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Abstract

IMPORTANCE—While systemic therapy for disseminated cancer is often initially successful, 

malignant cells, using diverse adaptive strategies encoded in the human genome, almost invariably 

evolve resistance, leading to treatment failure. Thus, the Darwinian dynamics of resistance are 

formidable barriers to all forms of systemic cancer treatment but rarely integrated into clinical trial 

design or included within precision oncology initiatives.

OBSERVATIONS—We investigate cancer treatment as a game theoretic contest between the 

physician’s therapy and the cancer cells’ resistance strategies. This game has 2 critical 

asymmetries: (1) Only the physician can play rationally. Cancer cells, like all evolving organisms, 

can only adapt to current conditions; they can neither anticipate nor evolve adaptations for 

treatments that the physician has not yet applied. (2) It has a distinctive leader-follower (or 

“Stackelberg”) dynamics; the “leader” oncologist plays first and the “follower” cancer cells then 

respond and adapt to therapy. Current treatment protocols for metastatic cancer typically exploit 

neither asymmetry. By repeatedly administering the same drug(s) until disease progression, the 

physician “plays” a fixed strategy even as the opposing cancer cells continuously evolve successful 

adaptive responses. Furthermore, by changing treatment only when the tumor progresses, the 

physician cedes leadership to the cancer cells and treatment failure becomes nearly inevitable. 

Without fundamental changes in strategy, standard-of-care cancer therapy typically results in 

“Nash solutions” in which no unilateral change in treatment can favorably alter the outcome.
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CONCLUSIONS AND RELEVANCE—Physicians can exploit the advantages inherent in the 

asymmetries of the cancer treatment game, and likely improve outcomes, by adopting more 

dynamic treatment protocols that integrate eco-evolutionary dynamics and modulate therapy 

accordingly. Implementing this approach will require new metrics of tumor response that 

incorporate both ecological (ie, size) and evolutionary (ie, molecular mechanisms of resistance and 

relative size of resistant population) changes.

Herein, we frame cancer treatment as a contest in which the physician enters a predator-

prey–like game with the patient’s cancer cells. Therapy options represent the physician’s 

strategies. Cure occurs if therapy drives the cancer populations extinct. But, for most 

metastatic cancers, extinction is not achievable because the cancer cells are active “players” 

in the game. They respond to treatment by evolving effective strategies of therapy resistance. 

The physician-predator can also “evolve” in the sense that he or she can vary treatments over 

time.

Contests such as between the physician and cancer cells can be framed mathematically using 

game theory. Developed by Von Neumann and Morgenstern,1Nash,2 and others,3 game 

theory describes the strategies (choices), payoffs (consequences), and dynamical interactions 

involving both individuals and populations. Although initially focused on conflict4 and 

cooperation in economics,5 Maynard-Smith and Price6 pioneered its application to 

evolutionary dynamics. In evolutionary games,7 the players inherit rather than choose their 

strategies, and their payoffs are survival and proliferation. Game theoretic approaches have 

been applied to management of antibiotic resistance8 and control of agricultural pests,9 as 

well as cancer progression10 and treatment.11

The cancer therapy predator-prey game differs from those in nature in ways that limit the 

physician: he or she does not gain a fitness advantage from killing cancer cells and his or her 

strategies are constrained by costs, ethics, and treatment toxic effects. However, cancer 

therapy also contains elements of social/economic games12 that result in asymmetries that 

confer critical advantages on the physician, as follows.13

First, only the physician is rational and can anticipate future events. In contrast, cancer cells, 

typical of evolving organisms in nature, can only respond to what is happening or has 

happened. In particular, cancer cells can never anticipate or adapt to future conditions that 

differ from current or prior circumstances.

Second, there is a consistent sequence in the game because the physician always makes the 

first move by applying therapy and only then can cancer cells “play” by responding through 

the evolution of resistance strategies. Even if the molecular machinery of resistance is 

present prior to treatment, it is not under selection as a resistance strategy until treatment. 

