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Abstract

Background: Genotyping by sequencing (GBS) still has problems with missing genotypes. Imputation is important
for using GBS for genomic predictions, especially for low depths, due to the large number of missing genotypes.
Minor allele frequency (MAF) is widely used as a marker data editing criteria for genomic predictions. In this study,
three imputation methods (Beagle, IMPUTE2 and FImpute software) based on four MAF editing criteria were
investigated with regard to imputation accuracy of missing genotypes and accuracy of genomic predictions, based
on simulated data of livestock population.

Results: Four MAFs (no MAF limit, MAF ≥ 0.001, MAF ≥ 0.01 and MAF ≥ 0.03) were used for editing marker data
before imputation. Beagle, IMPUTE2 and FImpute software were applied to impute the original GBS. Additionally,
IMPUTE2 also imputed the expected genotype dosage after genotype correction (GcIM). The reliability of genomic
predictions was calculated using GBS and imputed GBS data. The results showed that imputation accuracies were
the same for the three imputation methods, except for the data of sequencing read depth (depth) = 2, where
FImpute had a slightly lower imputation accuracy than Beagle and IMPUTE2. GcIM was observed to be the best for
all of the imputations at depth = 4, 5 and 10, but the worst for depth = 2. For genomic prediction, retaining more
SNPs with no MAF limit resulted in higher reliability. As the depth increased to 10, the prediction reliabilities
approached those using true genotypes in the GBS loci. Beagle and IMPUTE2 had the largest increases in prediction
reliability of 5 percentage points, and FImpute gained 3 percentage points at depth = 2. The best prediction was
observed at depth = 4, 5 and 10 using GcIM, but the worst prediction was also observed using GcIM at depth = 2.

Conclusions: The current study showed that imputation accuracies were relatively low for GBS with low depths
and high for GBS with high depths. Imputation resulted in larger gains in the reliability of genomic predictions for
GBS with lower depths. These results suggest that the application of IMPUTE2, based on a corrected GBS (GcIM) to
improve genomic predictions for higher depths, and FImpute software could be a good alternative for routine
imputation.
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Background
Genotyping by sequencing (GBS) uses restriction endo-
nucleases to digest genomic DNA and thus sequences
digested fragments, and is an efficient method to dis-
cover single nucleotide polymorphisms (SNP) [1]. GBS
can potentially reduce the cost by producing multiplex
libraries [2] and be applied for some species where the
commercial chip arrays are not available [3]. Currently,
GBS has become a robust genotyping method, but miss-
ing genotypes still appear to be a serious problem [1, 4].
Imputation allows the usage of low-density marker
panels in the widespread implementation of genomic se-
lection [5]. Thus, imputation strategies are important for
using GBS for genomic predictions and many imput-
ation methods have been developed.
Beagle [6] and IMPUTE2 [7] software which are devel-

oped for applications in human genetics use a hidden
Markov model (HMM) to infer missing markers. The
Beagle imputation method constructs a tree of haplo-
types and summarizes it in a direct acyclic graph by join-
ing nodes of the tree based on haplotype similarity. The
IMPUTE2 imputation method proposes to alternately
estimate haplotypes in the reference panel and imputes
missing genotypes in the test panel by choosing the most
similar estimated haplotypes. FImpute software [8] can
achieve accurate imputation when using pedigree infor-
mation because closer relatives usually share longer hap-
lotypes, while more distant relatives share shorter
haplotypes. In a SNP array, missing markers with certain
structure are usually identified with a high degree of cer-
tainty, but missing markers of GBS data can vary at dif-
ferent marker positions, especially for the mutations
located in restriction enzyme cut sites. Therefore, imput-
ation of missing genotypes of GBS SNP data could be
less accurate than those in chip SNP data.
As genotype quality influences the reliability of gen-

omic predictions and a low number of reads at a par-
ticular marker may create problematic genotypes,
genotype data should be edited by discarding problem-
atic data [9] and correcting genotypes of the particular
markers with a low number of reads [10]. Minor allele
frequency (MAF) is widely used as marker data editing
criteria for genomic predictions. Different MAF editing
criteria, ranging from 0.01 to 0.05, have been reported to
avoid genotyping errors [11–13]. Edriss et al. [9] investi-
gated the effects of editing criteria on the reliability of
genomic predictions, using different MAF thresholds.
Therefore, it is necessary to investigate the imputation
efficiency using different MAF criteria and then con-
firm the reliability of genomic predictions using im-
puted data. Although there are many investigations in
imputation for chip array data, it is very rare for GBS
data. In addition, there is very limited studies on im-
pact of different methods and strategies of imputing

