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Abstract: Our aim was to identify potential metabolomic pathway changes in the sperm cryopreservation process 
and to find new markers of human sperm freezability. Targeted metabolomic experiments were used to identify the 
quantitative metabolomic compound characterization of human sperm cryopreservation. A KEGG pathway analy-
sis was used for these deregulated compounds. A total of 16 significantly deregulated compounds was identified 
between fresh and post-thawed sperm; of these, 7 were downregulated and 9 were upregulated in the frozen-
thawed group. A bioinformatics analysis revealed that metabolic pathways play an important role in cryopreserva-
tion, including the citrate cycle (TCA cycle), glycolysis or gluconeogenesis, glyoxylate and dicarboxylate metabolism, 
pyruvate metabolism and galactose metabolism. We used immunoblotting and immunofluorescence to analyze the 
expression and localization of the three key enzymes in glycolysis. The glycolytic metabolic changes were noted in 
sperm cryopreservation. HK2 expression levels in fresh sperm were significantly higher than the levels in freeze-
thawed sperm. 
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Introduction

Fertility preservation plays a pivotal part in 
reproductive medicine [1]. Sperm cryopreserva-
tion is the only effective approach used for 
male fertility preservation in the clinic [2]. In 
addition, it provides a link between sperm 
donors and severe infertility patients [3]. 
However, the sperm will undergo vigorous bio-
chemical changes during the process of freez-
ing and thawing; and the freeze-thaw process 
will induce a notable decrease in sperm motili-
ty, as well as changes in other parameters: 
membranes and acrosome integrity, the DNA 
Fragmentation index (DFI), and Reactive Oxy- 
gen Species (ROS) [4, 5]. Some intracellular 
and extracellular factors lead to the cryodam-
age, including cellular dehydration, osmotic 
stress, the formation of ice crystals, and the 
toxicity of cryoprotective agents [6]. But little is 
known about the new aspects of cryopreserved 
sperm, such as epigenetic, proteomic, and 
metabolomic modulation. Until now the bio-

markers for sperm cryodamage have not been 
well established at the multivariate scale.

Metabolomics can characterize small molecule 
metabolites and provide an overview of global 
biochemistry; thus, it becomes a novel method 
in pathophysiology. In recent years, metabolo-
mics has seen huge advances, especially the 
appearance of targeted metabolomics [7]. 
Compared with traditional metabolomics, tar-
geted metabolomics allows an accurate quanti-
tative analysis of metabolites. Using mass 
spectrometry (MS), metabolite extraction has 
become a simple protocol for researchers, 
especially if their interest lies in common meta-
bolic pathways, such as glycolysis, the tricar-
boxylic acid (TCA) cycle, the pentose-phosphate 
pathway, and the metabolism of amino acids. 
And because of its remarkable resolving power 
and sensitivity, MS has also played a central 
role by measuring multiple metabolites simulta-
neously [8]. It is a new area of human reproduc-
tion. These tools can provide the chance to 
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reveal complex biological systems, including 
sperm motility and fertilization, and they can 
discover potential pathogenic mechanisms and 
the biomarkers with male infertility [9]. 

For these reasons, the aim of the current study 
is to compare the energy metabolism related 
metabolite differences between fresh and cryo-
preserved human sperm, using a metabolomic 
strategy based on MS.  

Materials and methods

Ethics statement

The study was approved by the National 
Research Institute for Family Planning Ethics 
Committee on Human Subjects (2018018). 
Informed consents were obtained from all 
sperm donors at the Human Sperm Bank, 
National Research Institute for Family Planning 
in China.  

Study design and sample collection

Paired design was applied to this study. Every 
semen sample was divided into two parts: one 
for the cryopreserved group and the other for 
the fresh group. Our focus was the difference 
between the cryopreserved and the fresh 
human sperm.

A total of 15 semen samples from 15 healthy 
donors were collected. Among the whole sam-
ple of each group, 10 cryopreserved and fresh 
samples were used for the metabolomic an- 
alysis. Then 5 semen samples were used for 
the Western blot and Immunofluorescence 
analyses.