Because of this, cancer therapy is a leader-follower game.14 First investigated by von 

Stackelberg,15 analyses of leader-follower dynamics (or “Stackelberg games”) identify 

critical advantages to the leader. The physician’s “first move,” along with the ability to 

anticipate subsequent cancer cell responses, provides a critical opportunity to obtain more 

favorable outcomes by steering and/or limiting the cancer cell’s resistance strategies.16,17 

Furthermore, when therapy is administered episodically or in cycles, the first-move 
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advantage can be used to probe the tumor for available resistance strategies. This “pursuit 

and evasion” game has been extensively investigated through optimization methods in 

differential game theory (games with time-varying strategies),16,17 such as the principle of 

optimality by Bellman.18 Thus, the physician can use information obtained in initial 

treatment cycles to progressively inform and optimize subsequent cycles.

Methods

Cancer Therapy as a Game

We frame cancer therapy as a game theoretic contest in which the physician assumes a 

predator-like role by attacking and killing cells within the cancer population. While some 

cancers may contain a single homogeneous cell population, we assume that most malignant 

tumors contain multiple subpopulations with varying sensitivities to available therapies. The 

physician begins the game by applying some treatment. Even as many (perhaps most) cancer 

cells die, survivors adapt and evolve counter (resistance) strategies. As the game progresses, 

the physician can then play the game by applying additional treatments, which can be 

identical to or different from prior treatments. With each new treatment, the tumor cells 

continue responding and adapting.

Our game theoretic model builds on a well-established mathematical formalism developed 

over several decades. Figure 1 and Figure 2 provide a brief outline of the quantitative 

methods and dynamics of the cancer therapy game. However, within the text we frame the 

discussion entirely in qualitative terms, reserving the formal mathematical analysis for a 

future publication.

Current treatment protocols for metastatic cancer typically apply a drug or drug combination 

at maximum tolerated dose (MTD), either continuously or in repeated identical cycles. 

Response metrics are changes in tumor volume based on imaging Response Evaluation 

Criteria in Solid Tumors (RECIST) and/or serum biomarkers. The same treatment regimen 

continues until there are unacceptable toxic effects or unambiguous evidence of tumor 

progression.

Implicit in conventional treatment strategies (whether using MTD or metronomic drug 

scheduling) is that maximum benefit to the patient requires maximum tumor cell killing. In 

metastatic, incurable clinical settings, this strategy is intuitively appealing. Yet, it may be 

evolutionarily unwise. As shown in Figures 2, 3, and 4, maximum cell killing is an optimal 

strategy only if no cancer cells are capable of evolving a successful resistance to the applied 

therapy. However, if 1 or more cancer subpopulations are resistant a priori or capable of 

evolving adaptations quickly (ie, before the treatment kills them), this strategy will fail.

In fact, under these game theoretic conditions, maintenance of a constant drug regimen at 

MTD cedes evolutionary control to the cancer cells. As followers, the cancer cells can begin 

to adapt only when the treatment is applied. They are at a disadvantage because therapy 

begins as a Stackelberg game in which the physician is the leader. However, by 

administering the same drugs and doses within each treatment cycle, the physician subjects 

cancer cells to a constant and predictable selection force. By adapting to the physician’s 
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current therapeutic regime, the cancer cells are simultaneously adapting to the physician’s 

future (identical) treatments. Consider cancer treatment as a rock-paper-scissors game in 

which almost all cells within the cancer play, for example, “paper.” It is clearly 

advantageous for the treating physician to play “scissors.” Yet, if the physician only plays 

“scissors,” the cancer cells can evolve to the unbeatable resistance strategy of “rock.”

Thus, continuous application of a single, high dose-density drug regimen provides a shorter-

term ecological success (tumor response or remission), but failure to anticipate the longer-

term evolutionary arc permits the tumor to evolve resistance unopposed. Consider an eager 

dog that chases a squirrel by running directly at it. Coyotes, in contrast, have learned that 

squirrels respond to pursuit by running toward the nearest tree and, therefore, do the same. 