missing genotypes (e.g., the approach of imputation
followed by genotype correction) in GBS data on gen-
omic prediction.
The objective of this study was to investigate whether

genomic predictions (GP) were improved after imput-
ation using three different methods (i.e., Beagle, IM-
PUTE2 and FImpute software), based on the simulated
data of livestock population. Moreover, the accuracies of
genomic predictions using different genotype data sets
were compared to assess the value of GBS and the im-
provement from the imputation of missing genotypes.

Methods
Phenotypic and genomic data of ten replicates for each
scenario were generated by QMSim software (version
1.10) [14], using the parameters of population structure
(Table 1) and genome (Table 2).

Population structure and genome
As the domestication process in the historical genera-
tions to create linkage disequilibrium (LD), a foundation
population of 2000 individuals (1000 males and 1000 fe-
males) was maintained at a constant size across 1000
generations and then gradually reduced to 400 individ-
uals over the following 200 generations. Among the 400
individuals in the last generation of the historical popu-
lation, 40 males and 200 females were randomly chosen
for population expansion. In recent generations, 100
males and 500 females from the last generation of the
expanded population were selected to continue ten gen-
erations. In each generation, a dam reproduced a litter
of five individuals. In the whole process of simulation,
the individuals of each sex were produced with the equal
probability based on the random union of gametes,
which were sampled from both the male and female
gamete pools. Selection and replacement was performed
based on estimated breeding value (EBV), which was es-
timated by best linear unbiased prediction (BLUP) using
animal model [15]. The replacement rate for males and
females was 80% and 40%, respectively. The overall her-
itability, QTL heritability and phenotypic variance were
set as 0.3, 0.3 and 1.0, respectively. No remaining poly-
genic effects were simulated; therefore, all genetic vari-
ances were explained by quantitative trait loci (QTLs).
The phenotypes were created by adding random resid-
uals to the true breeding values (TBVs), while TBVs
were defined as the sum of individual QTL additive ef-
fects. The targeted level of LD in this study was close to
the values reported for cattle breeds [16, 17] and pigs
[18]. The mean r-squared value of LD in the last (10th)
generation of the recent population was 0.259 (SE =
0.004), based on markers with intervals of less than 50
kb (0 ~ 0.05 cM), averaged over 10 replicates.
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Table 1 Simulation parameters of the population structure

