −0.55, −0.07; P-interaction = 0.01). The
association between “bread, margarine, and processed meat”
and “amino acids” was lower by 0.31 SD for a 1 SD increase
in “Butyrivibrio, Unidentified genus in family uncultured
organism, order NB1-n, and Victivallis genera” score. The
significant interaction indicates that at any 2 values of “Butyriv-
ibrio, Unidentified genus in family uncultured organism, order
NB1-n, and Victivallis genera,” the associations between
“bread, margarine, and processed meat”and “amino acids”will
always be significantly different from each other. Moreover, the
“bread, margarine, and processed meat” DP does not predict
the “Butyrivibrio, Unidentified genus in family uncultured
organism, order NB1-n, and Victivallis genera” BCP, and in
fact no DP significantly predicted any BCP (Supplemental
Table 6). Consequently, we can exclude the mediating role of
the BCPs.

Discussion

In this study, we identified DPs and BCPs by TT, evaluated
the relationship between the DPs and 8 previously published
serum MPs, and investigated the modifying effect of the BCPs.
We identified 5 DPs and 7 BCPS; 3 DPs were associated with
3 MPs after adjustment for covariates, and 1 BCP modified
a DP–MP association. We observed that greater intake of the
“bread, margarine, and processed red meat” DP was associated
with higher values of the “amino acids” MP, greater intake of
the “fruiting vegetables and vegetable oils” DP was associated
with higher values of the “fatty acids” MP, and greater intake
of the “tea and miscellaneous” DP was associated with lower
values of the “amino acids” and “amino acid derivatives” MPs.
The “Butyrivibrio, Unidentified genus in family uncultured
organism, order NB1-n, and Victivallis genera” BCP negatively
modified the relation between the “bread, margarine, and
processed red meat” DP and “amino acids” MP.

Our DPs clearly reflect jointly consumed foods, and because
we applied the same procedure to derive the DPs and BCPs,
it is therefore reasonable to conclude that our BCPs are
naturally populating bacterial groups in the gut and thus
biologically relevant. DPs are difficult to compare across
studies due to heterogeneous study and sample characteristics,
dietary assessment instruments and timing, and statistical
methods. However, some of our DPs are broadly comparable
to those previously reported within the EPIC-Potsdam cohort
(29, 30) and other cohorts (5, 8, 31−34). BCPs are even
more challenging to compare due to varying populations,
the effect of fecal sampling, and methodologies used in gut
microbiota analyses (20). Nonetheless, “Prevotella 6, Ezakiella,
and Porphyromonas” and “Ruminococcaceae-dominated” are
comparable to Prevotella and Ruminococcus enterotypes
(35) and to the Prevotella-dominated community previously
reported (36, 37). The fact that most of the bacteria in our BCPs
are distantly related bacteria reveals that the interrelationship
among bacteria was not restricted to only closely related
bacteria (38, 39). In fact, our BCPs comprise mixtures of
dominant and scarce bacteria families that have been reported
in other populations (20). In addition, the “Enterobacteriaceae-
Klebsiella and Enterobacter” and “Prevotella 6, Ezakiella, and
Porphyromonas” BCPs confirm that pathogenic genera do co-
occur (38). Compared with other phyla, bacteria belonging
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TABLE 2 Characteristics, loading patterns, and stability of the 5 extracted DPs generated by treelet transform analysis of 39 food
groups in 225 older German adults1

DP
Explained

variance (%) Original variables, food groups loaded (and loadings) Description Stability (%)

DP1 4.42 Spirits (0.54), beer (0.54), red meat (0.41), soft drinks (0.36), and other fats (0.34) “Alcohol and red meat” 60
DP2 4.12 Bread (0.59), margarine (0.59), processed meat (0.43), sugar and confectionery (0.36) “Bread, margarine, and

processed meat”
81

DP3 3.13 Fruiting vegetables (0.71) and vegetable oils (0.71) “Fruiting vegetables and
vegetable oils”

83

DP4 3.06 Tea (0.71) and miscellaneous (0.71) “Tea and miscellaneous” 73
DP5 2.95 Pasta and rice (0.71), and sauces (0.71) “Pasta and rice, and

sauces”
31

Cumulative explained
variance, %

17.68

1DP, dietary pattern.

to Firmicutes are more dispersed across our BCPs. This is in
accordance with findings from another study (40).