In the former contest, the squirrel becomes the leader as the dog follows it in a wide arc 

toward and up the tree. In the latter, the coyote leads and prevents the squirrel from 

executing its evasive strategy.

Thus, by changing therapy only when the tumor evolves resistance and progresses, the 

physician has become the follower. He or she simply reacts to evolution of resistance by the 

leader tumor cells. In this setting, as shown in Figure 2 and Figure 3, the strategy of 

continuous treatment at MTD until progression is rarely the best available strategy. In fact, it 

is frequently the poorest strategic approach to the cancer therapy game.

In the context of game theory (the Table provides a glossary of game theory terms), when 

the physician does not fully use his or her advantages as a rational leader, he or she loses the 

opportunity to both anticipate and steer. Figure 2 represents a graphical depiction of the 

cancer therapy game. In the absence of a leader and follower, each player in a time-

dependent game such as cancer therapy responds to the actions of the other players. The 

cancer evolves a best response to the current and ongoing therapy. When the physician 

observes the shift in cancer strategy—for example, radio-graphic progression—he or she can 

adjust treatment based on available literature that has demonstrated the best response (ie, 

second-line treatment) to the current strategies of the cancer cells. Each move and 

countermove sees both the cancer cells’ strategies and physician’s therapy strategies moving 

along their respective best-response curves. This can lead to either a perpetual evolutionary 

arms race (if the cancer cells’ and physician’s best response curves do not intersect) or a 

Nash solution in which the 2 curves intersect. At the Nash equilibrium, neither player 

(cancer or physician) gains an advantage by unilaterally altering their strategy. Such 

outcomes are the norm for evolutionary games in nature (Figure 2).

Game theory models have clear implications for current cancer therapy.20–23 If cancer cells 

can find an adaptive strategy either through existing molecular mechanisms already encoded 

in the human genome or acquisition of a resistant mutation, survival and progression of a 

cancer population is an assured outcome. Furthermore, using any conventional cancer 

treatment approach (whether MTD or metronomic therapy) designed to kill the maximum 

number of cancer cells while ignoring the underlying evolutionary dynamics, the physician 

has no available strategy to improve current outcomes.
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Exploiting Game Theoretic Advantages in Cancer Therapy

Exploiting the asymmetries in the cancer treatment game will likely require abandoning the 

current static treatment protocols in favor of dynamic therapy designs that explicitly 

integrate the evolutionary dynamics of resistance. As demonstrated in Figure 3, a physician 

can exploit the lead position in the Stackelberg game by anticipating the resistance strategies 

of the cancer cells. By understanding both the available molecular mechanism(s) of 

resistance and the Darwinian dynamics that govern the proliferation of resistant phenotypes, 

treatments can be modified, using mathematical models when necessary, to prolong the time 

to progression, and perhaps even cure. The key is to have some foreknowledge or estimate of 

the cancer cell’s best response curve. If I do X, how will the cancer cells respond and adapt 

over time? Just as the coyote can anticipate the squirrel’s escape options, as leader, the 

physician can choose to steer the cancer. A Stackelberg solution requires the leader to 

choose his or her best outcome along the other player’s best response curve. This solution 

will be at least as good, and generally much better, than the Nash solution.

Are such strategies achievable in clinical settings? A few recent trials have demonstrated 

successful integration of evolutionary principles into treatment protocols. For example, 

bipolar androgen therapy24–26 anticipates androgen receptor overexpression as an adaptive 

resistance mechanism in metastatic castration-resistant prostate cancer. To exploit this 

adaptive strategy, bipolar androgen therapy administers androgen to induce a tumor response 

and to restore normal androgen expression, rendering them once again vulnerable to 

androgen deprivation therapy (ADT). A study by Antonia et al27 demonstrated that when 

small cell lung cancers evolved resistance to immunotherapy, their response to subsequent 

cytotoxicity greatly increased. A study11 treating patients with metastatic castration-resistant 

prostate cancer with abiraterone explicitly applied a game theoretic mathematical to delay 

onset of resistance.