The ages of the sperm donors were between 22 
and 40 years. One ejaculate was collected from 
these volunteers by masturbation after 3-5 
days of sexual abstinence. Routine semen an- 
alyses were performed using a computer‑ 
aided sperm analysis (CASA) (HTM-IVOS, USA), 
according to the World Health Organization 
(WHO 2010) guidelines. The initial ejaculates 
had the following characteristics: semen vol-
ume ≥4.0 mL; sperm concentration ≥60×106/
mL; progressive motility ≥60%; normal mor-
phology ≥4%; and round cell concentration 
<2%. 

Semen cryopreservation protocols

After complete liquefaction, each semen sam-
ple was transferred into two, 2 ml samples: one 

to be used for cryopreservation and the other 
to be uses as a control. Glycerol-egg-yolk-
citrate (GEYC) was used as a cryoprotectant. It 
contains 15% glycerol, 20% egg yolk, 1.3% gly-
cine, 1.5% glucose, 1.3% sodium citrate triba-
sic dehydrate, and its PH ranges from 6.8-7.2. A 
volume of GEYC was added dropwise to two 
volumes of semen and then incubated for 5 
minutes at 30-35°C. The slow sperm freezing 
method was performed according to the stan-
dardized programmable freezers (Kryo 360-1.7, 
Planner, United Kingdom) in our unit [6, 10]. 
Briefly, the programmer cools the straws from 
20°C to -6°C at 1.5°C/min. Then the straws are 
cooled to -100°C at a rate of 6°C per minute 
and cooled to the -100°C range for 30 minutes. 
Finally, the straws are transferred to liquid 
nitrogen.

Targeted metabolomic experiment and bioin-
formatics analysis

About 40×106 fresh or cryopreserved sperm 
were collected for the targeted metabolomic 
analysis. After being washed with PBS three 
times, the sperm samples were suspended in 
800 µL of cold (-20°C) aqueous methanol (60%, 
v/v) to stop cell metabolism. Then the sperm 
were disrupted by sonication for 1 minute and 
frozen at -80°C for 30 minutes. Then the mix-
ture was centrifuged at 4°C for 15 min at a 
rotational speed of 13000 rpm. Then 100 µl of 
aqueous methanol (90%, v/v) was added to the 
supernatant and stored in liquid nitrogen until 
testing. As in the previous study [11], the pro-
tein content in the residue was used to normal-
ize the metabolite concentration for each 
group.

Targeted metabolomics was performed using 
TSQ Quantiva (Thermo, CA). C18 based reverse 
phase chromatography was utilized with 10 
mM tributylamine, and 15 mM acetate in water 
and 100% methanol as mobile phase A and B 
respectively. The TCA cycle, the glycolysis path-
way, and the pentose phosphate pathway 
metabolism were analyzed. In this experiment, 
we used a 35-minute gradient from 5% to 90%, 
and mobile B was set. A positive-negative ion 
exchange mode was used for data acquisition. 
The cycle time was set to 1 second and includ-
ed a total of 340 ion pairs. The resolution for 
Q1 and Q3 were set to 0.7 FWHM. The supply 
voltages of the positive and negative ion mode 
were 3500 V and 2500 V, respectively. The 
scavenging gas was turned at a flow rate of 1 
(ARB). A paired t-test was used as an analytical 
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approach, and the P value was set to 0.05. All 
significant differences were taken as input. A 
KEGG pathway enrichment analysis was per-
formed using the MetaboAnalystR (https://
www.metaboanalyst.ca/) [12].

Immunofluorescence

As in a previous study [13], 100 µl of fresh or 
cryopreserved semen sample was diluted with 
900 μl of phosphate buffered saline (PBS) and 
then centrifuged at 800 g for 10 min and then 
the washed sperm was collected, and this was 
repeated three times. The cleaned sperm was 
applied to a slide that had previously been 
exposed to 1% (w/v) gelatin. After being fixed 
with 95% (V/V) ethanol for 30 min, the sperm 
were incubated at 4°C overnight with primary 
antibody diluted 1:50 in PBS containing 3% 
(w/v) BSA: hexokinases (HK2), phosphofructo-
kinase (PKFP) and pyruvate kinase (PKM) 
(Abclone, China). The sperm was washed three 
times with PBS and then incubated for 1 hour 
at room temperature using the corresponding 
secondary antibody. Subsequently, the slides 
were washed with PBS and observed under a 
confocal laser scanning microscope (LSM-710 
Carl Zeiss, Germany).

