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SUMMARY

A population at low census might go extinct, or instead transition into exponential growth to 

become firmly established. Whether this pivotal event occurs for a within-host pathogen can be the 

difference between health and illness. Here we define the principles governing whether HIV-1 

spread among cells fails or becomes established, by coupling stochastic modeling with laboratory 

experiments. Following ex vivo activation of latently-infected CD4 T cells without de novo 

infection, stochastic cell division and death contributes to high variability in the magnitude of 

initial virus release. Transition to exponential HIV-1 spread often fails due to release of an 

insufficient amount of replication-competent virus. Establishment of exponential growth occurs 

when virus produced from multiple infected cells exceeds a critical population size. We 

quantitatively define the crucial transition to exponential viral spread. Thwarting this process 

would prevent HIV transmission or rebound from the latent reservoir.

Graphical Abstract

eTOC

Transition to exponential growth is a canonical mode of population establishment. For HIV spread 

among cells following latency disruption, Hataye et al. discover that this crucial transition occurs 

if the initial virus release exceeds a critical growth threshold, which can trigger HIV rebound.

Keywords

HIV; latent reservoir; latency; population dynamics; Allee effect; mathematical modeling; 
rebound; critical threshold; viral dynamics; exponential growth

Hataye et al. Page 2

Cell Host Microbe. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

HIV persists in a latent state in long-lived CD4 T cells (Chun et al., 1997; Finzi et al., 1997; 

Wong et al., 1997). Despite in vivo suppression of de novo infection with combination 

antiretroviral therapy (ART) for many years, ongoing natural reactivation of latently-infected 

cells can still result in virus release in lymphoid tissue (Rothenberger et al., 2015), with a 

low viremia on the order of 2 HIV RNA copies per ml of plasma (Maldarelli et al., 2007; 

Palmer et al., 2008). When a treated HIV-infected individual stops ART, exponential HIV 

growth rebounds, usually within a few weeks (Davey et al., 1999).

During exponential growth, the rate of infection spread is directly proportional to the amount 

of virus present. Such kinetics have been modeled using ordinary differential equations 

(ODEs), leading to vital understanding of within-host HIV dynamics, including during the 

exponential phases of acute HIV infection (Ribeiro et al., 2010), viral decay following 

initiation of ART (Perelson et al., 1996, 1997; Wei et al., 1995), and rebound following ART 

interruption (Davey et al., 1999; Ruiz et al., 2000). In each study, the overall dynamic 

trajectory could be well defined using deterministic ODEs because the population of 

infected cells was large.

In contrast, starting from one infected cell, transition to exponential viral growth is not 

deterministic (Pearson et al., 2011). If a single infected cell produces virus, this virus might 

infect a nearby cell, which might eventually result in a sustained chain reaction of infection 

spread. Alternatively, viral extinction may occur at any early step. The process is highly 

stochastic, posing challenges for experimental capture and analysis.

To detect one latently-infected cell, resting CD4 T cells from HIV-infected donors on ART 

are activated and serially diluted into replicate cultures such that exponential viral growth 

occurs in just a small fraction of replicates. A stochastic model of the cell dilution series (Hu 

and Smyth, 2009; Rosenbloom et al., 2015) can be used to estimate the frequency of 

latently-infected cells that were originally placed in the replicate cultures and from which 

viral outgrowth ensued. Based on this, the latent reservoir has been estimated at ~ 0.1 to 10 

cells per one million CD4 T cells in treated HIV-infected individuals with many years of 

viral suppression (Crooks et al., 2015; Siliciano et al., 2003). However, these rare cells from 

which outgrowth ensues are just a small fraction (~2%) of the total cells housing an intact 

HIV proviral genome (Ho et al., 2013). In fact, many such cells that initially do not result in 

viral outgrowth will do so if given more chances (Hosmane et al., 2017). The ex vivo latency 

reversal assay can also be executed as viral inhibition cultures by including ART, to quantify 

just the initial HIV release (Bui et al., 2016; Cillo et al., 2014). The events relating an 

infected cell, the virus arising from it, and transition to exponential viral growth are 

fundamental to latent reservoir quantification and the in vivo dynamics by which both acute 

HIV infection and rebound ensue.

The crucial process by which exponential HIV growth initially forms can be explicitly 

defined from ex vivo experiments coupled with stochastic computation. For stochastic 

sampling of probability distributions, Markov chain Monte Carlo algorithms (MCMC) were 

developed (Metropolis and Ulam, 1949) (Metropolis et al., 1953). An efficient MCMC 
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featuring machine-automated tuning (Hoffman and Gelman, 2014) has been implemented in 

the statistical programming language Stan for Bayesian inference (Carpenter et al., 2017), 

and applied to HIV reservoir quantitation (Lorenzi et al., 2016). MCMC was applied in the 

1970s to simulate chemical reactions (Gillespie, 1977). More recently Gillespie simulation 

has been applied to initial HIV replication (Pearson et al., 2011) and transmission (Rouzine 

et al., 2015), the persistence of the latent reservoir on ART (Conway and Coombs, 2011), 

and viral rebound following ART interruption (Hill et al., 2014). These theoretical studies 

have shaped our understanding of how a medical intervention might prevent HIV rebound or 

initial transmission, however they have mostly been based on extrapolation from the 

deterministic regime, sharply limiting their applicability to highly stochastic processes. The 

problem is not specific to understanding viral pathogenesis and remains a basic challenge for 

population biology across scale and context (Levin et al., 1997). Detailed data sets that 

feature variability among individuals are essential to discover the underlying processes that 

lead to successful population establishment from a single or just a few individuals.

Here we acquire time-series data of HIV release from infected cells to quantitatively define 

the transition to exponential viral growth. We document and model high variability in the 

timing and magnitude of the initial HIV release following disruption of HIV latency in viral 

inhibition cultures. Next, given an initial infecting population in the absence of ART, we 

document the probability of establishing exponential viral growth. We discover, by applying 

Bayesian inference to condition models on these experimental results, a synergistic de novo 

infection process that can be interpreted as a critical viral growth threshold.