Steps Population structure Values

Number of replicates 10

Overall heritability 0.3

QTL heritability 0.3

Phenotypic variance 1.0

Step 1: Historical generations (HGs) Foundation population size of (HGs) 2000

Number of generations in phase 1 1000

Population size in phase 1 2000

Number of generations in phase 2 200

Population size in the end of phase 2 400

The number of males in the last (HG) 200

The number of females in the last (HG) 200

Number of males from HG 40

Number of females from HG 200

Step 2: Expanded generations (EGs) Number of generations 1

Litter size 5

The proportion of male progeny 50%

Mating design Random

Number of males from EG 100

Number of females from EG 500

Step 3: Recent generations Number of generations 10

Litter size 5

The Proportion of male progeny 50%

Mating design Random

Sire replacement 80%

Dam replacement 40%

Selection design EBV

Table 2 Simulation parameters of the genome

Genome Values

Number of chromosomes 5

Chromosome length 100 cM

Number of marker loci on one chromosome 1,000,000

Marker positions Evenly

Number of marker alleles in the first HG 2

Marker allele frequencies in the first HG Random

Number of QTL loci on one chromosome 100

QTL positions Random

Number of QTL alleles in the first HG 2

QTL allele frequencies in the first HG Random

QTL allele effect From a gamma distribution with a shape of 0.4

Marker mutation rate in historical population 2.5 × 10−5

QTL mutation rate in historical population 2.5 × 10−5
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Initial LD was created by the process of mutation-drift
equilibrium in the historical generations. A total of 5 ×
106 SNP markers were evenly distributed on five chro-
mosomes with a size of 100 cM for each. The allele fre-
quency of bi-allelic markers and QTLs was initiated
through random sampling from a uniform distribution
in the first historical generation. In total, 5 × 100 QTLs
were simulated and randomly distributed on these five
chromosomes, so 100 QTLs were simulated for each
chromosome, which are in the range of most simulation
study on genomic prediction. Changing number of chro-
mosomes and number of QTLs could has an influence
on prediction accuracy in general, but would not influ-
ence the results of comparison between different
methods and between scenarios. QTL allele effects were
sampled from a gamma distribution with a shape param-
eter equal to 0.4. The shape parameter used in this study
was following Hayes and Goddard [19], as their distribu-
tion of estimates of QTL effects were assumed to follow
a gamma distribution with shape parameter β = 0.4. In
addition, Meuwissen et al. [20] used the same shape par-
ameter to simulate QTL allele effects. To establish
mutation-drift equilibriums in historical generations, the
marker and QTL recurrent mutation rates in the histor-
ical population were both set to 2.5 × 10− 5. In the recent
populations, no mutation was generated. In general, the
simulated population structure and genome were not
designed for specific species but the population structure
mimicked the population of multiparous species. The re-
sults could be useful for most of species, especially the
species where the commercial chip arrays are not avail-
able such as mink.

Creating GBS data, quality control and genotype
corrections for GBS data
De Donato et al. [21] has reported that the distribution
of distances between SNPs differed between chip data
and GBS data in cattle. GBS data in cattle showed that
44.0% of SNPs had a distance to the neighboring SNP of
less than 50 kb and a distance of more than 150 kb was
observed for 13.8% of SNPs. Following De Donato et al.
[21], the distribution of fractions (i.e., the distance be-
tween neighboring SNPs) in this study were set to 13%,
8%, 8%, 12%, 9%, 6%, 5%, 16%, 7% and 16% for 0.5 kb,
2.5 kb, 7.5 kb, 15 kb, 25 kb, 35 kb, 45 kb, 75 kb, 125 kb
and 200 kb, respectively. We generated the called geno-
type values based on a genotype calling strategy, where a
loci was called as homozygous if the reads were for only
one allele, and called as heterozygous if the reads were for
both alleles. Thus, the called GBS genotypes for homozy-
gous loci were set the same as simulated true genotypes,
since all reads presented only one allele under the as-
sumption of no sequencing error. For heterozygous loci,
the called GBS genotypes were created according to the

number of reads (n) and a random number (r) from a uni-
form distribution r~U(0, 1) [4, 10]. Since the probability of
all reads for only one allele (A or a) was ð12Þ

n given true
genotype being heterozygote, the heterozygous genotype
was replaced by aa if r≤ð12Þ

n, and by AA if ð12Þ
n
< r < 2ð12Þ

n;
otherwise, the heterozygous genotype was correctly assigned
as Aa. Afterwards, GBS loci were set as missing genotypes
when reads were equal to zero. An incorrect genotype was
expected, where a heterozygous genotype would be wrongly
assigned to a homozygous genotype, with a probability
of 2ð12Þ

n . In the simulation, read number (n) per locus
was assumed from a Poisson distribution n~P(x), where
x was the average depth (x = 2, 4, 5, 10).
Quality control criteria included call rates ≥0.8 for in-

dividuals and four MAF thresholds for markers before
imputation. After quality control, the number of GBS
SNPs for no MAF limit, MAF ≥ 0.001, MAF ≥ 0.01 and
MAF ≥ 0.03 were approximately equal to 8010 (SD = 6),
7880 (SD = 22), 7540 (SD = 55) and 7100 (SD = 100) av-
eraged over 10 replicates and four depth scenarios, re-
spectively. The difference in number of GBS SNPs
among the four depth scenarios were not large. How-
ever, the missing genotypes in scenario of average
depth = 1 were high, up to approximately 30%; therefore,
not many loci met the criteria of call rate ≥ 80%, and this
depth was discarded.
The method of genotype correction following the pre-

vious method [10] is derived according to Bayes’ for-
mula, P(G|GBS), where G is true genotype data
(unknown) and GBS is GBS data (known), which are
subject to genotyping errors. If GBSaa (aa genotype of
GBS data) is observed, there are two possible true geno-
types (Gaa and GAa), and the probabilities are