Western blot

As in our previous experiment [14], the sperm 
protein samples were separated by 10% SDS 

polyacrylamide gel electrophoresis. They were 
then transferred to polyvinylidene fluoride 
membranes, blocked with 2% (w/v) skim milk 
for 1 hour, and incubated overnight with the pri-
mary antibody of HK2, PKM, PFKP (1:2000) 
(Abclone, China) at 4°C. The membranes were 
then washed three times with TBST and then 
were incubated with horseradish peroxidase 
(HRP) in combination with anti-IgG for 1 h at 
room temperature. Enhanced chemilumines-
cence shows immunoreactivity. The relative sig-
nal intensity of the protein bands was analyzed 
with Quantity One v.4.6.2. 

Statistical analysis

The data were expressed as the mean ± SD 
and were analyzed with SPSS22.0 software 
(IBM, USA). A paired t-test was used as the ana-
lytical approach and P-values of 0.05 were set. 

Results

Quantitative results of differential metabolo-
mic compounds

10 samples of sperm (10 fresh + 10 cryopreser-
vation) underwent a targeted metabolomic 
analysis. As a result, using the 1.5-fold or 0.67-
fold change and the FDR-adjusted p-value of 
0.05 as cutoffs, 16 significantly deregulated 
compounds were identified between the fresh 
and cryopreserved sperm samples: 7 were 
decreased and 9 were increased after the cryo-

Table 1. The content of biochemical index in fresh and cryopreserved sperm (n=10 Fresh + 10 cryo-
preserved)

Names Formula Fold Change 
(Cryo/Fresh) p-Value KEGG CID

O-Phosphoethanolamine C2H8NO4P 0.171969405 0.04107734 C00346
L-Lactic acid C3H6O3 0.413499863 0.000980779 C00186
Dihydroxyacetone phosphate C3H7O6P 0.437015648 0.007290552 C00111
Cyclic AMP C10H12N5O6P 0.437015648 0.008224171 C00575
Adenosine triphosphate C10H16N5O13P3 0.46288499 0.047796942 C00002
Nicotinamide adenine dinucleotide (NAD+) C21H28N7O14P2 0.464209346 0.000191267 C00003
D-Glucose C6H12O6 0.620187167 0.001279957 C00031
D-Gluconic acid C6H12O7 1.741624243 0.000591761 C00257
L-carnitine C7H15NO3 1.961510826 0.04107734 C00318
Phosphoenolpyruvate C3H5O6P 1.961510826 0.001631627 C00074
cis-Aconitate C6H6O6 4.781893116 0.000315657 C00417
3-Phospho-DL-glycerate C3H7O7P 5.126680271 0.000796782 C00597
Isocitrate C6H8O7 5.842883812 0.012216846 C00311
Citrate C6H8O7 5.868451745 0.000701378 C00158
Lactose C12H22O11 6.246607627 0.000618669 C00243
Succinate C4H6O4 7.415279729 0.00301462 C00042
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preservation procedures. The details of these 
metabolites are shown in Table 1.

KEGG pathway 

A pathway enrichment analysis was performed 
by KEGG enrichment, in order to seek the major 
biochemical and signal transduction pathways. 
A total of 21 enriched pathways were measured 
in this analysis, and there were 5 pathways with 
significant differences (FDR<0.05), including: 
the citrate cycle (TCA cycle), glycolysis or glu- 
coneogenesis, glyoxylate and dicarboxylate 
metabolism, pyruvate metabolism and galac-
tose metabolism. The detailed results from the 
pathway analysis are shown in the Table 2. As 
shown in the table, the progress of cryopreser-
vation contributes to a sharp decrease in gly-
colysis/gluconeogenesis, compared to the 
fresh sperm, but glycolysis is the predominant 
ATP generation pathway during sperm motility. 
So we focused on the glycolysis. The four dif-
ferential metabolomic compounds are act- 
ually matched in this pathway: L-Lactic acid 
(C00186), phosphoenolpyruvic acid (C00074), 
D-glucose (C00031) and dihydroxyacetone 
phosphate (C00111).