RESULTS

Detection of Released HIV Following Latency Reactivation

We sought to quantify HIV release arising from one infected cell (Figure 1A). Peripheral 

blood mononuclear cells (PBMC) from 7 HIV-infected volunteers on suppressive ART 

(Table S1) were sorted to obtain resting memory (RM) CD4 T cells (Figures 1A and S1). We 

compared stimulation methods for optimal HIV latency reversal. Consistent with prior 

studies (Beliakova-Bethell et al., 2017), we found stimulation through CD3 and CD28 was 

superior to PHA with regard to surface expression of the activation markers HLA-DR 

(Figure 1B) and CD69 (Figure 1C), and resulted in 97% cell proliferation after 8 days of 

culture (Figure 1D).

To detect the initial HIV release without de novo infection, replicate cultures included 

efavirenz to inhibit reverse transcriptase. To instead allow for exponential viral outgrowth, 

cultures without efavirenz included MOLT-4/CCR5 cells (Baba et al., 2000) that are fully 

susceptible to HIV infection and rapidly proliferate. This provided an excess of standard 

target cells across replicate cultures with latent reservoir quantitation equivalent to that using 

ex vivo CD4 T cells as targets (Laird et al., 2013). We collected the culture supernatants for 

RNA isolation, and detected genomic HIV RNA by RT-PCR using primers specific for gag 
(Douek et al., 2002). Accounting for dilution factors during processing and retroviral RNA 

recovery experimentally determined for each replicate (mean 77%, standard deviation 22%) 

(Palmer et al., 2003), we estimated the total HIV RNA copies in the entire culture 

supernatant (Figure 1A). The assay limit of detection was empirically determined such that 
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70 HIV RNA copies in the entire culture supernatant could be detected 50% of the time 

(Figure 1E).

From released HIV, we performed single genome amplification of full-length env (Figure 

S2). The number of unique env clones sequenced from a replicate was consistent with input 

latently-infected CD4 T cell (LIC) number expectations given the frequency of HIV RNA 

positive replicates (Figure S2), as determined below. As expected, the env sequences 

segregated into distinct donor-specific phylogenetic families with considerable within-donor 

diversity.

The Timing and Magnitude of Initial HIV Releases, Each Arising from Reactivation of ~1 
Latently-Infected CD4 T Cell, Are Highly Variable

We documented the timing and magnitude of the initial HIV release arising from 1 or more 

LICs in viral inhibition culture wells following reactivation. Daily supernatant sampling was 

followed immediately by a cell wash step, facilitating detection of subsequent releases of 

low magnitude. Consider a low frequency of reactivating cells that release detectable HIV 

RNA, 1/π, among C CD4 T cells placed into the culture on day 0. Then Λ = C/π is the 

expected number of LICs per replicate culture that give rise to detectable HIV RNA. We 

assumed that the exact number of LICs releasing HIV in a replicate, x, is Poisson distributed 

around Λ, and that the per infected cell probability of detecting released HIV RNA is 

independent of x. The probability Pdet of detecting released HIV RNA in a replicate well is 

given by

Pdet Λ = 1 − e−Λ
[1]

Given Pdet as the frequency of HIV RNA positive wells, Λ with 95% confidence intervals 

(CI) was estimated using Extreme Limiting Dilution Analysis (ELDA) (Hu and Smyth, 

2009), an implementation of Equation [1].

We estimated Λ for each separate CD4 T cell dilution set across 5 human donors (Table S2). 

Ten of these sets consisted of a total of 225 viral inhibition culture replicates deemed at 

limiting dilution, with 42 replicates positive for HIV RNA (Figure 2A). Each of the 42 

positive wells had a probability ranging between 77% and 96% (mean 87%) of having been 

seeded with exactly one LIC that gave rise to virus. This was calculated using the derived Λ 
given that each well was positive as (Poisson probability of exactly 1) / Pdet. We estimated 

an expected total of 48 original LICs that gave rise to detectable virus by summing the 

product of Λ and the number of replicates for each of the 10 dilution sets. We observed an 

average detection of 2570 total HIV RNA copies per positive limiting dilution well. The 

total HIV RNA detected, time to first detection, and detection duration each varied 

considerably, with up to 7 days of sustained detection.

Detection of released HIV RNA (Figure 2A) reflects the balance of its production and decay. 

We quantified the HIV RNA signal decay in culture by transferring a primary ex vivo culture 

supernatant containing released HIV into new viral inhibition cultures with stimulated CD4 

T cells from an HIV-uninfected donor. The HIV RNA signal decayed exponentially with a 
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half-life (t1/2) of 3 days (Figure 2B). With such a persistent HIV RNA signal, less than 20% 

of HIV RNA released during the 24-hour interval between samplings would have decayed 

by the time of the next daily sampling. Hence, the HIV RNA detected daily for a limiting 

dilution well only slightly underestimates the total virus production eventually arising from 

one LIC placed there on day 0. We conclude the timing and magnitude of the initial HIV 

production following reactivation of a LIC was highly variable.

Highly Variable Initial HIV Release Rendered by Stochastic Population Dynamics

We hypothesized that the high variability in initial HIV release (Figure 2A) arises from 

stochastic population dynamics. Consider a set of infected cells I, continuously producing 

HIV RNA V at rate p per cell before death at rate δ per cell. The average total release per 

cell is p/δ, and with a series of outcomes of one release event or cell death, the total release 

is geometrically distributed. The dispersion metric variance/mean (Fano factor, FF), for total 

HIV RNA detected (Figure 2A), was twice as high (5200, 95%CI [3200, 6700]) as that 

expected (2600) from a geometric distribution generated from the same mean. To build in 

dispersion consistent with the data, we considered additional model complexity (Figure 3).

Model 1: Single-Compartment Latently-Infected Eclipse Phase—We introduced a 

compartment of stimulated LICs in a so-called “eclipse phase” E. These cells undergo cell 

division (Bruner et al., 2019; Hosmane et al., 2017) with rate constant ρ, die with rate 

constant μ, or activate with rate constant a to the productive virus releasing state I. The HIV 

RNA signal from released virus V decays with rate constant c = ln 2/t1/2 (Figure 2B). These 

processes together comprise Model 1 (Conway and Coombs, 2011) (Figure 3A).

