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Abstract

Purpose—To develop a deep convolutional neural network (CNN) model to categorize 

multiphase CT and MRI liver observations using the Liver Imaging Reporting and Data System 

(LI-RADS) (version 2014).

Methods—A pre-existing dataset comprising 314 hepatic observations (163 CT, 151 MRI) with 

corresponding diameters and LI-RADS categories (LR-1–5) assigned in consensus by two LI-

RADS steering committee members was used to develop two CNNs: pre-trained network with an 

input of triple-phase images (training with transfer learning) and custom-made network with an 

input of quadruple-phase images (training from scratch). The dataset was randomly split into 

training, validation, and internal test sets (70:15:15 split). The overall accuracy and area under 

receiver operating characteristic curve (AUROC) were assessed for categorizing LR-1/2, LR-3, 

LR-4, and LR-5. External validation was performed for the model with the better performance on 
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the internal test set using two external datasets (EXT-CT and EXT-MR: 68 and 44 observations, 

respectively).

Results—The transfer learning model outperformed the custom-made model: overall accuracy of 

60.4% and AUROCs of 0.85, 0.90, 0.63, 0.82 for LR-1/2, LR-3, LR-4, LR-5, respectively. On 

EXT-CT, the model had an overall accuracy of 41.2% and AUROCs of 0.70, 0.66, 0.60, 0.76 for 

LR-1/2, LR-3, LR-4, LR-5, respectively. On EXT-MR, the model had an overall accuracy of 

47.7% and AUROCs of 0.88, 0.74, 0.69, 0.79 for LR-1/2, LR-3, LR-4, LR-5, respectively.

Conclusion—Our study shows the feasibility of CNN for assigning LI-RADS categories from a 

relatively small dataset but highlights the challenges of model development and validation.
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Introduction

The Liver Imaging Reporting and Data System (LI-RADS) was developed to standardize 

terminology and criteria for interpreting and reporting findings of CT and MRI examinations 

of the liver in patients at risk for developing hepatocellular carcinoma (HCC) [1]. Reducing 

variability in the interpretation of imaging findings was one of key motivations for its 

development, with the goal of improving clarity of communication between radiologists and 

other specialists caring for these patients. Fowler et al. recently reported that the overall 

interobserver agreement of LI-RADS categorization was substantial among 113 radiologists 

(intraclass correlation coefficient of 0.67 for CT and 0.73 for MRI) [2]. On the other hand, 

Schellhaas et al. [3], Barth et al. [4], and Davenport et al. [5] have reported lower and more 

variable interobserver agreement values (κ = 0.35–0.61), using different study designs. Even 

though LI-RADS offers a standardized diagnostic algorithm, there remains variability in 

categorizing observations.

Deep convolutional neural networks (CNNs) are among several state-of-the-art machine 

learning techniques that can perform similarly to or sometimes even surpass human experts 

in medical image classification tasks [6–10]. In theory, CNNs can be developed to mimic 

expert performance on classification tasks by training them with expert-assigned labels. 

Consequently, a well-trained CNN algorithm with a dataset labeled by expert radiologists 

could have the potential to objectively and reproducibly provide LI-RADS categories 

concordant with the expert classification. Such algorithms may ultimately reduce 

interpretation variability related to relative expertise of the LI-RADS user and potentially 

bridge the gap between the novice and expert radiologist.

In this study, we trained CNN models for the classification of hepatic observations on 

multiphase CT and MRI in patients at risk for HCC according to LI-RADS v2014 with the 

dataset of images previously reported by Fowler et al. [2], in which consensus categories had 

been assigned by two members of the LI-RADS Steering Committee. We assessed model 

performance in a held-out internal test set as well as in two externally collected datasets.
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Materials and Methods

Development and Internal Evaluation of the Algorithm

Dataset for Model Development—For model development, we used a pre-existing de-

identified HIPAA-compliant dataset [2] comprising axial multiphase contrast-enhanced 

images in JPEG format and displayed in a PowerPoint file of 381 unique hepatic 

observations (193 on CT and 188 on MRI). All images were acquired with an extracellular 

space intravenous contrast agent or gadobenate dimeglumine. PowerPoint slides were 

annotated with corresponding observation diameters. Two members of the LI-RADS 

Steering Committee (** and **) assigned LI-RADS categories in consensus using the LI-