Glycolysis metabolic key enzymes 

To further validate the  the targeted metabolo-
mic analysis and the KEGG pathway analysis 
results, we used Western blot and immunofluo-
rescence to localize and quantify the three key 
enzymes in glycolysis: HK2, PKM, and PFKP. 
According to immunolocalization, the three pro-
teins were all localized in the principal piece of 
sperm (Figure 1A). These protein analysis 
results confirmed the previous genomic analy-
sis of the metabolomics, and the results con-
firmed the differential protein levels observed 
via 2DE (Figure 1B). The cryopreserved group 
had a lower level of HK2 compared with the 
fresh sperm, but the other proteins showed no 
statistical differences between the fresh and 
cryopreserved sperm (Figure 1Bb). 

Discussion

Across the globe, the proportion of infertility 
caused by males ranges between 20-70% [15]; 
men with azoospermia or severe oligozoosper-
mia, will benefit from sperm cryopreservation, 
and this service is a simple and effective way  
of preserving fertility potential [16]. However, 

Table 2. KEGG analysis classification and the enrichment result
Pathway Name Match Status P -log (p) Holm p FDR Impact
Citrate cycle (TCA cycle) 5/20 9.5363E-8 16.166 7.6291E-6 7.6291E-6* 0.1911
Glycolysis or Gluconeogenesis 4/31 3.6833E-5 10.209 0.0029098 0.0014733* 0.1035
Glyoxylate and dicarboxylate metabolism 4/50 2.4973E-4 8.2951 0.019479 0.0066594* 0.03137
Pyruvate metabolism 3/32 0.0010634 6.8463 0.081884 0.021269* 0.13756
Galactose metabolism 3/41 0.0022033 6.1178 0.16745 0.035253* 0.03469
Pentose phosphate pathway 2/32 0.018298 4.001 1.0 0.24397 0.08639
Propanoate metabolism 2/35 0.021697 3.8306 1.0 0.24796 0.00134
Glycerophospholipid metabolism 2/39 0.026606 3.6266 1.0 0.26606 0.07129
Nicotinate and nicotinamide metabolism 2/44 0.033318 3.4017 1.0 0.29616 0.0015
Purine metabolism 2/92 0.12264 2.0985 1.0 0.98112 0.01643
Alanine, aspartate and glutamate metabolism 1/24 0.14857 1.9067 1.0 1.0 0.0
Sphingolipid metabolism 1/25 0.15429 1.8689 1.0 1.0 0.01288
Phenylalanine, tyrosine and tryptophan biosynthesis 1/27 0.16561 1.7981 1.0 1.0 0.0
Glycerolipid metabolism 1/32 0.19331 1.6435 1.0 1.0 0.0
Inositol phosphate metabolism 1/39 0.23064 1.4669 1.0 1.0 0.01203
Butanoate metabolism 1/40 0.23583 1.4446 1.0 1.0 0.01774
Phenylalanine metabolism 1/45 0.26134 1.3419 1.0 1.0 0.0
Fructose and mannose metabolism 1/48 0.27625 1.2864 1.0 1.0 0.04115
Starch and sucrose metabolism 1/50 0.28604 1.2516 1.0 1.0 0.01703
Pentose and glucuronate interconversions 1/53 0.30049 1.2024 1.0 1.0 0.0
Match Status = Hit/Total. The Total is the total number of compounds in the pathway; the Hits is the actually matched number. The table below 
shows the detailed. The P is the original p value calculated from the enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni 
method; the FDR p is the p value adjusted using False Discovery Rate results from the pathway analysis. *FDR<0.05.
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after sperm cryopreservation, too many sperm 
lose their motility and fertility [4, 17]. But, until 
now the biomarkers for the sperm cryodamage 
have not been well established at the multivari-
ate scale. To address this question, we chose 
targeted metabolomic strategies for the analy-
sis of the differences in the expression of 
metabolites in the progress of human sperm 
cryopreservation. 