Treatment With Imperfect Knowledge of Tumor Cells’ Strategies–Applications of 
Differential Game Theory

In a perfect-information Stackelberg game, the physician would be continuously aware of 

the evolutionary and ecological states of the tumor. However, in reality physicians must 

often treat cancers with drugs for which the molecular mechanisms and eco-evolutionary 

dynamics governing resistance are poorly understood or entirely unknown. Furthermore, 

while the game dynamics occur continuously, tumor responses are measured through tests 

obtained at intervals of weeks or months. During the time between tests, treatments typically 

remain fixed except in cases of toxic effects. In the terminology of differential games, 

clinical cancer treatment is an unusual contest that can be “open loop” and “closed loop” at 

different time points. That is, during each cycle of therapy, the game, from the physician’s 

view, is an open-loop game because he or she cannot directly observe the strategies of the 

cancer cells and, therefore, cannot adjust his or her treatment strategy. However, at some 

time points, the game could28 become closed loop if the associated tests reveal the strategies 

of the cancer cells during the prior cycle.

The recursive dynamics during cycles of therapy, particularly in tumors in which several 

effective treatment strategies are available, provide a potential opportunity to probe the 
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tumor to determine and measure key resistant and sensitive populations (Figure 4). The 

therapy probes would then give way to a more definitive therapy based on knowledge of (1) 

the strategies available to the cancer populations, (2) an estimate of their current relative 

sizes, (3) observed past and estimated future changes in cancer populations, and (4) past and 

present evolutionary dynamics.

From the late 1950s, dynamic programming and calculus of variations were developed to 

control systems (initially rockets) in which actions can and should vary with time (eg, the 

Bellman18 principle of optimality, the Pontryagin maximum principle29). By the 1970s, 

dynamic programming expanded into differential game theory. Here, 2 players have time-

dependent strategies. Each tries to maximize accrued payoffs or some payoff defined over a 

fixed time (eg, pursuit evasion games found in nature, dogs and squirrels, or in modern 

weapons systems). These complex, seemingly intractable problems are solved by breaking 

them into a sequence of small, nested subproblems. Optimal strategies are uncovered by 

recursively combining the solutions to each subproblem.11,17,30,31

Figure 4 represents a highly simplified example of how an oncologist “leader” can use the 

Bellman principle of optimality to probe the tumor with short bursts of different therapies to 

uncover the availablecancercells’strategiesandtherelativesubpopulationsizes. This “revealed 

information” can optimize outcomes in subsequent rounds of the game. An interesting 

alternative approach is physical perturbation of the tumor (eg, by focused ultrasound), which 

causes cancer cells to release macromolecular biomarkers. A preclinical study showed how 

these serum markers accurately reflect the intratumoral population distribution.32

Discussion

The therapeutic contest between physicians and cancer cells contains 2 important 

asymmetries. First, only the physician can plan ahead and anticipate the cancer’s responses. 

In contrast, the cancer cells simply die or survive on the basis of current conditions and their 

heritable sensitivity or resistance to the therapy. Second, cancer therapy is a Stackelberg 

game in which the physician can both influence overall tumor burden and potentially steer 

the evolutionary trajectory of the cancer cells toward outcomes more favorable to the patient. 

In terms of the evolution of resistance, the physician can anticipate while the cancer cells 

can only react.

These asymmetries give the physician substantial advantages. However, current treatment 

regimens for metastatic cancers such as continuous MTD or identical cycles of intermittent 

therapy do not exploit these advantages. By playing the same strategy repeatedly, current 

cancer treatments greatly increase the likelihood of cancer cells evolving effective 

countermeasures. Thus, because therapy is changed only when the tumor progresses, the 

leader physician becomes the follower. Although standard practice for decades, 

administering drugs at maximum tolerated dose until progression represents a poor strategy.