RADS v2014 algorithm including ancillary features and threshold growth [1] based on only 

the multiphase images in the PowerPoint file. This yielded 61 LR-1, 35 LR-2, 65 LR-3, 69 

LR-4, 102 LR-5, 32 LR-5V, and 17 LR-M observations. While Fowler et al. [2] previously 

evaluated interreader reliability of LI-RADS using this dataset, in our current study, we used 

the dataset for training a deep learning model to categorize liver observations according to 

LI-RADS. Thus, we created a final cohort (hereafter referred to as the “LR-Atlas”) by 

excluding observations without either pre-contrast images or arterial phase images, 

observations without available diameter measurements, and observations categorized as 

either LI-RADS (LR-) 5V or LR-M. The former was excluded because this study focused on 

parenchymal observation assessment. The latter was excluded because the number of LR-M 

observations in the given dataset was small (n = 17) with a risk of severe class imbalance.

Image Preprocessing for Model Development—A radiologist (**, with 10 years of 

experience in liver CT and MRI interpretation), who was blinded to the consensus LI-RADS 

categories, manually cropped the observations in the PowerPoint file using the following 

standards: 1) the same square regions of interest (ROIs) were used across multiphase images 

in a given exam, 2) cropping size was chosen so that the longest observation diameter was 

greater than 50% of the size of the final cropped image, 3) ROIs included a margin of peri-

observation liver parenchyma and excluded non-liver structures as much as possible. 

Cropped images were saved in bitmap format to retain the pixel resolution of the images 

(ranging from about 30 × 30 to about 120 × 120 pixels) and then resized to a 224 × 224 

matrix.

Model Development—Two distinct models were developed using two CNN architectures: 

1) a VGG16 [11] pre-trained network built on ImageNet [12] with triple phase images as the 

input (pre-contrast, late arterial and delayed phases); and 2) a custom-made network with 

quadruple phase images as the input (pre-contrast, late arterial, portal venous, and delayed 

phases). Observation diameters were included in the networks, processed through a fully-

connected neural network, and concatenated with the bottleneck layers of the networks 

(Figure 1). Model output was a vector of probabilities for four classes representing LI-

RADS categories (LR-1/2, LR-3, LR-4, LR-5), where the consensus LI-RADS categories 

were considered as ground truths. LR-1 and LR-2 were pooled into LR-1/2 because they 

represent observations that are probably or definitely benign and would require no follow-up 

[1].
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Appendix E1 (see Electronic Supplementary Material 1) details the model architectures and 

training process. Briefly, for the custom-made network model, we trained the CNN from 

scratch solely on the LR-Atlas dataset, whereas the pre-trained VGG16 model was trained 

using a fine-tuning transfer learning method [13]. The LR-Atlas dataset was randomly split 

into training, validation, and test sets at a ratio of 70:15:15. All training images were 

augmented using on-the-fly technique. For the custom-made network model, if either a 

portal venous or delayed phase image was unavailable (n = 4 and 7, respectively), the 4th 

channel was a copy of the other available venous/delayed phase. Prior examinations and 

image sets other than the dynamic contrast-enhanced images were not included. Each model 

was trained on the training set, while hyperparameter tuning and model selection were 

performed on the validation set. As a sub-analysis, another transfer learning-based network 

was developed with each of the two distinct subsets of the LR-Atlas dataset: a subset that 

consisted solely of CT images and a subset that consisted solely of MR images. All the code 

and analyses were written and performed by one of the authors (**) and reviewed and 

confirmed externally by another author (**) from a separate institution.