P GaajGBSaað Þ ¼ P Gaað Þ P GBSaajGaað Þ
P GBSaað Þ ;

P GAajGBSaað Þ ¼ 1−P GaajGBSaað Þ:

Similarly, if GBSAA was observed, the probabilities are

P GAAjGBSAAð Þ ¼ P GAAð Þ P GBSAAjGAAð Þ
P GBSAAð Þ ;

P GAajGBSAAð Þ ¼ 1−P GAAjGBSAAð Þ:

If GBSAa was observed, then GAa is the only possible
true genotype, and the probability is

P GAajGBSAað Þ ¼ 1:

GBS homozygous genotypes were corrected and the
resulting genotypes (Gc) were the expected genotype
dosage. Let p = P(A) and q = P(a), and 0, 1, and 2 denote
genotype aa, Aa and AA. Original GBS genotype are
scored as GBSaa = 0, GBSAa = 1 and GBSAA = 2. Thus,
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Gcaa ¼ 0� P GaajGBSaað Þ þ 1� P GAajGBSaað Þ ¼ 2pq 1
2

� �n

q2 þ 2pq 1
2

� �n ;

GcAA ¼ 1� P GAajGBSAAð Þ þ 2� P GAAjGBSAAð Þ ¼ 2pq 1
2

� �n

p2 þ 2pq 1
2

� �n

þ2� p2

p2 þ 2pq 1
2

� �n ¼
2p2 þ 2pq 1

2

� �n

p2 þ 2pq 1
2

� �n ;GcAa ¼ 1:

Allele frequency can be calculated from the data in-
cluding all reads. It can also be estimated from GBS
genotype data in such a way:

P GBSAAð Þ−P GBSaað Þ ¼ P GAAð Þ þ P GBSAAjGAað Þð Þ− P Gaað Þ þ P GBSaajGAað Þð Þ

¼ p2−q2 ¼ 2p−1; p ¼ P GBSAAð Þ−P GBSaað Þ þ 1
2

:

Scenarios of imputation
The imputation was performed in 10,000 individuals
across 10 generations using three imputation software:
Beagle (version 4.0) [6], IMPUTE2 (version 2.3.2) [7]
and FImpute (version 2.2) [8]. IMPUTE2 software allows
both the genotype type and genotype dosage as input
genotype data. The original GBS genotype type was dir-
ectly imputed by Beagle, IMPUTE2 and FImpute. Add-
itionally, the expected genotype dosage after genotype
corrections was imputed by IMPUTE2 (GcIM). The true
genotype of the GBS loci (GBSr) was used for compari-
son. Finally, genomic predictions were conducted based
on GBS data, Beagle imputed data (Be), IMPUTE2 im-
puted data (IM), FImpute imputed data (FI), GcIM data
and GBSr data using four MAF criteria. The missing ge-
notypes for the original GBS were replaced with the
mean genotype values for the same loci.

Accuracy of imputation
Accuracies of imputation were measured using a Pear-
son correlation and the correct rate of genotype identifi-
cation. The correlation was defined as the genotypes of
GBS data, Beagle imputed data, IMPUTE2 imputed data,
FImpute imputed data and GcIM data compared to the
true genotype in the GBS loci (GBSr). The correct rate
was defined as the non-missing correct genotypes of
GBS data, Beagle imputed data, IMPUTE2 imputed data,
FImpute imputed data and GcIM data.

Statistical analysis
Based on the GBS, imputed GBS data and GBSr, gen-
omic estimated breeding values (GEBV) were predicted
using the SNP-BLUP model of the BayZ package (http://
www.bayz.biz/). The model is

y ¼ 1μþMgþ e;

where y is the vector of phenotypic values, 1 is the vec-
tor of ones, μ is the overall mean, g is the vector of

random unknown marker effects to be estimated, M is
the coefficient matrix of genotypes which links g to y,
and e is the vector of random residuals. It is assumed
that g � N ð0; Iσ2

gÞ, and e � N ð0; Iσ2eÞ.

Validation
In the 6th to 9th generations of a recent population, 7500
individuals were used as a training set, in which all indi-
viduals were genotyped and phenotyped. The test set
comprised of 2500 genotyped individuals from the 10th

generation. The reliabilities of genomic predictions using
marker data from the original GBS, imputed GBS and
the true genotypes of GBS loci were compared. The reli-
abilities of genomic predictions were calculated as
squared correlations between the predicted and true
breeding values for individuals in the test data set.