We suggest that cancer treatment protocols can benefit from explicit consideration of these 

asymmetries and the physicians’ advantages as the leader in the cancer therapy Stackelberg 

game. In general, the physician can exploit his or her advantages by developing more 
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strategic approaches33 to cancer therapy that carefully define and exploit the critical 

dynamics that govern success and failure in each treatment and by linking treatments in a 

well-constructed sequence that takes advantage of their potential synergies. These include 

the following.

Define the Goal of Treatment

When applied with curative intent and with reasonable expectation of that outcome, therapy 

should use evolutionary dynamics to maximize the probability of cancer cell extinction. 

Importantly, curative intent does not necessarily require application of initial therapy at 

MTD. In fact, extinction of a population may best be achieved through a strategic sequence 

of treatments in which, for example, the initial therapy is designed to generate a small, 

homogeneous resistant population that is then eradicated by a second treatment that 

specifically targets the adaptive strategy. This approach, termed “double-bind 

therapy”20,34,35 or, more colorfully, a “sucker’s gambit,”35 has been extensively analyzed 

and can be observed clinically.27,36 Thus, for many cancers, the maximum probability for 

cure may actually occur during second-line therapy.

Alternatively, when cure is not achievable, the goal should explicitly focus on maximizing 

the time to progression. Here, evolutionary dynamics are harnessed to suppress the growth 

of resistant phenotypes. Because the physician cannot, by definition, control resistant cells, 

the therapeutic strategy must focus on adaptive approaches that retain treatment-sensitive 

cells to suppress the growth of resistant cells.

Include a Resistance Management Plan

Increasing numbers of cancer therapies are available, and many produce an initially highly 

favorable response. Yet, most metastatic cancers remain fatal because malignant cells have a 

remarkable capacity to evolve resistance leading to tumor progression and treatment failure. 

Fortunately, this topic has been investigated. In fact, resistance management plans37 (RMPs) 

have been used (and often mandated) for decades in the application of pesticides in 

agricultural systems.38 Resistance management plans identify and/or anticipate the 

mechanisms of resistance by the pests; monitor for the emergence, distribution, and 

abundance of resistant pest populations; and integrate evolutionary principles to create 

pesticide application protocols that reduce the emergence and proliferation of resistant 

phenotypes. In almost all cases, the RMP recommends reduced and more judicious 

applications of pesticides.12

Cancer treatment RMPs will require important changes in both drug development and 

application. Pharmaceutical companies, like pesticide manufacturers,37 will need to define 

the molecular mechanisms through which cancer cells become resistant to the drug. For 

oncologists, RMPs can exploit a number of evolution-based strategies to delay or suppress 

proliferation of resistant phenotypes. We note, however, that these eco-evolutionary 

dynamics can be highly patient specific.11 Thus, the role of precision medicine39 in 

oncology should be expanded. That is, in addition to identifying molecular signatures that 

predict response to certain therapies in pretreatment screens, precision medicine should also 

seek to identify molecular properties that will confer resistance. Then, as feasible, metrics of 
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tumor responses (ecological dynamics) and cancer cell type frequencies (evolutionary 

dynamics) should be used to adjust therapy in terms of both dose scheduling and drugs used. 

The metrics of eco-evolutionary dynamics become the means for anticipating the cancer’s 

responses, for avoiding an arms race or Nash equilibrium, and for bringing about a 

Stackelberg solution.

Perform “After Action Reports”

Outcomes of military and emergency activities are often analyzed through after action 

reports.40 They encourage self-evaluation41—what did I do right and what did I do wrong? 

Current clinical research in oncology focuses on evaluation of cohorts within some well-

defined treatment protocol. In contrast, after action reports focus on evaluating the outcomes 

of every patient, even those not enrolled in a formal protocol, by asking, Was the stated goal 

of treatment (ie, cure or control) achieved? If not, what are plausible explanations for failure 

and could outcomes have been improved by altering the treatment goal or the RMP?