Evaluating the Algorithm with External Datasets

Dataset for External Validation—Model performance was tested independently at two 

institutions (institution 1: **, and institution 2: **). The model architecture and its weights 

were provided to these institutions in a Jupyter notebook format [14] and hierarchical data 

format. At each institution, the Institutional Review Board approved and waived the 

requirement for informed consent for the external validation study. Two external datasets 

with at least 40 observations each were created: At institution 1, CT cases between January 

2017 and June 2017 were selected consecutively. At institution 2, MRI cases between 

February 2013 and April 2015 were selected randomly. The inclusion criteria were patients 

at risk for HCC with quadruple phase dynamic contrast-enhanced CT or MR images 

available. Following the creation of the datasets, an abdominal radiologist at each institution 

(** at institution 1, ** at institution 2), each with 9 years of post-fellowship experience, who 

were blinded to the outputs of the developed CNN, created ground truths by assigning LI-

RADS categories according to the LI-RADS v2014 criteria to each observation based on 

only the multiphase images without referring to prior examinations or other image sets. To 

determine the final external validation cohort at each institution (hereafter called “EXT-CT” 

and “EXT-MR”), patients with no observations, observations with histories of prior 

interventions, examinations with severe artifacts that make images uninterpretable, non-

measurable observations, examinations with hepatobiliary (liver-specific) MR contrast 

agents, and observations categorized LR-5V or LR-M were excluded.

Image Preprocessing for External Validation—Manual image preprocessing was 

performed on the Picture Archiving and Computer System by a single radiologist at each 

institution (** for institution 1, and ** for institution 2, with 10 and 3 years of experience in 

liver CT and MRI interpretation, respectively). For each observation, the radiologist selected 

the representative axial slice with maximum observation diameter for each phase. The 

radiologist selected the window width and level at his or her discretion to improve the 

contrast between the observation and liver parenchyma. Images were magnified and cropped 
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to achieve a pixel resolution similar in scale to that of the training dataset and resized to 224 

× 224 as in the training dataset.

Statistical Analysis

To evaluate classification performance, overall accuracy, confusion matrix, and area under 

receiver operating characteristic curve (AUROC) were calculated for the 4-class 

classification (LR-1/2, LR-3, LR-4, and LR-5). Overall accuracy was defined as the number 

of correctly classified observations divided by the total number of observations and was 

unweighted. Both models (custom-made network and transfer learning-based network) were 

tested on the held-out internal test set derived from LR-Atlas. Based on performance results 

across all performance metrics on the internal test set only, the model with the better 

performance was further evaluated on the external validation sets EXT-CT and EXT-MR. In 

order to investigate the dependency of the experiments on random state in splitting dataset, 

the average performance over five experiments with five different random state values for 

the data splitting was evaluated for the better performing model.

Quadratic weighted κ statistics were also calculated to evaluate radiologist agreement with 

reference to the consensus LI-RADS categories. We considered a κ value greater than 0.81 

as denoting almost perfect agreement and values of 0.61–0.80, 0.41–0.60, 0.21–0.40, 0.00–

0.20, and < 0.00 as denoting substantial, moderate, fair, slight, and poor agreement, 

respectively [15].

Differences in the data distributions between LR-Atlas and EXT-CT/MR were also 

summarized in terms of frequencies of each LI-RADS category, diagnostic entities in 

LR-1/2, and observation diameter. LI-RADS category and observation characteristics in 

LR-1/2 were tested with Fisher’s exact test, whereas observation diameter was compared 

with Student’s t-test. All P values were assessed at an alpha of 0.05.

Statistical analysis was performed using the Python programming language (version 3.6.4, 

Python Software Foundation, https://www.python.org/) with the Scipy version 1.0.0 [16] and 

scikit-learn version 0.19.1 packages [17], and R version 3.5.1 [18].