Importantly, our study reveals that DPs are reflected in
patterns of serum metabolites. The first finding is the positive
relation between the “bread, margarine, and processed meat”
and the “amino acids” MP. This relation seems to be primarily
driven by the meat component because meat and its products
provide essential amino acids with high bioavailability (41) and,
to a lesser extent, by the protein in bread (42). Epidemiological
studies have reported associations between intake of red meat
and some amino acids (43), bread consumption and serum
tryptophan and its associated amino acid metabolites (44),
animal food-based diets (32), and a Western dietary pattern
(45) and higher concentrations of plasma amino acids. Although
the association between “fruiting vegetable and vegetable
oil” and “fatty acids” might appear to be mainly driven
by vegetable oils, fruiting vegetables that include tomatoes,
sweet pepper, and avocados also contain some amount of
fatty acids. Furthermore, correlations between dietary and
serum fatty acids have been documented (46), and intake of
mixed meals containing vegetable oils correlates with free fatty
acids (47, 48). Overall, these findings suggest that “amino
acids” and “fatty acids” MPs should be further explored
as biomarkers for intake of the “bread, margarine, and
processed meat” and “fruiting vegetable and vegetable oil” DPs,
respectively.

In addition, because the “amino acids” and “amino acid
derivatives” MPs were negatively correlated with the “tea
and miscellaneous” DP, this suggests that these amino acid
metabolites represent a negative effect biomarker of this DP.
Similar to tea, the miscellaneous food group that includes spices,
herbs and flavorings, condiments, and soy products is rich in
polyphenols. The inhibitory effect of this polyphenol-rich DP on
protein digestion and absorption is a possible explanation. The
strong effect of polyphenols on protein digestion and absorption
via its strong affinity for endogenous proteins and dietary
proteins has been elegantly reviewed (49). However, little is
documented in humans on either associations or effects of this
DP or its components on serum amino acids. Therefore, further
studies are needed to replicate and confirm this finding.

Remarkably, the “Butyrivibrio, Unidentified genus in family
uncultured organism, order NB1-n, and Victivallis genera”
BCP weakens the relation between the “bread, margarine, and
processed meat” DP and the “amino acids” MP. In addition
to the well-known butyrate and lactate-producing properties of
the genus Butyrivibrio (50), Butyrivibrio fibrisolvens possesses

active proteolytic enzymes (51), and Butyrivibrio crossotus
shows amino acid inward transport action (52). This indicates
that Butyrivibrio utilizes amino acid substrates to generate
butyrate and lactate. However, rather little is known about the
metabolizing activities of Victivallis and order NB1-n, except for
their sugar fermenting properties (53, 54). Because Victivallis is
also capable of metabolizing lactose (55), this suggests that the
lactose produced by Butyrivibrio serves as a nutrient source for
Victivallis, implying that cross-feeding may exist between these
bacteria. Cross-feeding among gut bacteria is well reported (21).
Furthermore, the fact that bread (and its ingredients) contains
naturally occurring and added sugars also suggests assimilation
of nutrients by Victivallis and order NB1-n from this DP.

Most nutrients, including peptides and amino acids, are
absorbed in the small intestine. Nevertheless, substantial
amounts enter the colon, where trivial quantities are absorbed,
some are used by the microbiota, and the remaining are excreted
(16, 56). The abundance of “Butyrivibrio, Unidentified genus
in family uncultured organism, order NB1-n, and Victivallis
genera” suggests that dietary amino acids that reach the colon
are utilized by this BCP, thereby further reducing their meager
absorption from the colon.

The first strength of the current study is the use of TT
to generate DPs and BCPs. The classical PCA is arguably the
most widely used data-driven method for defining patterns from
data sets with a high degree of multicollinearity and/or high
dimension. PCA is known to produce a wide range of possible
components to retain based on several “rules of thumb.” This
and other steps in the PCA are prone to subjectivity. The lack
of sparsity of loading of original variables on components that
often makes interpretability of components challenging also
warrants mentioning (57, 58). TT is one of the methods that
address these aforementioned drawbacks. Furthermore, to the
best of our knowledge, this is the first study to apply TT for
identifying patterns within a gut bacteria compositional data
set. Of note, we could have also addressed a priori defined DPs
from established dietary guidelines for identifying their related
metabolites because posteriori defined or exploratory DPs are
less meaningful with respect to health benefits. However, our
study was prioritized to explore foods actually consumed
together in a diet within our study population in order to
identify biomarkers for these diets.