We derived estimates for ρ and μ from 2 experiments, under the assumption that the 

homeostatic characteristics of LICs are the same as their non-infected counterparts. We 

stimulated RM CD4 T cells isolated from 2 HIV-infected donors in viral inhibition cultures, 

and observed 12 days of overall population stability (Figure 2C). Hence, to a first 

approximation, on average ρ = μ. Next, we labeled RM CD4 T cells with CFSE. These cells 

were placed in viral inhibition culture for 5 days with stimulation, and then CFSE 

fluorescence intensity was assayed for the frequency of the population at each cell division 

generation (Figure 2D). To these data, we fit a birth-death ODE model (De Boer et al., 

2006), and derived average rates for cell division and death, ρ = μ = 0.5 /day (Figure 2E).

We implemented our models (Figure 3) deterministically with ODEs and stochastically by 

direct simulation (Gillespie, 1977). Modeling accounted for daily virus dilution from 

sampling and washing (Figure 2A), the assay limit of detection (Figure 1E), lineage 

extinction without virus release, and a Poisson distributed initial number of LICs. Regardless 

of the initial number of LICs in Model 1, least-squares fitting of the ODE system with 

unknowns a, p and δ, did not recapitulate the experimental average HIV detection that 

included a sudden release of most virus around days 3–5 (Figures 4A and 4B).

Model 2: Multi-Compartment Latently-Infected Cell Eclipse Phase—The 

experimental time delay to first HIV RNA detection, most frequently 3 days (Figure 4A), 

was not concordant with Model 1 in which the delay time 1/a is exponentially distributed 

with a maximum frequency at day 1 (Figure 4B). To reconcile this discrepancy, we extended 
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the number of eclipse phase compartments from n = 1 for Model 1, to up to n = 10, with 

transition to the next compartment in series at rate a, to generate Model 2 (Kakizoe et al., 

2015). We performed iterations of replicate stochastic simulations and ODE fitting of Model 
2 (Figures 3B, 4C, and S3, Table S3). While n = 5 provided an excellent ODE fit to the 

average daily HIV RNA detection, the simulated distributions for total HIV RNA detected, 

delay to first HIV detection, and detection duration (Figures 4C and S3) were still not 

similarly dispersed as in the experiment (Figure 4A).

Models 1 & 2: Dispersion in Total HIV Released Modulated by Toggling—
Consider the simplified case in which ρ = μ = δ = 0 with n = 1 eclipse compartment (Model 
1). This is directly analogous to a model of constitutive transcription of RNA V from a 

promotor in which I designates the ON state, and E the OFF state. With δ = 0, the total V 
produced is Poisson distributed with FF = 1. A reverse transition at rate ar from I to E allows 

toggling between the ON and OFF states (Raj and van Oudenaarden, 2008). Such E ↔ I 
toggling models “bursty” transcription from the HIV LTR promotor, and leads to a super-

Poisson dispersion for total V released with FF ≫1 (Dar et al., 2012; Hansen et al., 2018).

For a productively infected cell I, we do not assume an infinite virus release lifetime with δ 
= 0. Rather, δ has been estimated on the order of 1 /day (Markowitz et al., 2003), and 

without toggling the total V distribution is geometric with super-Poisson dispersion. 

Introduction of toggling to this model led in Gillespie simulation to a decrease in the FF 

with sub-geometric dispersion. A likewise decrease in dispersion occurred when introducing 

toggling at E0 ↔ E1 or E4 ↔ I in Model 2 with n = 5 eclipse compartments. Introduction of 

LIC division and death, ρ = μ = 0.5 /day, to such toggling models led to a small increase in 

the FF that was insufficient to explain the high dispersion in total HIV detected. To generate 

high dispersion in a toggle model while fitting the ODE implementation, we had to assume 

unrealistic rates with ρ4 > μ4, such as ρ4 = 3 /day and μ4 = 0.5 /day, or ρ4 = 2.6 /day and μ4 = 

0.1 /day. These parameter sets represent extreme contrasts to that derived from experiment 

(i.e. ρ4 ≫ 0.5/day, Figures 2C–2E). Adhering to realistic rates for CD4 T cell division and 

death, we conclude that toggling cannot fully account for the high variability in total HIV 

detected.

Model 3: Distinct Dual Latently-Infected Cell Eclipse Phases—With or without 

toggling, Model 2 yielded a unimodal distribution for total HIV RNA detection (Figure 4C) 

whereas the experimental distribution was bimodal (Figure 4A). Detailed comparison 

indicated that Model 2 simulations lacked detections that were simultaneously less than 250 

HIV RNA copies, of duration less than 1 day, and with a greater than 4-day delay to first 

detection; i.e. replicates 210.11, 210.12, 210.13, 211.23, 224.06, 236.48, 236.75 (Figure 

2A). To account for the missing population, we introduced an eclipse phase B (Figure 3C), 

with parameters fixed to yield delayed releases of low magnitude and short duration. We 

obtained a parameter set that resulted in accurate simultaneous recapitulation of the data 

from the deterministic ODE system and the stochastic simulation (Figures 4D and 4F, and 

Table S4). With this parameter set and starting from exactly one LIC (L = 1), fHIV, the 

fraction of simulations with a detectable HIV release, was 0.41, with a fraction 0.59 going 

extinct during the latent eclipse phase, or with virus release below the detection limit. Based 
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on this, we inferred that the initial number of LICs in the 225 limiting dilution wells (Figure 

2A) was ~ the 48 that gave rise to detectable virus divided by 0.41 = 117. The simulated 

distributions for total HIV RNA detected (mean = 2560, and FF = 5380), delay to first HIV 

detection, and detection duration (Figures 4D and 4F) were consistent with experiment 

(Figures 4A and 2A). Simulated distributions predicted trends for the non-limiting dilution 

cultures not used for fitting, providing robust model validation (Figure S4). Given that the 

releases modeled by eclipse phase B accounted for just 1% of total HIV detection and that 

the Model 3 parameters are not fully identifiable given the data, we assumed for simplicity n 
= 5 compartments and ρ = μ = 0 for these cells. However, if we assumed ρ = μ = 0 for 

eclipse phase A, then we could not recapitulate lengthy sustained detections (Figure 4E).

Consider the sequence of HIV detection, no detection, and a new HIV detection (Figure 2A). 