Results
Missing genotypes and incorrect genotypes
The percentages of missing genotypes at depth = 2, 4, 5
and 10 were 13.5%, 1.83%, 0.673% and 0.00464%, re-
spectively, on average, over ten replicates. The standard
deviations (SD) were all less than 4.74 × 10− 5. The pro-
portions of incorrect genotypes for depth = 2, 4, 5 and
10 were 15.2%, 7.63%, 4.92% and 0.449%, respectively,
and the SDs were all less than 6.32 × 10− 3.

Accuracy of imputation based on original GBS data
As shown in Fig. 1, there were very small differences in
the imputation accuracy among the four GBS data sets
based on the MAF criteria used (no MAF limit, MAF ≥
0.001, MAF ≥ 0.01 and MAF ≥ 0.03). In addition, imput-
ation accuracy was higher for larger depth, regardless of
the imputation method used. For MAF ≥ 0.01, the imput-
ation accuracies for depth = 2, 4, 5 and 10 were 0.868,
0.943, 0.964 and 0.997, respectively, using GBS data with-
out imputation; 0.894, 0.948, 0.965 and 0.997, respectively,
using Beagle; 0.896, 0.947, 0.965 and 0.997, respectively,
using IMPUTE2; and 0.886, 0.947, 0.965 and 0.997, re-
spectively, using FImpute. The imputation accuracies were
the same for the three imputation methods, except for
when using the data of depth = 2, where FImpute had a
slightly lower imputation accuracy than the other
methods. However, FImpute only took several minutes for
each imputation procedure, while Beagle took 12–14 h
and IMPUTE2 took 12–41 h, depending on the depth.
Overall, the imputation time decreased with the depth in-
creased, due to fewer missing genotypes.

Accuracy of imputation based on corrected GBS data
The imputations based on corrected GBS (GcIM) data
were observed to be the best for all imputation methods
at depth = 4, 5 and 10 but were the worst at depth = 2
(Fig. 1). For MAF ≥ 0.01, the corrected genotype rates
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for depth = 2, 4, 5 and 10 were 0.713, 0.905, 0.944 and
0.995, respectively, using GBS data without imputation;
and 0.689, 0.961, 0.978 and 0.997, respectively, using
GcIM (Fig. 2). Correlations were 0.868, 0.943, 0.964 and
0.997, using GBS data without imputation; and were
0.784, 0.985, 0.989 and 0.998, using GcIM, for depth = 2,
4, 5 and 10, respectively (Figs. 1, and 2). Obviously, both
the corrected genotype rates and the GcIM correlations
showed lower values than GBS at depth = 2.

Reliability of genomic prediction
The reliabilities (r2) of genomic predictions using GBS
data, without imputation, at depth = 2 were 0.598, 0.590,
0.591 and 0.593 for no MAF limit, MAF ≥ 0.001, MAF ≥
0.01 and MAF ≥ 0.03, respectively. Thus, almost no dif-
ferences existed among the four criteria for quality con-
trol, and retaining more SNPs could result in higher
prediction reliability (Fig. 3). The prediction reliabilities
using true genotypes in the GBS loci (GBSr) for the four
MAF criteria were all 0.706. As depth increased from 2
to 10, the prediction reliabilities using GBS and imputed
genotypes, following the three imputation methods,
gradually approached the reliabilities using true geno-
types (GBSr). Imputation improved genomic prediction
to different degrees, consistent with the accuracy of im-
puting missing genotypes (Fig. 1). Compared with GBS
data without imputation, Beagle and IMPUTE2 resulted