Although rarely reported in other studies, we have shown
how much trust to place in our patterns by reporting the
stability of the DPs and BCPs. Moreover, our DPs showed both
internal and external validity. Internal validity is demonstrated
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TABLE 3 Characteristics, loading patterns, and stability of the 7 gut BCPs generated by treelet transform of 317 genus-level OTUs in
186 older German adults1

BCP
Explained

variance (%) Original variables, genus-level OTUs loaded (and loadings) Description Stability (%)

BCP1 14.55 (66) Coprococcus 3 (0.15); Atopostipes (0.15); Cellulophaga (0.15); Sarcina (0.15); Asaccharobacter
(0.15); Unnamed genus in unnamed family, order uncultured bacterium (0.15); Uncultured
genus in family Comamonadaceae (0.15); Anaerosinus (0.15); Snodgrassella (0.15); Thauera
(0.15); Uncultured bacterium in family GR-WP33-58 (0.15); Uncultured genus in family
Alcaligenaceae (0.15); Unnamed genus in uncultured bacterium, order B38 (0.15);
Rickettsiella (0.15); Marinomonas (0.15); Achromobacter (0.15); Prosthecobacter (0.15);
Sedimentibacter (0.15); Acidovorax (0.14); dgA-11 gut group (0.14); Cellulosilyticum (0.14);
Variovorax (0.14); Eikenella (0.14); Succinatimonas (0.14); Unnamed genus in family
uncultured bacterium adhufec202 (0.14); Chryseobacterium (0.14); Carnobacterium (0.14);
Candidatus arthromitus (0.14); Mobiluncus (0.13); Brumimicrobium (0.13); Negativicoccus
(0.13); Selenomonas 4 (0.13); Vibrio (0.13); Morganella (0.13); Cobetia (0.13); Uncultured
bacterium in family gir-aah93h0 (0.12); Uncultured organism in family Lachnospiraceae (0.12);
Bulleidia (0.12); (Anaerorhabdus) furcosa group (0.12); Synergistes (0.12);
Erysipelotrichaceae(0.11); Natranaerovirga (0.11); Sphingomonas (0.11); Butyricicoccus (0.10);
Fastidiosipila (0.10); Syntrophomonas (0.10); Uncultured bacterium in family Anaeroglobus
(0.10); Gardnerella (0.10); Sneathia (0.10); Geobacillus (0.10); Uncultured genus in family
Actinomycetaceae (0.09); Uncultured genus in family Corynebacteriaceae (0.09);
Cryptobacterium (0.09); Bacteroides (0.09); Unnamed genus in family uncultured rumen
bacterium (0.09); Lysinibacillus (0.09); Uncultured genus in family Clostridiaceae 1(0.09);
Anaerococcus (0.09); Finegoldia (0.09); Peptoniphilus (0.09); Aeromonas (0.09); Selenomonas
3 (0.09); Cardiobacterium (0.09); Burkholderia (0.08); Comamonas (0.08); Acinetobacter (0.08)

Veillonellaceae,
Comamonadaceae, and
Family XI-dominated

2

BCP2 1.37 (9) Erysipelatoclostridium (0.35); Holdemania (0.35); Eggerthella (0.34); Incertae sedis in family
Erysipelotrichaceae (0.33); Gordonibacter (0.33); Anaerostipes (0.32); Blautia (0.33);
Lachnoclostridium (0.31); (Eubacterium) hallii group (0.33)

Erysipelotrichaceae,
Coriobacteriaceae, and
Lachnospiraceae

67

BCP3 1.33 (7) Christensenellaceae R-7 group (0.40); Ruminococcaceae UCG-005 (0.40); Ruminococcaceae
UCG-010 (0.39); Uncultured bacterium in family vadinBB60 group (0.39); Ruminococcaceae
UCG-002 (0.38); Ruminococcaceae UCG-014 (0.35); Unidentified genus in family uncultured
bacterium, order Mollicutes RF9 (0.34)

Ruminococcacea-dominated 49

BCP4 0.76 (3) Anaerovibrio (0.61); Uncultured genus in family Rhodospirillaceae (0.50); Brachyspira (0.61) Anaerovibrio, Uncultured
genus in family
Rhodospirillaceae, and
Brachyspira genera

80

BCP5 0.70 (3) Prevotella 6 (0.58); Ezakiella (0.58); Porphyromonas (0.57) Prevotella 6, Ezakiella, and
Porphyromonas genera

92

BCP6 0.64 (3) Butyrivibrio (0.59); Unidentified genus in family uncultured organism, order NB1-n (0.59);
Victivallis (0.56)

Butyrivibrio, Unidentified
genus in family uncultured
organism, order NB1-n,
and Victivallis genera

22

BCP7 0.56 (2) Enterobacter (0.71); Klebsiella (0.71) Enterobacteriaceae 35
Cumulative

explained
variance, %

19.91

1BCP, bacteria compositional pattern; OTU, operational taxonomic unit.

in terms of similar cumulative variance and interpretation of
DPs and correlation of DPs in a subset of the study participants.
External validity is demonstrated in terms of similar variance to
those reported by others (29, 33, 59). Furthermore, the fact that
the DPs and MPs that are significantly related to each other are
very stable suggests that our findings are unlikely to be spurious.