This may occur in Model 3 by transition to the productive I state by two or more E cells at 

different times, either due to initial Poisson distributed seeding of more than 1 LIC in a 

replicate, and/or from initial seeding of one LIC that underwent proliferation. This pattern 

may also be explained by the presence of HIV RNA on 3 or more consecutive days, but at 

the assay detection limit. In Model 3 we have not incorporated transcriptional toggling, but 

this could be a fourth potential source of the ON-off-ON detection pattern.

The high variability in initial HIV release can be predicted by applying population dynamic 

principles while assuming 2 LIC populations with distinct virus release potentials. We 

conclude that the initial HIV release kinetics are consistent with a model in which: 1) many 

fully stimulated LIC lineages result in no virus release due to cell death, 2) most productive 

single cell virus releases end within a day of initiation, 3) the total initial HIV release can be 

sustained for several consecutive days from sequential transitions to the short-lived 

productive state (E4 → I) by multiple descendants of a single LIC.

Release of Replication-Competent HIV Does Not Guarantee Viral Establishment

A high initial HIV release should be much more likely to establish exponential viral growth 

than a low release. To gain quantitative definition of this process, resting CD4 T cells from 7 

donors on ART were stimulated and cultured in a series of 4 four-fold cell dilutions, each 

with 10 replicates, under viral inhibition or outgrowth conditions (Figures 5A, 5B, 5C, and 

S5). Under outgrowth conditions, a viral establishment definition below 1 × 105 HIV RNA 

copies was not considered because de novo infection could not be distinguished from an 

initial HIV release, based on inference from the HIV RNA detection distribution in the 

corresponding viral inhibition replicates (Figure 5C and S5). Given the highest viral 

inhibition replicate produced 59,000 HIV RNA copies (Λ = 3.6), we defined viral 

establishment as attaining at least 2 × 105 HIV RNA copies (Figure 5C). This definition 

required outgrowth to at least 10-fold, relative to the mean initial releases in the 

corresponding viral inhibition replicates, with 87% below 20,000 HIV RNA copies (Figure 

S5).

Many but not all outgrowth condition wells with detectable HIV RNA established to at least 

2 × 105 HIV RNA copies (Figure 5C). Outgrowth to more than 107 HIV RNA copies was 

probably or certainly due to seeding multiple LICs, with Λ > 2, or detection of more than 

one unique HIV env clone in a specific replicate (Figure S2). At the highest CD4 T cell 
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number for donor 19, 9 (of 10) outgrowth condition cultures established (Figure 5B) with 8 

viral inhibition replicates producing an initial release above 5100 HIV RNA copies. 

However, at just a 4-fold cell dilution lower, 0 outgrowth cultures established with just 1 

viral inhibition replicate slightly above 5100 HIV RNA copies. This sharp difference from a 

mere 4-fold cell dilution suggested viral establishment required the initial release to exceed a 

critical threshold (Figures 5A–C). It was also likely that much of the HIV RNA detected 

from culture represented replication-defective virus.

However, lack of replication-competent (rc) virus was not the sole reason for non-

establishment. We directly tested the replication-competency of supernatants containing HIV 

RNA by transferring them to new secondary cultures with stimulated CD4 cells isolated 

from an HIV-uninfected donor. Following a 24-hour infection period starting on day 0, a 

quadruple cell wash was performed with media replacement, followed by immediate day 1 

collection to quantify residual HIV RNA. This procedure allowed distinction of the residual 

infecting virus signal from new virus production on day 2 or later due to de novo infection. 

Remarkably, of the 49 primary outgrowth condition wells that had detectable HIV RNA on 

day 8 below the establishment definition of 2 × 105 copies, 24 (49%) contained rcHIV that 

resulted in de novo virus production following viral transfer (Figures 5B, 5C, S5), with the 

expected initial number of LICs per well, Λ, ranging from 0.1 to 5.8 with a median of 0.8. 

There were 19 primary outgrowth condition wells, inclusive of all 7 HIV-infected donors, 

that had declining HIV RNA, sometimes to extinction, that nevertheless contained rc virus, 

proven by de novo virus production after transfer (Figures 5B, 5C, and S5).

Following serial dilution of virus from a single established culture into new replicate 

cultures, de novo virus production with or without establishment occurred, again 

distinguishing replication-competency from establishment (Figures 5D and 5E). In this case 

single genome env sequencing indicated the infecting virus was monoclonal (Figure S2, 

Series 273), demonstrating that a rc clone released from an infected cell, although capable of 

establishing, more often does not. We conclude an initial release of rcHIV, even with some 

de novo infection, is often not sufficient to ensure viral establishment.

Viral Establishment Depends on an Initial HIV Release Amount Exceeding a Critical 
Threshold

We next considered how the magnitude of Λ, the expected number of LICs per well that 

each gave rise to detectable virus (derived from Equation [1] given Pdet), relates to viral 

establishment. As Λ increased, so did the probability of viral establishment to at least 2 × 

105 HIV RNA copies, Pest (Figure 6A). Consider a model in which each LIC shares an 

establishment probability θ less than one that is independent of the exact number of these 

cells initially present. Such independence has been a tacit but untested assumption in HIV 

reservoir quantitation for which exponential viral outgrowth is the outcome (Rosenbloom et 

al., 2015). With assay sensitivity sufficient to detect the initial release of rcHIV without 

outgrowth, we were able to test the independence assumption. In contrast to the cultures in 

which de novo infection was inhibited (Figure 6B), for the corresponding outgrowth 

condition replicates the average log10 HIV RNA copies per LIC increased for Λ > 1 (Figure 
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6C). This indicated the presence of synergy for viral establishment following the initial HIV 

release.

Synergy among individuals leading to population establishment is called an Allee effect in 

ecology, and this dynamic has been studied across the biologic taxa (Kramer et al., 2009). 

Detection of an Allee effect signal at low population size can be challenging due to noise 

from concurrent independent processes that result in stochastic extinction. For a system with 

only independent processes, as the initial population size (Λ) increases, the establishment 

probability (Pest) increases in a specific monotonic concave shape (Leung et al., 2004). If a 

strong synergistic process is concurrent, the Λ versus Pest relationship is expected to be 

sigmoid shaped, with the inflection point representing a critical population size (Dennis, 

2002). Above this threshold, on average, there are a sufficient number of individuals for 

synergistic growth to establishment, whereas below this threshold the low census population 

goes extinct. An Allee effect has been previously detected in establishment data by fitting to 

a Weibull cumulative distribution function (CDF) which can assume either a monotonic 

concave or sigmoid shape (Kaul et al., 2016).