in an increase of the prediction reliability of 5 percent-
age points, while FImpute gained 3 percentage points, at
depth = 2 (Fig. 3). The trend in the reliabilities of gen-
omic predictions using GcIM were consistent with its
genotype accuracy (correlations and correct rates) after
imputation at four depths (Fig. 2). Among the five sets
of GBS data, GcIM led to best prediction at scenarios of
depth = 4, 5 and 10, but worst at depth = 2. The reliabil-
ity of genomic prediction using GcIM were 0.693, 0.698
and 0.705 for depth = 4, 5 and 10, respectively, using
MAF ≥ 0.01, approaching the reliabilities using true ge-
notypes (GBSr). The standard error (SE) of the predic-
tion reliabilities in the 10 replicates was approximately
0.025. Figure 4 showed the regression of true breeding
values (TBV) on genomic estimated breeding values
(GEBV). With the same trend of prediction reliabilities,
regression coefficients increased as the depth increased
from 2 to 10. Meanwhile, Beagle, IMPUTE2 and FIm-
pute resulted in higher regression coefficients. The low-
est regression coefficient far from one (0.663) was also
found using GcIM at depth = 2 (Fig. 4).
The FImpute method is able to use pedigree informa-

tion, so we compared FImpute imputation with pedigree
and without pedigree information for scenario of depth =
4. In this analysis, genotypes were corrected, and after
correction, the expected genotype value were rounded to
integral genotype code. Then, the missing genotype were

Fig. 1 Correlations for the original GBS (GBS), the Beagle imputed genotypes (Be), the IMPUTE2 imputed genotypes (IM), the FImpute imputed genotypes
(FI) and the imputed genotypes based on corrected GBS (GcIM). Note: MAF criteria were used to delete markers with low MAF values before imputation
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imputed using FImpute with or without pedigree infor-
mation (GcFIped or GcFI). It showed that imputation
with pedigree information led to a slightly higher predic-
tion reliability, compared with imputation without pedi-
gree (Table 3). On the other hand, imputation did not
improve prediction accuracy when kept all genotypes
without considering number of reads. However, when
setting the genotypes with read = 1 & 2 as missing and
then performing imputation, the prediction reliabilities
of this scenario was two percentage points higher than
that keeping genotypes with read = 1 & 2 (Table 3).

Discussion
Impact of editing marker data using different MAF criteria
on genomic predictions
As SNP marker effects with low MAF values cannot be
estimated accurately, they are usually eliminated to im-
prove the estimating stability of the remaining SNP ef-
fects during genomic predictions [22]. In the previous
studies, the MAF was usually used as a criterion to edit
marker data for genomic predictions with thresholds
ranging between no limit and 0.1 [9, 11-13, 23]. In this
study, the numbers of SNPs in the edited data before
imputation were approximately equal to 8010, 7880,
7540 and 7100 using the four MAF criteria of no MAF
limit, MAF ≥ 0.001, MAF ≥ 0.01 and MAF ≥ 0.03,

respectively. These settings led to reductions in the
number of SNPs but resulted in small differences in the
accuracies of genomic predictions. Generally, it appeared
that retaining more SNPs resulted in higher prediction
reliabilities (Fig. 3). This is consistent with other re-
search showing that an increasing MAF threshold led to
a reduction in prediction reliability [9], suggesting that
SNP markers with low MAF values do not harm gen-
omic prediction.

Imputation of missing genotypes based on original GBS
data
Imputation based on original GBS showed that correla-
tions increased with increasing GBS depth (Fig. 1).
These three imputation methods made no changes for
non-missing markers; therefore, the rates of genotype
recognition were as same as GBS. As a whole, Beagle
and IMPUTE2 performed better than FImpute at
depth = 2 (Fig. 1). In the previous studies, it was reported
that Beagle performed best for imputations from 5 K to
50 K in Angus cattle [23] and from 3 K to 54 K in a mix-
ture of two Red cattle populations [24]. However, when
the relationship between individuals was stronger and
the number of genotyped animals was larger, FImpute
outperformed Beagle for imputations from 3 K to 54 K
in a combined cattle population [25]. A large distance

Fig. 2 Correct genotype rates and correlations for GBS and imputed genotypes based on corrected GBS (GcIM). Note: MAF criteria were used to
delete markers with low MAF values before imputation
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between GBS SNP markers in some regions with weaker
LD might affect imputation accuracy because LD is an im-
portant information factor used by imputation methods to
infer unobserved genotypes [26]. When using IMPUTE2
software for imputation in this study, five chromosomes
were imputed separately instead of splitting a chromo-
some into several segments. Splitting could cause LD
information between segments not to be used for imput-
ation [23], which could be the reason that IMPUTE2 per-
formed better than FImpute in this study. The results
were also consistent with the research of Ma et al. [24]
that did not split a chromosome and the other studies that
split a chromosome into several segments [26, 27]. How-
ever, due to high computational demands, splitting into
segments is usually considered. For practical use, a larger
number of animals and the whole genome will be geno-
typed, so imputation time could be very important for the
whole process. FImpute software could perform as well as
Beagle and IMPUTE2 software for the imputation of GBS
data with a depth larger than 2 while consuming much
less time. Imputation time was mostly influenced by the
sample size [28] and the percentage of missing genotypes,
dependent on depth. Generally, Beagle and IMPUTE2
software could take more than 12 h for each imputation,
while FImpute software required just several minutes in