Another strength of this study is that the use of non-
fasting serum samples reflects the ideal (postprandial) serum
metabolome that comprises both the endogenous metabolome
and the food metabolome. In addition, the untargeted profiling
of the serum indicates that the complexity of human metabolism
is captured. Furthermore, our approach of investigating patterns
of food groups, serum metabolites, and gut microbiota prevents

multiple hypothesis testing of single food groups, individual
bacteria, and serum metabolites. Most studies that have
investigated the association of DPs with single metabolites
correct for multiple hypothesis testing. Nonetheless, important
DP–metabolite associations might have been missed because
multiple hypothesis testing correction may increase the number
of false negatives (60). Finally, ethicolegal challenges of data
sharing are well known, and we have shown in this study that it
is possible to perform remote statistical analyses of individual-
level data through DataSHIELD and obtain valid inferences.

There are limitations in our study. Our study participants are
a convenience sample that is based on availability of untargeted
metabolomics data, so the disadvantages of such sampling also
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apply to this study. Overall, our DPs and BCPs did not account
for a “large” cumulative explained variance in their original
data sets. Nevertheless, the trade-off between maximizing
variance and offering interpretable patterns is a worthwhile
advantage of TT. Furthermore, being purely data-driven, our
DPs or BCPs may never be exactly the same in other studies and
populations. In investigating the associations between the DPs
and MPs, we adjusted for several potential confounders, such
as age, sex, BMI, smoking status, and alcohol intake; however,
we cannot exclude residual confounding due to unmeasured
or unaccounted factors. Possible mechanisms through which
age, sex, BMI, smoking status, and alcohol intake directly
influence metabolites include altered functions associated with
aging (61), endogenous sex hormones regulating metabolism
(62), adipose tissue exerting an impact on metabolism (63),
and compounds in cigarette smoke (64) and alcohol in-
take (65) inducing metabolizing enzymes. The “Butyrivibrio,
Unidentified genus in family uncultured organism, order
NB1-n, and Victivallis genera” BCP having a low percentage
of explained variance and a low stability suggests caution in
interpreting their modifying effect. In addition, it should be
considered that due to their untargeted nature, our metabolome
and gut microbiota sequencing analyses might suffer from
biases. Based on our tools, we could only classify our 16S rRNA
gene sequences up to the genus level; species-level classification
and direct measure of the functional gene pool of the gut
bacterial community should be considered in future studies.
In addition, this study is limited in determining the precise
contribution of this BCP to the serum metabolome. Further
studies should consider these analyses with a focus on bacteria-
specific serum metabolites. Due to the limited DataSHIELD-
specific R functions, we were only able to explore nonlinear
associations using linear regression. Therefore, we may have
missed other nonlinear associations. Exclusion of individuals
with chronic diseases would have been optimal. However, this
study comprises older adults with a high prevalence of chronic
diseases. Thus, excluding individuals with chronic diseases from
this relatively small sample would greatly underpower our
analysis. Therefore, rather than an outright exclusion of this
confounder, we controlled for it.

The identified MPs should be further explored as biomarkers
of the DPs, serving as their objective measures or as their
adjuncts. Elevated serum amino acids and fatty acids are
related to health outcomes such as cardiovascular diseases (66,
67). Therefore, moderate intake of “bread, margarine, and
processed red meat” and “fruiting vegetables and vegetable
oils,” increasing the intake of “tea and miscellaneous,” and
increasing the gut abundance of “Butyrivibrio, Unidentified
genus in family uncultured organism, order NB1-n, and
Victivallis genera” might yield cardiovascular health gains.
Our additional statistical analysis suggests that there are no
significant predictors of the “Butyrivibrio, Unidentified genus
in family uncultured organism, order NB1-n, and Victivallis
genera” BCP; however, other factors that were not explored in
this study might predict this BCP. Factors that potentially alter
this BCP should be explored in intervention studies.

An important next step will be to examine whether our DPs
and BCPs are reproducible within this study sample over time.
Furthermore, it will be necessary to investigate the impact of
these findings by linking them to pathophysiology and health
outcomes.

In conclusion, we have demonstrated that 3 DPs are reflected
in 3 MPs, and “Butyrivibrio, Unidentified genus in family
uncultured organism, order NB1-n, and Victivallis genera”

modifies the relation between “bread, margarine, and processed
meat” and serum “amino acids.” This study highlights the
interactions between dietary intake, the gut microbiota, and
host metabolism. These MPs should be explored as biomarkers
of these jointly consumed foods, here captured as DPs, while
taking into account a potentially modifying role of the gut
bacteria.
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