To test for an Allee effect, we extended such a WeibullCDF-based model to our viral 

establishment data, using Bayesian inference in Stan (See STAR Methods for details). This 

approach is practical to apply here because it begins with a prior probability belief about the 

system, which is then updated using Bayes’ theorem to a posterior probability upon model 

conditioning on the data. Through a prior parameter distribution with a maximum within the 

monotonic concave regime (k parameter, Figures 6D–E), we incorporated a substantial 

belief that the independence assumption held. Despite use of such a prior, Bayesian analysis 

indicated a greater than 97% posterior probability of the sigmoid form, supporting a 

synergistic Allee effect (Figures 6A, 6D–E, S6, and Tables S6). The inflection point, 

designating the critical population size, occurred at Λ = 2.3 which on average (applying fit 

Model 3, Table S4) results in an initial release detection of 5100 HIV RNA copies (Figures 

5A–B) with 95% probability interval (PI) from 2700 to 6500.

We performed extensive sensitivity analysis. The sigmoid shape was favored over the 

monotonic concave with greater than 97% posterior probability regardless of whether 

establishment was defined at 1 × 105, 2 × 105, or 1 × 106 HIV RNA copies, or if a 

GammaCDF (Dennis, 2002) or Hill function (Stefan and Le Novère, 2013) rather than 

WeibullCDF was applied to determine the Pest versus Λ curve shape. (Figures 6E and S6). 

Each Bayesian analysis explicitly incorporated the independence assumption as a prior 

belief, but the data pulled the model away from this into the synergistic regime.

Furthermore, the critical threshold prediction at 5100 HIV RNA copies is borne out in data 

not used for model conditioning (Figure 5D). Following low copy HIV infections with a 

single rc env clone, de novo produced HIV frequently smoldered around the predicted 

critical value rather than immediately declining to extinction or undergoing rapid 

exponential growth (Figure 5D), as theoretically expected (Scheffer et al., 2009) and 

previously observed in the vicinity of an Allee threshold (Dai et al., 2012). The large gap 

between 104 and 108 copies in the distribution for maximum HIV RNA detected (Figure 5E) 

provides further support for an Allee effect (Drake and Lodge, 2006).
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In summary, the evidence for synergistic establishment was supported by multiple Bayesian 

analyses (Figure 6E) that each predicted a critical threshold observed in data not used for 

fitting (Figure 5D). We conclude that HIV was subject to an Allee effect such that viral 

collapse typically occurred for initial releases below a critical population size of 5100 

detected HIV RNA copies.

Stochastic Population Dynamics and an Allee Effect Favor Viral Collapse

Model 3 does not account for cells with a proviral integration site that is transcriptionally 

silent, or LICs that cannot be stimulated. By this model, just 41% of stimulated single LICs 

give rise to detectable virus (Figures 4D and 4F, Table S4). Hence to achieve parity with the 

limiting dilution frequency of HIV RNA detection (Figure 2A), many of the individual 

stochastic simulations were initiated with more than 1 LIC (Figure 4F). Of the single 

simulated LICs that gave rise to detectable virus, the total detected initial release was 

predicted to vary bimodally across 4 orders of magnitude (Figure 7A) with an average 2230 

HIV RNA copies. As the exact initial number of LICs in simulation increases from 1, the 

distribution of initial HIV release shifts toward increasing magnitude (Figure 7A–E).

Using Model 3 (Figures 4D and 4F) with the synergistic establishment model, (Figure 6A 

and 6D, Table S6), we mapped the relationship between initial virus release and Pest (Figure 

7A–E). For exactly one stimulated LIC, stochastic proliferation in the latent eclipse phase 

results in an initial release sufficiently high to establish just 2% of the time (Figures 7A, 7F, 

and 7G). For the other 98%: HIV smolders with de novo infection but not exponential 

growth, HIV is released but results in no de novo infection, or lineage extinction occurs in 

the latent state without HIV release (Figures 7F and 7G). As the exact number of initial LICs 

increases from 1, it becomes increasingly probable in a non-independent fashion, that the 

initial HIV release will exceed the critical growth threshold, and establish a sustained chain 

reaction of infection spread (Figure 7H).

DISCUSSION

The stochastic transition to exponential growth is the crucial but covert process underlying 

succession to the readily observable deterministic trajectory. At the scale of cells, this 

transition can be the pivotal event upon which either health or illness hinges when an 

individual human faces threat from a pathogen at low abundance. This includes infection 

from viruses and other microbes, but also other classes of invasive agents such as cancer 

cells. Across context and scale, consistent challenges include accounting for variability at 

low population size, and understanding how this impacts population viability. Here we 

addressed these challenges by integrating experimental and computational approaches to 

define the origin of exponential HIV spread. This is the keystone event an effective vaccine 

would prevent.

The previous finding that ex vivo HIV outgrowth occurs for ~2% of stimulated CD4 T cells 

with intact provirus (Ho et al., 2013) is understood here by stochastic transition out of 

latency involving cell division and cell death, resulting in a highly variable initial HIV 

release that is then subjected to an Allee effect. These principles are consistent with many 

other previous observations including: proliferation of cells with intact provirus following 
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activation (Bruner et al., 2019), that more than one round of culture is often required to 

result in outgrowth (Hosmane et al., 2017), and highly variable HIV transcription arising 

from a monoclonal proviral integration (Weinberger et al., 2005).

Cells from donor 5 released one HIV env clone in multiple culture wells, suggesting a 

population derived from an original cell precursor that underwent in vivo clonal expansion 

(Cohn et al., 2018; Maldarelli et al., 2014; Wagner et al., 2014). For this single env clone, we 

observed a highly variable daily virus release among 9 limiting dilution replicates (Figure 

2A and S2). If this virus arose from a single T cell clonal population, the high variability in 

initial virus release (Figure 2A) does not derive from an attribute specific to a particular T 

cell clone.