Results

Datasets

In total, the LR-Atlas dataset included 314 unique observations excluding 12 observations 

without pre-contrast images, 9 observations without available diameters, 32 observations 

categorized as LR-5V, and 15 observations categorized as LR-M. The distribution of 

observation categories was: LR-1/2 (n=89), LR-3 (n=62), LR-4 (n=65), and LR-5 (n=98). In 

total, the external validation dataset consisted of 112 unique observations (68 on the EXT-

CT dataset from 47 scans of 41 unique patients, 44 on the EXT-MR dataset from 15 scans of 

11 unique patients). Table 1 shows the distribution of LI-RADS categories for each dataset, 

with the following category distribution: LR-1/2 (n= 25), LR-3 (n=26), LR-4 (n=29), and 

LR-5 (n=32).
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Model performance

Internal Validation (Model Performance on Held-out Test Set Derived from LR-
Atlas)—On the LR-Atlas dataset, the transfer learning-based network had an overall 

accuracy of 60.4%, AUROC of 0.85, 0.90, 0.63, 0.82 for LR-1/2, LR-3, LR-4, LR-5, 

respectively, and weighted κ of 0.65 (Figure 2). The average performance of the transfer 

learning-based network over five experiments was as follows: a mean overall accuracy of 

59.6%, mean AUROCs of 0.79, 0.84, 0.68, 0.86 for LR-1/2, LR-3, LR-4, LR-5, respectively, 

and mean weighted κ of 0.58. The custom-made network had an overall accuracy of 37.5%, 

AUROC of 0.78, 0.65, 0.48, 0.77 for LR-1/2, LR-3, LR-4, LR-5, respectively, and weighted 

κ of 0.54. For the sub-analysis, the transfer learning-based model trained and tested solely 

on CT images in the LR-Atlas had an overall accuracy of 60.0%, weighted κ of 0.55, and 

AUROCs of 0.84, 0.77, 0.82, 0.84 for LR-1/2, LR-3, LR-4, LR-5, respectively; and the 

transfer learning-based model trained and tested solely on MR images in the LR-Atlas had 

an overall accuracy of 43.5%, weighted κ of 0.18, and AUROCs of 0.78, 0.47, 0.84, 0.66 for 

LR-1/2, LR-3, LR-4, LR-5, respectively.

External Validation (Model Performance on EXT-CT and EXT-MR)—Based on the 

better performance of the transfer learning-based network with the LR-Atlas dataset, this 

model was subsequently tested with the externally collected datasets. On the EXT-CT 

dataset, the model had an overall accuracy of 41.2%, AUROC of 0.76, 0.62, 0.68, 0.85 for 

LR-1/2, LR-3, LR-4, LR-5, respectively, and weighted κ of 0.46 (Figure 3). On the EXT-MR 

dataset, the model had an overall accuracy of 47.7%, AUROC of 0.88, 0.74, 0.69, 0.79 for 

LR-1/2, LR-3, LR-4, LR-5, respectively, and weighted κ of 0.67 (Figure 4). Figure E1 (see 

Electronic Supplementary Material 2) shows the accuracy of the model plotted as a function 

of a threshold for the probability of the predicted LI-RADS category. Greater accuracy was 

achieved at increasing thresholds for both EXT-CT and EXT-MR datasets. Examples of 

correctly classified and misclassified observations in the external datasets are shown in 

Figures 5 and 6, respectively.

Difference in Data Distribution Between Datasets

The differences in the frequency of each LI-RADS category between LR-Atlas and EXT-CT 

was not significant (p = 0.67), whereas the distribution among MR entries in LR-Atlas and 

EXT-MR was significantly different (p = 0.01).

Table 2 shows the distribution of observation characteristics in the LR-1/2 class in LR-Atlas, 

EXT-CT, and EXT-MR. The distribution of characteristics was significantly different 

between LR-Atlas and EXT-CT (p = 0.0006). Cirrhosis-related nodules were present (n = 4, 

21.1%) in EXT-CT but not present in LR-Atlas. In addition, liver cysts were more frequent 

in EXT-CT compared with LR-Atlas. Although the EXT-MR dataset only had 6 LR-1/2 

entries, the distribution of characteristics was not significantly different compared with LR-

Atlas (p = 0.64).