this study. In other studies, FImpute also performed in the
range of minutes, while Beagle and IMPUTE2 took hours
or longer [24, 29].

Imputation of missing genotypes based on corrected GBS
data
Posterior probabilities after corrections of genotypes (Gc)
could be more close to the true genotypes, likely because
rounding posterior probabilities into integral types could
cause the loss of meaningful information regarding uncer-
tainty [30]. Imputation is a prediction process; therefore,
incorporating quantified uncertainty can increase imput-
ation accuracy [31]. The IMPUTE2 imputation based on
corrected GBS (GcIM) was observed to perform the best
out of all the imputation methods based on the original
GBS at depth = 4, 5 and 10. Thus, the imputation of GcIM
had the correct genotype rate of 0.961, 0.978 and 0.997,
and the correlations (between imputed and true geno-
types) of 0.985, 0.989 and 0.998 in scenario at depth = 4, 5,
and 10, respectively, for the MAF ≥ 0.01 (Fig. 2). However,
GcIM also led to an unexpectedly worse imputation at
depth = 2, and thus, the correct genotype rate was 0.689
and the correlation was 0.784 in the MAF ≥ 0.01 scenario
at depth = 2 (Fig. 2). The most frequent haplotype will
usually be imputed when a haplotype cannot be

Fig. 3 Reliabilities (r2) of genomic predictions using original GBS (GBS), GBS with imputation of missing genotypes (Be, IM, FI), imputed corrected
genotype by IMPUTE2 (GcIM) and true genotypes of GBS markers (GBSr), at four depths, averaged over 10 replicates. Bars indicate SE. Note: MAF
criteria were used to delete markers with low MAF values before imputation
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determined clearly; therefore, it was suggested that closer
relatives shared incorrect longer haplotypes as frequent
haplotypes for GBS data of low depths, which caused un-
expected imputation results [32].

Impact of imputation on genomic predictions
Imputation could recover the loss of information in low-
coverage GBS data and increase the reliability of

genomic predictions [33, 34]. Previous studies showed
that prediction reliabilities using imputed genotypes
were slightly lower than those using true genotypes [35,
36], which is consistent with our genomic prediction re-
sults at depth = 4, 5 and 10. Based on the original GBS
in this study, Beagle and IMPUTE2 resulted in an in-
crease in the imputation correlation by 3 percentage
points, and FImpute gained 2 percentage points at

Fig. 4 Regression of true breeding value (TBV) on genomic estimated breeding values (GEBV). Note: b is the regression coefficient
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depth = 2 (Fig. 1). The consistent reliabilities of genomic
predictions increased 5 percentage points after Beagle
and IMPUTE2 imputation and 3 percentage points after
FImpute imputation (Fig. 3). The previous study showed
that the reliabilities of genomic prediction using cor-
rected GBS were 0.604, 0.672, 0.684 and 0.704, with the
improved values of 0.013, 0.009, 0.006 and 0.001 after
genomic correction at depth = 2, 4, 5 and 10, respectively
[10]. IMPUTE2 imputation based on corrected GBS
(GcIM) increased by 0.056, 0.034 and 0.002 for correct
genotype rates, and 0.042, 0.025 and 0.002 for correla-
tions at depth = 4, 5 and 10, respectively, in the MAF ≥
0.01 scenario (Fig. 2). The consistent reliabilities of gen-
omic predictions for GcIM at depth = 4, 5, and 10 also
increased by 0.03, 0.02 and 0.002, respectively. In total,
the level of improvement in the reliability of genomic
prediction was consistent with the level of improvement
in the accuracy of imputation. Compared to the original
GBS in this study, the accuracy of imputation based on
the corrected GBS decreased 0.024 for correct geno-
type rates and 0.084 for correlations at depth = 2 for
the MAF ≥ 0.01 scenario (Fig. 2). This could explain
the decline in the reliability of genomic prediction
from 0.591 to 0.446 (Fig. 3) and in the regression co-
efficient from 0.886 to 0.663 (Fig. 4). This result sug-
gests that IMPUTE2 imputation based on corrected
GBS performed best and increased the reliability of
genomic predictions most at higher depths but not at
lower depths. Except for GcIM, imputation resulted
in very tiny or no increase in quality of SNP data and
reliability of genomic prediction when average depth
was four or more. The possible reason could be that
the poor genotypes stayed in the dataset without be-
ing removed away, such as the genotypes with one or
two reads. In Table 3 of this study, the prediction re-
liabilities increased when setting the genotypes with
read = 1 & 2 as missing in scenario of depth = 4. The
results suggest that it is a good strategy to set geno-
types with low number of reads (e.g., ≤2) as missing
genotypes and then impute the missing genotypes be-
fore genomic prediction.