The proliferative capacity of a LIC has at least 3 implications for in vivo reservoir dynamics. 

First, following activation, cell proliferation in the latent state can amplify an initial HIV 

release while avoiding recognition from the immune system. Second, proliferation is a 

mechanism for proviral genome expansion and the long-term persistence of the latent 

reservoir (De Scheerder et al., 2019; Kim and Perelson, 2006; Lorenzi et al., 2016; Wang et 

al., 2018). And finally, simultaneous reactivation of many LICs that comprise a single 

clonally expanded population (Cohn et al., 2018; Hosmane et al., 2017; Maldarelli et al., 

2014; Wagner et al., 2014; Wang et al., 2018), may occur through the sudden appearance of 

a shared cognate antigen. This would greatly increase the establishment probability with a 

massive critical threshold breakthrough.

The anatomic distribution and differentiation state of CD4 T cells are relevant to initiation of 

a rebound event. Viral establishment may have the highest chance in lymphoid tissue where 

target cell density is high, and where central memory CD4 T cells (CM) that have high 

proliferative potential reside (Sallusto et al., 1999), a few of which will be latently-infected 

(Chomont et al., 2009). In particular, germinal centers have highly activated T follicular 

helper cells that may serve as susceptible lentiviral targets and sources for initial virus 

(Banga et al., 2016; Perreau et al., 2013; Petrovas et al., 2012). Compared to CM, effector 

memory cells (EM) have lower proliferative and survival potential (Wu et al., 2002) and 

transit to non-lymphoid tissues with fewer susceptible target cells. Thus, latently-infected 

EM may be less likely to lead to rebound. A testable hypothesis arising from our results is 

that the two distinct eclipse phases in Model 3 correspond to CM and EM populations.

Multiple mechanisms of viral spread by collective mode have been identified (Sanjuán, 

2018). If the basis of synergy for de novo HIV infection could be definitively defined, a 

medical intervention might be devised to greatly increase the critical growth threshold. A 

threshold amount of virus might be necessary to achieve biochemical cooperativity such as 

for cell entry or integration, to overcome the effects of a viral restriction factor, or for 

genetic recombination.

Our analyses have limitations. We assume some model parameters are shared among human 

donors or different HIV clonal populations from the same donor. Although additional data 

could increase the precision of the critical population size estimate, the accumulated 

evidence for a synergistic mode is considerable. Our conclusion of viral establishment by 
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synergistic mode depends on use of empiric statistical functions rather than a population 

dynamic model of de novo infection. Toward this challenge, Model 3 can be extended for 

enhanced definition of infection spread dynamics and prediction of in vivo HIV rebound. 

The high variability inherent in this complex system has vital implications for whether and 

when rebound occurs (Rouzine et al., 2014).

A realizable objective is to ensure the naturally rare transition to exponential viral spread 

does not occur at all. Looking forward, HIV pathogenesis discovery will depend on not only 

advancing the molecular and cell biology that yielded current ART, but also investigation 

beyond that paradigm. We anticipate further developments in defining how stochastic and 

nonlinear transitions occur. Ultimately such understanding could be leveraged toward the 

concept, development, and clinical testing of new interventions for prevention and treatment, 

devised to tip the dynamic system into a state of permanent pathogen collapse.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jason M. Hataye (jason.hataye@nih.gov). This study did not 

generate new unique reagents. The experimental data and computer code for this study can 

be accessed publicly as detailed in the Data and Code Availability section.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental Model Design—The experimental model design was to culture ex vivo 

activated CD4 T cells from human HIV-infected donors on ART, and detect HIV released 

into the culture supernatant. The initial HIV release arising from latency disruption without 

de novo infection was determined from viral inhibition cultures with the reverse-

transcriptase inhibitor efavirenz. In contrast, exponential viral growth was possible in 

outgrowth condition cultures with additional target cells susceptible to HIV infection. Please 

see below for further details.

Research Donor Characteristics—24 adult research donors infected with HIV-1 on 

ART were recruited between February 2008 and July 2008 from the Whitman Walker Clinic 

of Washington, District of Columbia, or through the Vaccine Research Center, National 

Institute of Allergy and Infectious Diseases (NIAID), in Bethesda, Maryland. Several 

additional adult HIV-negative donors were also recruited. Written informed consent was 

obtained in accordance with the Declaration of Helsinki and approved by the Institutional 

Review Board at NIAID. 23 of the 24 HIV-infected donors had clinical viral suppression to 

below 50 copies of HIV RNA/ml at the time of apheresis. For the 21 of 24 donors for whom 

the year starting therapy was documented, mean duration of therapy was 6 years (SD 4 

years). PBMC were obtained by apheresis. Of the 24 donor PBMC, we used for this study 7 

that each had a high frequency of HIV RNA releasing CD4 T cells (Table S1 and Table S5), 

as determined below.
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METHOD DETAILS

Isolation of resting memory CD4 T cells—We processed the apheresis product using 

Ficoll-Paque buffy coat preparation and stored the donated PBMC in liquid nitrogen 

freezers. PBMC were thawed, washed with RPMI 1640 supplemented with 100 U/ml 

penicillin G, 100 U/ml streptomycin, 1.7 mM sodium glutamine, and 10% heat-inactivated 

fetal calf serum (“R10” media), and stained with a panel of fluorescently labeled antibodies 

against surface antigens. Resting memory CD4 T cell isolation was performed on the basis 

of these markers using a custom FACS Aria III (BD Biosciences) capable of sorting on the 

basis of up to 20 parameters, using Biosafety Level 3 practices and procedures, including a 

specialized aerosol management and a respiratory system for operator safety (Perfetto et al., 

2004). The panel included titered amounts of antibodies for: CD56 Cy7-APC (HCD56, 

Biolegend 318332), CD4 Cy5.5-PE (S3.5, ThermoFisher Scientific MHCD0418), CD14 

Pacific Blue (TuK4, ThermoFisher Scientific MHCD1428), CD19 Pacific Blue (SJ25-C1, 

ThermoFisher Scientific MHCD1928), violet live/dead cell marker (“vivid” ThermoFisher 

Scientific L34964), CD69 PE (L78, Becton Dickinson 341652), CD8 Brilliant Violet 785 

(RPA-T8, Biolegend 301046), HLA-DR FITC (L243, Becton Dickinson 347363), CD27 

PC5 (1A4CD27, Beckman Coulter 6607107), CD45RO ECD (UCHL1, Beckman Coulter 

IM2712U), and CD25 APC (M-A251, Becton Dickinson 555434). Live lymphocytes not 

expressing CD14 or CD19 were separated into CD4+CD8- gates. The CD4+CD8- subset 

was further isolated by excluding cells positive for the activation markers CD25, HLA-DR, 

and CD69, as well as CD56, a marker for natural killer cells. The non-naive resting memory 

CD4 cells were gated on the basis of CD45RO and CD27 (Figure S1). Analytical FACS of 

the sorted resting memory CD4 cells confirmed that greater than 99% expressed CD3 (not 

included in sort panel) and greater than 97% did not express HLA-DR, CD25, and CD69. 