LR-Atlas, EXT-CT, and EXT-MR had a mean observation diameter of 27.2 mm (range: 4–

170 mm), 22.8 mm (range: 5–167 mm), and 19.4 mm (range: 6–61 mm), respectively. Table 

3 shows the distribution of the observation diameters in LR-Atlas, EXT-CT, and EXT-MR. 
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Among CT entries, LR-1/2 and LR-4 observations for LR-Atlas had significantly larger 

diameters compared with that of the EXT-CT dataset. Among MR entries, the diameter for 

LR-Atlas was significantly different than that of EXT-MR in all LI-RADS classes but 

LR-1/2.

Discussion

In this study, we developed a CNN model for assigning LI-RADS categories to liver 

observations on multiphase CT and MRI using a relatively small annotated dataset of JPEG 

images through transfer learning and data augmentation techniques. The transfer learning 

model outperformed the CNN model trained from scratch for a LI-RADS categorization 

task, which is expected given the relatively small sample size of the training dataset. Our 

results suggest that although medical images are different from natural images on which pre-

trained models are trained, features from pre-trained models are still useful for medical 

imaging classification tasks and a CNN has the potential to categorize hepatic observations 

without defining explicit hand-crafted imaging features.

As Yasaka et al. showed, data augmentation techniques can be used to improve the 

performance of a CNN model trained on a relatively small dataset [19]. Unlike natural 

images, medical images often involve subsets of data covering the same anatomy but with 

different technical or physiological parameters. In our study, our dataset involved different 

phases of contrast enhancement. As there is no standard deep learning architecture for image 

classification with multiphase images yet, we assigned each imaging phase into an input 

channel for CNN in the same manner as Yasaka et al. [19].

We found that the transfer learning CNN had an inferior performance on external CT and 

MRI datasets than on the internal held-out test set. Zech et al. [20] recently demonstrated 

that CNN models trained to detect pneumonia on chest radiographs had lower performance 

when tested on external datasets with different disease burden and prevalence. Park [21] 

emphasized the difference between a diagnostic case-control study and a diagnostic cohort 

study as an external validation methodology for real-world clinical practice. In our study, we 

found that the LR-Atlas dataset demonstrated significant differences in case selection 

compared with the external validation sets. The Atlas was not created to reflect typical cases 

encountered in clinical practice; instead, it had an over-representation of rare liver entities 

hand-selected as exemplary cases, including geographic fat deposition, confluent fibrosis, 

hypertrophic pseudomass, nodule like arterial phase hyperenhancement, and distinctive 

nodule without malignant features for LR-1/2 observations [22]. In contrast, the external 

datasets consisted of consecutive or random cases at two different centers. As a result, the 

specific entities and categories differed between the datasets. This study highlights the 

challenges in developing clinically relevant models with an appropriate training dataset that 

is representative of a clinical population and methodology. To develop a LI-RADS CNN for 

clinical use, creating a larger database of observations more typically seen in a LI-RADS 

population may be beneficial in the long run.

On the external datasets, the transfer learning model correctly categorized a substantial 

proportion of the LR-5 observations, whereas model performance was consistently worse for 

Yamashita et al. Page 7

Abdom Radiol (NY). Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LR-3 and LR-4 observations. This may be due in part to the overlap in major imaging 

features present for LR-3 and LR-4 with LR-5 such as arterial phase hyperenhancement and 

washout appearance [1]. In addition, interobserver variability among the expert radiologists 

who assigned ground truth labels for both training and external datasets might have also 

influenced the lower model performance on these in-between categories. Davenport et al. 

previously reported lower interobserver agreements for LR-3 and LR-4 compared with LR-1 

and LR-5 [5]. In addition, the low performance on LR-4 might also be due to the lack of 

testing of ancillary features in external datasets, which may have impacted the consensus 

ground truth in LR- Atlas. Regarding LR-1/2 observations, 57.9% of LR-1/2 observations 

were miscategorized as LR-3 on the EXT-CT dataset in contrast to the EXT-MR dataset. A 

majority (54.5%) of those miscategorized observations were nodule-like arterial phase 

hyperenhancement or distinctive nodule without malignant features [22]. Since radiologists 

use their experience or prior knowledge to categorize an observation as LR-1/2 rather than 

the explicitly algorithmic approach used for categorizing LR-3, LR-4, and LR-5, the poor 

performance for LR-1/2 may be expected.