Our study investigated the imputation of missing ge-
notypes for the individuals with the same designed depth
of GBS data, which is important for both genome-wide
association study (GWAS) and genomic prediction, es-
pecially for using low depth of GBS data. In commercial
applications, combinations of high-density and low-
density SNP arrays have been used to reduce the geno-
typing costs. Similarly, GBS data may include individuals
genotyped with different depths. Therefore, it is also in-
teresting to investigate the impact of imputation when
subset of the individuals have low read depths and the
other subset of the individuals have high read depths. It
is expected that the joint imputation will increase the ac-
curacy of imputation and prediction for the individuals
with low read depths. However, the hypothesis needs
further studies.

Conclusions
The current study compared imputation methods for
GBS genotypes and improvements in genomic predic-
tions from the imputation of missing markers. The re-
sults showed that imputation accuracy was relatively low
for GBS at a low depth (approximately 0.90 for depth =
2) and high for GBS at a high depth (approximately 0.96
for depth = 5). In addition, imputation resulted in larger
gains in the reliability of genomic predictions for GBS at
a low depth, which had a larger number of missing ge-
notypes. These results suggest application of GcIM to
improve genomic predictions at higher or intermediate
depths. In addition, FImpute software could be a good
alternative for practical and routine imputation because
of low computational demands.
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Be: Beagle imputation based on original GBS; cM: Centimorgan;
Depth: Sequencing read depth; EBV: Estimated breeding value; EG: Expanded
generation; FI: FImpute imputation based on original GBS; GBS: Genotyping
by sequencing; GBSr: True genotype in the GBS loci; Gc: Correction of
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HMM: Hidden Markov model; IM: IMPUTE2 imputation based on original GBS;
LD: Linkage disequilibrium; MAF: Minor allele frequency; QTL: Quantitative
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Table 3 Imputation accuracies compared to true genotypes in the GBS loci (GBSr) and reliabilities of genomic prediction using GBS
data imputed by FImpute with or without pedigree information (GcFIped or GcFI) at depth = 4 and MAF≥ 0.01, averaged over 10
replicates. The imputation was performed after genotype correction (i.e., GcFIped and GcFI). Note: Depth = 4 (1) or Depth = 4 (1 & 2)
indicated the genotypes with read = 1 or 1 and 2 were set as missing genotypes. Standard errors were shown within bracket

Depth = 4 Depth = 4 Depth = 4 (1) Depth = 4 (1 & 2)

FI FIped GcFI GcFIped GcFI GcFIped GcFI GcFIped

Correct genotype
rate

0.905 (<
0.0005)

0.920 (<
0.0005)

0.915 (<
0.0005)

0.919 (<
0.0005)

0.927 (<
0.0005)

0.935 (<
0.0005)

0.942 (<
0.0005)

0.950 (<
0.0005)

Correlation 0.946 (<
0.0005)

0.955 (<
0.0005)

0.951 (<
0.0005)

0.954 (<
0.0005)

0.960 (<
0.0005)

0.965 (<
0.0005)

0.971 (<
0.0005)

0.976 (<
0.0005)

Prediction
reliability

0.666 (0.0253) 0.670 (0.0245) 0.666 (0.0248) 0.668 (0.0245) 0.674 (0.0246) 0.679 (0.0246) 0.683 (0.0242) 0.689 (0.0246)
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