All FACS analysis was performed with FlowJo 9.

Viral Inhibition and Outgrowth Ex Vivo Cultures—Stimulation of CD4 T cells with 

anti-CD3 and anti-CD28 has been reported as superior to that provided by 

phytohemaglutinin for the purpose of inducing HIV latency disruption (Beliakova-Bethell et 

al., 2017). We used a T cell Activation Kit (Miltenyi Biotec T cell activation kit 

130-091-441) with biotinylated antibodies against CD2, CD3, and CD28 bound to anti-

biotin particles per manufacturer guidelines (“Stimulation Particles”). For testing purposes 

only, we used phytohemaglutinin-M (Sigma-Aldrich L2646) at 5 mg/ml for resting memory 

CD4+ T cell stimulation followed by flow cytometry assay at day 3 of culture. FACS 

purified resting memory CD4 T cells were placed in R10 media with stimulation particles 

containing anti-CD3, anti-CD28, and anti-CD2, and then placed in limiting dilution cultures 

in a 96-well plate. Typically, these cultures were 10 replicates from 10,000 to 200,000 cells 

per well at a single cell concentration, or four 4-fold dilutions of 10 replicates each for a 

total of 40 wells for direct comparison between outgrowth and inhibition. In viral inhibition 

cultures, 40 nM efavirenz (Sigma-Aldrich SML0536) was used (EC95% at 20 nM), whereas 

in viral outgrowth cultures, IL-2 was used at a final concentration of 50 units per ml 

(PeproTech 200–02). In viral outgrowth wells, 100,000 proliferating MOLT-4/CCR5 cells 

(kindly provided by Dr. Yasuko Tsunetsugu-Yokota National Institute of Infectious Diseases, 

Tokyo, Japan) were added on day 1 of culture. Expression of both CXCR4 and CCR5 on 

MOLT-4/CCR5 cells was confirmed by flow cytometry. This cell line originates from a 19 
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year old male with acute lymphoblastic leukemia (Minowada et al., 1972). The total culture 

volume was kept intentionally low at 200 μl and 100 μl, respectively, for viral outgrowth and 

inhibition cultures to maximize the chance of detecting low copy HIV RNA. We removed 

150 μl or 75 μl of culture supernatant from viral outgrowth and inhibition cultures, 

respectively, with replacement of media containing IL-2 or efavirenz, every 3–4 days. Prior 

to centrifugation for supernatant collection, the cells were thoroughly mixed by individual 

well pipetting. For 5 donors, daily supernatant collection in viral inhibition cultures as in 

Figure 2A was followed by a quantitative cell wash step equivalent to a 1:36 virus dilution.

Secondary Culture of Released HIV—CD4 cells were isolated by positive magnetic 

bead selection (Miltenyi Biotech CD4 MicroBeads 130-045-101 with LS columns 

130-042-401) from PBMC isolated from an HIV-uninfected donor and were placed into 

culture with stimulation particles and 50 U/ml IL-2 at 160,000 cells per well for 80 wells. 4 

days later, 78 of 80 wells were infected with HIV from a primary outgrowth culture well. If 

the total HIV RNA copies in the source well was greater than 50,000 copies, 1 μl of source 

well supernatant was used for infection on day 0, whereas if less than 50,000 copies were 

present, 10 μl was used for infection. Infection with HIV was allowed for 24 hours before a 

triple cell wash to remove residual virus. Culture supernatants were harvested for assay 

followed by media replacement on days 2, 6, 10, and 14. This experiment was repeated 

using CD4 cells isolated from a different HIV-uninfected donor. Virus was deemed 

replication-competent if de novo virus was produced as determined by an increase in HIV 

RNA detection on day 2 or later, compared to day 1.

A similar tertiary culture experiment was done on virus obtained from a single well of a 

secondary outgrowth culture, originally from ex vivo primary outgrowth well 132.01 (Figure 

5B at 71000 cells/well), to obtain a single dilution series for virus from one well. In this 

case, resting memory CD4 T cells were isolated from the PBMC of an HIV-uninfected donor 

by FACS using the same sorting panel and method as for HIV-infected donors above, and 

placed into 80 wells at 166,000 cells per well in the presence of stimulation beads and 

50U/ml IL-2. 5 days later, on day 0, each tertiary culture well was infected with virus. The 

top 10 wells were infected with approximately 108 HIV RNA copies, and then each row of 

10 wells beneath received a 10-fold dilution of HIV until the bottom row received ~ 10 HIV 

RNA copies. 24 hours after infection, supernatant was harvested, to be assayed later for the 

initial infecting quantity (Figure 5D, right column), followed by 4 cell washes to remove 

residual virus, and a final collection for a post wash assay on day 1. Culture supernatant was 

collected and replaced every 2–3 days thereafter.

Cell Division Analysis—The fluorescent cell dye CFSE (ThermoFisher Scientific 

C34544) was used to determine the frequency of cell division generations in a population 

(Figures 1D (8 days) and 2D (5 days) were from the same experiment). Sort isolated resting 

memory CD4 T cells from the PBMC of an HIV-uninfected donor were washed with 

phosphate-buffered saline (PBS) and placed at 1 million cells per ml in phosphate buffered 

saline at a final working concentration of 0.25 μM CFSE for 7 minutes at 37°C. (Note that 

this is much lower a CFSE concentration than the manufacturer protocol which is reported to 

be optimized on PBMC, not isolated CD4 T cells.) Immediately following this, the cells 
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were washed twice with cold filtered heat-inactivated fetal calf serum, followed by wash and 

re-suspension in R10 media. Following this, the CFSE labeled CD4 T cells were cultured as 

above using stimulation particles. 5 days after stimulation, the cells were stained with the 

live/dead marker vivid and analyzed by flow cytometry.