This study had several limitations. First, the LR-Atlas dataset had some shortcomings for 

training a CNN model. It was small for deep learning purposes, despite data augmentation; it 

included a mixture of compressed CT and MR images in JPEG format at a single 

representative section with nonuniform but fixed window widths and levels and varying 

magnification; no patient-wise information for the observations was available, such as 

whether any two of the observations originate from a single scan or patient; and categories 

were assigned using LI-RADS v2014 and not the latest v2018. The choice of this dataset 

was based mainly on the immediate availability of an expertly annotated dataset. As for the 

first point, we developed models with a dataset that had an admixture of CT and MR images, 

which was based on an assumption that such models had the potential to learn a common 

imaging characteristic that is applicable to both CT and MR images, such as dynamic 

contrast kinetics. The sub-analysis showed that the performance was similar between the 

model trained on the admixture of CT and MR images and the model trained solely on CT 

images except for AUROC for LR-4; on the other hand, the model trained solely on MR 

images was inferior compared to the other two in most of the evaluation metrics, which 

could suggest a hypothesis that an admixture of CT and MR images might help models learn 

more generic features in hepatic observation classification such as dynamic contrast kinetics, 

though this should be further investigated in the future. Our model was also trained on single 

representative axial images, analogous to those used by Yasaka et al [19]; however, a future 

CNN model that provides prediction based on more images per observation and larger 

sections of the liver may yield a superior performance. Second, our model does not take into 

account ancillary features or threshold growth because of the restriction of the shape of the 

network input; these same features may have been taken into account during the creation of 

consensus categories for the LR-Atlas. In the LR-Atlas dataset, the number of cases with 

positive threshold growth were 10 (5 for LR-4 and 5 for LR-5). Among them, only 6 (3 for 

LR-4 and 3 for LR-5) affected the final LR categories. The proportion of such cases was 

small (3/65 [4.6%] for LR-4 and 3/98 [3.1%] for LR-5), and thus the influence of threshold 

growth on the model was likely small. Third, our method incorporated a number of manual 

image preprocessing procedures at the radiologists’ discretion, such as image magnification, 
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windowing, and cropping as well as visual registration of multiphase images, which could 

limit the model performance and reproducibility of the present study. Training an additional 

network to localize observations with bounding boxes may benefit a future classification 

model using similar inputs. In addition, the datasets used in the present study incorporated 

heterogeneous data loss and interpolation depending on the observation size, which may not 

be insignificant in terms of model performance, especially when the observations are small. 

Additional limitations were that the ground truths were created by different expert 

radiologists with slightly different methods between datasets and the assignment of LI-

RADS categories had unavoidable subjectivity.

In terms of model training for the LI-RADS classification task, having the consensus 

categories from the LR-Atlas as ground truths was considered the most practical reference 

standard available. Although pathologically proven HCC could be used as an alternative, a 

significant proportion of HCCs are currently not resected and most non-malignant lesions 

are not pathologically proven so selection bias would limit the clinical application of such 

prediction models. Even though our model performed inferiorly on external datasets, our 

results provided insights into the importance of training dataset characteristics. Further 

investigations on a larger multi-institutional database of consecutive observations that reflect 

their actual clinical prevalence with the latest version of LI-RADS are warranted.

In conclusion, our study shows the feasibility of using CNN to assign LI-RADS categories 

to liver observations on multiphase CT and MRI from a relatively small sample of images 

but highlights the challenges of using a non-representative training sample. Long-term 

creation of a larger LI-RADS database for CNN training would be helpful and may be best 

achieved with cases from consecutive patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Model architecture overview. Multiphase CT or MR images as well as observation diameters 

served as the input, and consensus categories assigned by LI-RADS Steering Committee 

members served as ground truth labels. Quadruple phase images are shown as an input in 

this figure for display purpose. Abbreviations: HAP, hepatic arterial phase; LI-RADS, the 

Liver Imaging Reporting and Data System; LVP, late venous phase; Pre, pre-contrast phase; 

PVP, portal venous phase
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Fig. 2. 
Left panel: Confusion matrix for the transfer learning model on the held-out test set from 

LR-Atlas, which shows the number of observations for each combination of ground truth 

and predicted LI-RADS category. The numbers of correct categorization are on the diagonal 

line from the top-left triangle to the bottom-right triangle. Wrong decisions due to 

overcategorization are in the bottom-left triangle, and wrong decisions due to 

undercategorization are in the top-right triangle. Right panel: An ROC diagram with 

corresponding AUCs for the transfer learning model on the held-out test set from LR-Atlas. 