In recent years, many studies have shown that 
energy metabolism plays the most vital role in 
energy production in spermatozoa [18, 19]. 
Spermatozoa are highly specialized mammali-
an cells; the sperm must afford enough ATP to 
maintain the physiological processes: motility, 
capacitation, hyperactivation, acrosome reac-
tion, and fertilization, all of which are highly 
energy-dependent processes. Among those, 

glycolysis and oxidative phosphorylation (OX- 
PHOS) are the most important and form ade-
nosine triphosphate (ATP) to provide the energy 
for both the development and function of 
sperm. And the ATP is formed by two metabolic 
pathways: glycolysis and oxidative phosphory-
lation (OXPHOS) [19]. While many studies have 
shown that glycolysis is the primary source of 
ATP during sperm motility [19-21] and OXPHOS 
enables maturation and differentiation [22]. 
Many studies have shown that sperm motility 
will significantly decrease in the process of 
cryopreservation and that ATP is extremely 
downregulated in post-thawed sperm [4, 23, 
24]. So based on the results, we chose the gly-
colysis pathway for the future research, and  
the impact index of the pathway is 0.1035 
(Table 2).  

Figure 1. Glycolysis metabolic key enzymes analyzed with Western blot and Immunofluorescence. A. The distribution 
of HK2, PKM, and PFKP were detected by immunofluorescence staining in sperm. Human sperm cultured with HK2 
(a), PKM (b) and PFKP (c). Scale bar: 10 μm. B. The protein levels of the three proteins were detected by Western 
blot analyses. Values are expressed as the mean ± SEM, n=5. Asterisks indicate a statistically significant difference 
from the fresh group. Statistical analysis by paired t-test. *P<0.05.
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Through immunofluorescence, this study found 
that the three key enzymes of glycolytic (HK2, 
PFKP, and PKM) are located in the principal 
sperm components (Figure 1A). The three 
enzymes play an important role in maintaining 
sperm function [25]. Among the three glycolysis 
key enzymes, the Western blot analysis showed 
that the expression levels of HK were decreased 
in freeze-thawed human sperm, and there were 
no statistical differences in the expression lev-
els of PFKP and PKM. Hexokinase is one of the 
initial rate-limiting reactions of glycolysis in the 
glycolytic pathway. It catalyzes the phosphory-
lation of glucose and ATP to form glucose-
6-phosphate and ADP [26]. The glucose-
6-phosohate is the point of entry into glycogen 
synthesis and is involved in the pentose phos-
phate pathway and glycolysis. Several studies 
[27, 28] have shown that the overexpression of 
HK2 in various cancer types may be associated 
with the new therapeutic target. As was found 
in a previous study, HK is mainly located in the 
principal component of sperm [29]. In 2016, 
Professor He’s study showed that the expres-
sion level of HK in fresh sperm is significan- 
tly higher than it is in cryopreserved sperm 
(P<0.001), based on a proteomics analysis 
[30]. However, the relationship between HK lev-
els has not been investigated in fresh and cryo-
preserved sperm in humans. As one of the key 
enzymes in glycolysis, a decreased expression 
of HK2 may be associated with glycolytic path-
way changes in the process of cryopreserva-
tion, and decreased ATP following freeze- 
thawing. 

Conclusions

Human sperm cryopreservation is a simple and 
effective approach for the preservation of male 
fertility. In order to identify potential metabolo-
mic pathway changes in this process, a target-
ed metabolomic experiment was conducted to 
identify the quantitative metabolomic com-
pounds that characterize human sperm cryo-
preservation. A total of 16 significantly deregu-
lated compounds were identified between fresh 
and post-thawed sperm: 7 were downregulated 
and 9 were upregulated in the frozen-thawed 
group. A bioinformatics analysis revealed that 
metabolic pathways play an important role in 
cryopreservation, including the citrate cycle 
(TCA cycle), glycolysis or gluconeogenesis, gly-
oxylate and dicarboxylate metabolism, pyru-
vate metabolism and galactose metabolism. 
We used localization and a quantitative analy-

sis of the three key enzymes in glycolysis by 
immunofluorescence and immunoblotting. HK2 
expression levels in cryopreserved sperm were 
significantly lower than those in fresh sperm. 
Our work will provide valuable information for 
future investigations and pathological studies 
involving sperm cryopreservation.
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