Conclusions

Cancer therapy is a Stackelberg game. Game theoretic analyses of cancer therapy suggest 

that “precision medicine”39 in oncology can be broadened from its current focus on 

molecular targets that maximize the probability of immediate response. Additionally, 

precision medicine should incorporate the cancer therapy game to anticipate and steer 

patient-specific and treatment-specific evolutionary dynamics that govern the emergence and 

success of resistant populations. Even with initially well-targeted therapies, resistance leads 

to failure, progression, and patient death. Taking control of the Stackelberg game will 

require (1) the application of dynamic and sophisticated therapies and (2) the investigation 

of response metrics that move beyond the current focus on changes in tumor size (ie, the 

tumor ecology) and include measurements of the sensitive and resistant subpopulations 

(evolutionary state and dynamics). Emerging technologies that investigate circulating DNA 

and tumor cells42–44 will probably become key. New image analytic tools (eg, radiomics45 

and habitat imaging46) may generate biomarkers for treatment-sensitive and treatment-

resistant intratumoral population through clinical computed tomography and magnetic 

resonance imaging studies. Finally, even with imperfect understanding of the resistance 

mechanisms and the size of resistant subpopulations, judicious applications of initial therapy 

can reveal the eco-evolutionary dynamics. As the cancer cells’ strategies and future 

responses become unmasked, the physician can adjust subsequent treatment cycles 

accordingly.
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Figure 1. Mathematical Formulas for Cancer Therapy Game
An example of a cancer therapy game in which the cancer cells evolve strategies to 

maximize their net proliferation rates, and the physician aims to balance drug toxicity with 

overall tumor burden. Two approaches by the physician are considered: (1) Therapy that 

aims to maximize patient outcome given the current resistance strategy of the cancer cells. 

This treatment strategy results in a Nash equilibrium; (2) Therapy that aims to maximize 

patient outcome by anticipating the evolutionary and ecological response of the cancer cells. 

This therapy results in a Stackelberg equilibrium and a better outcome than the Nash 

equilibrium (see Figure 2).
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Figure 2. Nash and Stackelberg Equilibria
We assume a 2-player game in which player 1 and player 2 choose actions u1 and u2 to 

maximize their payoffs J1(u1, u2) and J2(u1, u2), respectively. The graph shows level curves 

of payoffs J1(u1, u2) (solid blue curves) and J2(u1, u2) (solid orange curves) in the (u1, u2)-

space. Player 1 would like to achieve point T1 (his or her absolute maximum, known also as 

team optimum in game theory), and we investigate whether he or she can get close to this 

outcome when playing simultaneously with player 2 and when playing first. The blue dashed 

line denotes the best response of player 1 to any action of player 2 and the orange dashed 

line denotes the best response of player 2 to any action of player 1 (both obtained by 

maximizing a corresponding player’s payoff for any choice of the other player). If the 

players play simultaneously, the outcome lies at the intersection of the 2 best-response 

curves, the Nash equilibrium (N). However, if the physician (player 1) applies treatment 

with foreknowledge of the best-response curve of tumor cells, he or she can, as the leader, 
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play the strategy u1 with superscript S1 based on that information. In contrast, the 

nonrational, follower cancer cells can only respond with the strategy on their best-response 

curve. The physician can anticipate this outcome; the cancer cells cannot. By exploiting his 

or her leadership role, the physician can both anticipate and steer the cancer cells’ resistance 

evolution toward a much better patient outcome corresponding to the point S1, the 

Stackelberg equilibrium.
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Figure 3. Adaptive Strategies for Metastatic Castration-Sensitive Prostate Cancer
Computer simulations of treatment outcomes using methods outlined in Gallaher et al19 and 

similar to the models used to design ongoing clinical trials.11 The subpopulations are color 

coded, and the area of each simulation represents total tumor burden. The model assumes a 

newly presented prostate cancer metastasis with different initial distributions of resistant and 

sensitive subpopulations. A, A pretreatment biopsy finds that 95% of the cancer cells 

express androgen receptor (AR) but not CYP17A, 3% are both AR and CYP17A1 positive, 

and 2% are AR negative. The frequency of the cell populations suggests that the fitness of 

the AR-positive phenotype is much higher than AR-negative or CYP17A phenotypes. In the 

top row, continuous androgen deprivation therapy (ADT) rapidly selects for resistant 

populations with the dominant clones overexpressing CYP17A, leading to tumor 

progression. An alternative approach replaces continuous ADT with the protocol used in 