An ROC curve was created for each LI-RADS category versus all other categories by 

sweeping a threshold over the predicted probability of the particular LI-RADS category.

Abbreviations: AUC, area under the curve; LI-RADS, the Liver Imaging Reporting and Data 

System; ROC, receiver operating characteristic curve
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Fig. 3. 
Left panel: Confusion matrix for the transfer learning model on the EXT-CT external test 

set, which shows the number of observations for each combination of ground truth and 

predicted LI-RADS category. The numbers of correct categorization are on the diagonal line 

from the top-left triangle to the bottom-right triangle. Wrong decisions due to 

overcategorization are in the bottom-left triangle, and wrong decisions due to 

undercategorization are in the top-right triangle. Right panel: An ROC diagram with 

corresponding AUCs for the transfer learning model on EXT-CT external test set. An ROC 

curve was created for each LI-RADS category versus all other categories by sweeping a 

threshold over the predicted probability of the particular LI-RADS category (right).

Abbreviations: AUC, area under the curve; LI-RADS, the Liver Imaging Reporting and Data 

System; ROC, receiver operating characteristic curve
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Fig. 4. 
Left panel: Confusion matrix for the transfer learning model on the EXT-MR external test 

set, which shows the number of observations for each combination of ground truth and 

predicted LI-RADS category. The numbers of correct categorization are on the diagonal line 

from the top-left triangle to the bottom-right triangle. Wrong decisions due to 

overcategorization are in the bottom-left triangle, and wrong decisions due to 

undercategorization are in the top-right triangle. Right panel: An ROC diagram with 

corresponding AUCs for transfer-learned model on the EXT-MR external test set. An ROC 

curve was created for each LI-RADS category versus all other categories by sweeping a 

threshold over the predicted probability of the particular LI-RADS category (right).

Abbreviations: AUC, area under the curve; LI-RADS, the Liver Imaging Reporting and Data 

System; ROC, receiver operating characteristic curve
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Fig. 5. 
Examples of correctly categorized (LI-RADS v2014) observations on external datasets: (a–

d) EXT-CT and (e, f) EXT-MR. Each plot title includes the dataset name, observation 

diameter, ground truth, and predicted LI-RADS category. Pre-contrast, late arterial, and 

delayed phase cropped images are displayed from left to right, and the rightmost bar plot 

shows the output probability for each LI-RADS category. (a) transient arterial phase 

hyperenhancement (LR-1/2), (b) typical hemangioma (LR-1/2), (c, d, f) HCC (LR-5), (e) 

probable HCC (LR-4).
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Abbreviations: HCC, hepatocellular carcinoma, LI-RADS and LR-, the Liver Imaging 

Reporting and Data System

Yamashita et al. Page 17

Abdom Radiol (NY). Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Examples of misclassified LI-RADS v2014 observations on external datasets: (a–d) EXT-CT 

and (e, f) EXT-MR. Each plot title includes the dataset name, observation diameter, ground 

truth, and predicted LI-RADS category. Pre-contrast, late arterial, and delayed phase 

cropped images are displayed from left to right, and the rightmost bar plot shows the output 

probability for each LI-RADS category. (a) An LR-4 observation with a diameter of 13 mm 

was misclassified as LR-5 by the model, which falls in the cell having two options, LR-4 

and LR-5 according to the LI-RADS version 2014 diagnostic table; this, however, should be 
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categorized as LR-5 by the updated LI-RADS version 2018. Probabilities for LR-1/2 and 

LR-3 were low (2% and 6%, respectively). (b) A case of nodule-like arterial phase 

hyperenhancement with a diameter of 9 mm had a ground truth label of LR-3 but was 

misclassified as LR-5 by the model. A major feature of arterial hyperenhancement is 

evident, whereas washout or enhancing capsule appearance is not apparent. However, the 

central part of the delayed phase image might appear slightly hypodense compared with the 

peripheral area. The probability for LR-1/2 was only 3%. (c) A small cyst had a ground truth 

label of LR-1/2 but was misclassified as LR-3 by the model. Cropped low resolution image 

due to small observation size may make the observation blurry and hard to be correctly 

categorized (specifically on late arterial phase image for this particular case). Probabilities 

for LR-4 and LR-5 were low (8% and 9%, respectively). (d) A 6 mm observation with 

arterial hyperenhancement had a ground truth label of LR-3 but was misclassified as LR-1/2 

by the model, where the probabilities for LR-1/2 and LR-3 was almost the same. 

Interobserver variability for such observations probably exist even among experts depending 

on their experience. (e) A 19 mm HCC with a ground truth label of LR-5 was misclassified 

as LR-4 with a probability of 0.88. HCC exhibited all of the major imaging features: arterial 

hyperenhancement, washout, and enhancing capsule.

Abbreviations: HCC, hepatocellular carcinoma; LI-RADS and LR-, the Liver Imaging 

Reporting and Data System
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Table 1

LI-RADS category distribution in the datasets

LR-Atlas EXT-CT EXT-MR

Total CT MRI CT MRI

LR-1/2 89(28.3) 36(22.1) 53(35.1) 19(27.9) 6 (13.6)

LR-3 62(19.7) 41(25.2) 21(13.9) 15(22.1) 11(25.0)

LR-4 65(20.7) 35(21.5) 30(19.9) 15(22.1) 14(31.8)

LR-5 98(31.2) 51(31.3) 47(31.1) 19(27.9) 13(29.5)

Total 314 163 151 68 44

Data represent the number of observations with percentages in parentheses.

Abbreviation: LI-RADS and LR-, the Liver Imaging Reporting and Data System

Abdom Radiol (NY). Author manuscript; available in PMC 2021 January 01.
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Table 2

Observation characteristics in LR-1/2 entries

LR-Atlas EXT-CT EXT-MR

LR-1/2 Total CT MRI CT MRI

cyst 7(7.9) 5(13.9) 2(3.8) 10(52.6) 1(16.7)

hemangioma 6(6.7) 4(11.1) 2(3.8) 1(5.3) 0(0)

steatosis 9(10.1) 5(13.9) 4(7.5) 0(0) 0(0)

perfusion alteration 44(49.4) 16(44.4) 28(52.8) 4(21.1) 4(66.7)

fibrosis 9(10.1) 3(8.3) 6(11.3) 0(0) 1(16.7)

pseudomass 5(5.6) 3(8.3) 2(3.8) 0(0) 0(0)

distinctive nodule without malignant

features 9(10.1) 0(0) 9(17.0) 4(21.1) 0(0)

Total 89 36 53 19 6

Data represent the number of observations with percentages in parentheses.

Abbreviation: LR-, the Liver Imaging Reporting and Data System
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Table 3

Statistical results in the differences of observation diameter between the datasets

EXT-CT EXT-MR

LR-Atlas 0.2687 (−2.934496, 10.443996) 0.004522 (2.633242, 14.137109)

       LR-1/2 0.00813 (4.432317, 28.038271) 0.4449 (−11.34848, 23.77878)

    LR-3 0.5049 (−7.232346, 3.629094) 0.007659 (1.788302, 10.722520)

    LR-4 0.03953 (−0.1958626, 7.6517564) 0.01301 (−10.227108, −1.325273)

    LR-5 0.6713 (−22.09857, 14.48867) 0.009196 (4.44123, 29.80754)

Data represent p values with 95% confidence intervals in parentheses.

Abbreviation: LR-, the Liver Imaging Reporting and Data System
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