Zhang et al.11 Androgen deprivation therapy is administered until the tumor burden is 

reduced by half (based on prostate-specific antigen measurements) and then withdrawn. In 

the absence of therapy, the fitness advantage of the AR-positive cells allows them to grow at 

the expense of the resistant populations, thus prolonging tumor control with ADT. B, The 

initial biopsy shows the AR-positive phenotype to be 65% of the cells, with 35% CYP17A1 

and 10% AR negative. Because the relative fitness advantage of the AR-positive cells is not 

as great as in A (based on the higher relative fractions of AR-negative and CYP17A1 

phenotypes), the adaptive strategy in A will not be as successful (simulation not shown). An 
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alternative evolutionary strategy in the lower row alternates treatments directed against AR-

positive (ADT) and CYP17A1 (abiraterone) cells, as well as treatment holidays to control 

the AR-positive and CYP17A1 populations while maximally reducing the growth of the AR-

negative cells. Many other strategies (eg, addition of docetaxel) are available, and similar 

simulations can allow the treating physician to devise a patient-specific protocol that 

optimizes outcomes. Each arrowhead represents a treatment period. The drug used is above 

the arrowhead (red arrowheads indicate ADT; blue arrowheads, abiraterone). No specified 

drug indicates a treatment holiday (black arrowheads).
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Figure 4. Using the Bellman Theorem to Guide Brief Applications of Treatment to Estimate the 
Size of Resistant Populations and Their Strategies
As a simplified example of this “unmasking process,” we use the simulations in Figure 3 but 

assume that the metastatic prostate cancer is presenting with unknown cellular composition. 

Because nearly all precastration metastatic prostate cancer initially responds to androgen 

deprivation therapy (ADT), we assume that the androgen receptor (AR)-positive population 

is dominant. Here we wish to determine the size of the resistant populations by giving brief 

pulses of ADT and abiraterone. A, Here the ADT-resistant subpopulations are small. Initial 

treatment with a pulse of ADT causes a marked decrease in tumor size (measured with 

prostate-specific antigen [PSA]). This allows the treating physician to estimate the fraction 

of the AR-positive population. The physician can then briefly apply abiraterone. The smaller 

decrease in tumor size is used to estimate the size of the CYP17A1 phenotypes population. 

All other cancer cells can then be assumed to be AR negative, allowing an evolution-based 

treatment similar to that shown in Figure 3A. B, Here the initial combinations of ADT and 

abiraterone show that the population expressing CYP17A is much larger and indicate the 

need for combined therapy as shown in Figure 3B. Each arrowhead represents a treatment 

period (red arrowheads indicate ADT; blue arrowheads, abiraterone). The drug used is above 

the arrowhead. No specified drug indicates a treatment holiday (black arrowheads).
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Table.

Glossary of Game Theory Terms

Term Definition

Game Any situation in which a player’s payoff depends on the player’s own strategy and the strategies of the 
other players

Players Participants in the game

Strategies (or actions) Choices that players make

Payoffs Benefits that accrue to the player that depend on his or her strategy and the strategies of the other players

Best reply Ri(uj) of player i to 
action uj of player j

The payoff-maximizing strategy for player i given that player j uses strategy uj

Nash equilibrium or solution An equilibrium state in which no player can increase his or her payoff by unilaterally deviating from his 
or her current strategy; in a Nash equilibrium the strategy of each player is a best reply to strategies of 
other players

Stackelberg equilibrium (or 
solution) with player i as the leader 
and the other players as followers

An equilibrium state in which player i obtains the highest possible payoff for himself or herself when the 
other players use their best reply strategy to the strategy of the leader (player i); the leader’s payoff is 
always at least as good as and mostly much better than his or her payoff at the Nash equilibrium
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