HIV RNA Isolation and Quantification—We isolated RNA from 50 μl of culture 

supernatant per well with the RNAdvance Tissue Kit (Beckman-Coulter A32646), which 

uses a solid phase paramagnetic nanoparticle based method (Hawkins et al., 1994). To 

determine retroviral RNA recovery for each individual isolation, we added an internal RNA 

standard to the culture supernatant lysis solution. The ideal internal RNA standard would 

follow HIV through the processing and yet be readily distinguished and quantified by RT-

PCR. Toward that ideal, we employed the Rous Sarcoma Virus derived RCAS BP(A) 

(RCAS) retroviral RNA system (Palmer et al., 2003). RCAS BP(A) virus was obtained from 

the laboratory of Stephen Hughes. Following elution of nucleic acids from the magnetic 

particles, DNAse (ThermoFisher Scientific AM2222) was added for a total volume of 50 μl 

of isolated RNA. The plates were incubated on a heat block at 37°C for 30 minut es for 

DNAse treatment, followed by 10 minutes at 70°C to heat-i nactivate the DNAse.

Quantitative real-time HIV gag RNA RT-PCR was performed using HIV gag RNA 

standards. 10 of the 50 μl of isolated RNA was used in an RT-PCR reaction totaling 25 μl 

volume with primers and probe at 0.625 μM and 0.2 μM final concentration, respectively, 

using the RNA Ultrasense one step RT-PCR kit (ThermoFisher Scientific Invitrogen 

11732927). Isolated RNA from each of the 80 wells from a single time point was used for 

real time quantitative RCAS RNA RT-PCR, HIV gag RNA RT-PCR, and HIV gag DNA 

PCR (non-RT control). For HIV gag and RCAS RT-PCR, Stage 1 included 45°C incubation 

for 30 minutes for cDNA sy nthesis, and then an increase to 95°C for 2 minutes. Stage 2 

included 45 cycles of 95°C for 15 seconds, followed by 60°C incubation for 1 minute. Using 

the fraction sampled at each processing step, the fraction of RNA recovered, and the number 

of copies of HIV gag RNA detected in each RT-PCR well, an estimate for the total HIV gag 

RNA copies in each original culture well supernatant was calculated. Each HIV RNA 

detection data time point is based on one gag RNA RT-PCR reaction. The detection limit of 

the HIV gag RNA RT-PCR reaction is such that 10 copies of HIV gag RNA standard can be 

detected 64% of the time. The limit of detection of the entire assay depends on the detection 

limit of the HIV gag RT-PCR reaction, RNA recovery, dilution factors accumulated during 

sequential processing steps. This limit of detection was empirically determined by serial 

dilution of virus, and is such that 70 copies of HIV RNA can be detected in all 100 μl of a 

viral inhibition culture supernatant 50% of the time (Figure 1E).

Quantitative real-time RCAS RNA RT-PCR was performed using primers and probes and 

RCAS RNA standards as previously described (Palmer et al., 2003) for each RNA isolation, 

and used to estimate RNA recovery following robot automated RNA isolation, DNAse 

treatment, and DNAse heat inactivation, and a single freeze/thaw cycle.

Every well that was positive by HIV gag RNA RT-PCR (and many more that were negative) 

was tested for HIV gag DNA by PCR (non-RT control) using the same primer and probe set. 

All DNA PCR reactions were performed with Platinum Taq Polymerase (ThermoFisher 
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Scientific Invitrogen 10966018). A single set of PCR reactions was run for each 

corresponding culture well. All RT-PCR and PCR runs were performed on Applied 

Biosystems 7900 HT real-time PCR machines using the AB software. Primers and Probes 

were synthesized by Biosearch Technologies and prepared for use in water. Primer and 

probe sequences HIV gag and RCAS RT-PCR were as previously published (Douek et al., 

2002; Palmer et al., 2003) (Table S8).

A positive HIV RNA data point was excluded from analysis if the HIV DNA quantified for 

the well exceeded 1% of the HIV RNA RT-PCR value for that well or in the rare case when 

the RCAS RNA recovery was less than 10%. Given that the RT-PCR and PCR reactions 

were different in many ways, including using different polymerase enzymes and primer 

concentrations, an experiment was performed to produce a comparative correction. The HIV 

DNA standards were placed into both the RT-PCR reaction and the PCR reaction where we 

found that the HIV DNA copies amplified in the RT-PCR reaction were equal to 0.22 times 

the value in the PCR reaction. This linear relationship was used to correct the DNA PCR 

values in terms of their equivalent in the RT-PCR reactions for direct comparison between 

the two types of reactions. Out of a total of 1487 HIV RNA positive wells, only 47 (3%) had 

detectable HIV DNA and 5 (0.4%) were excluded from consideration because HIV DNA 

exceeded 1% of the HIV RNA. Of 7080 total RNA isolations, 5 were excluded because 

RCAS RNA recovery was less than 10%, typically due to a pipetting failure on the robot 

during the RNA isolation procedure. Thus of 7080 total RNA isolations, 10 were excluded 

from consideration due to RNA recovery failure or HIV gag DNA breakthrough of DNAse 

treatment. There were a total of 7080 gag RT-PCR reactions, 7080 RCAS RT-PCR reactions, 

and 5256 gag DNA PCR reactions, for a total of 19416 individual PCR or RT-PCR reactions 

performed on samples.

For Illumina-based, 3’-half, and env single HIV genome sequencing, we extracted total RNA 

from viral culture supernatants using RNAzol RT (Molecular Research Center RN190), 

according to the manufacturer’s protocol.

Illumina-based HIV Sequencing—A small number of RNAzol RT extractions were 

further purified using Dynabeads Oligo(dT)25 magnetic beads (ThermoFisher Scientific 

61005) to obtain polyadenylated RNA. This product was then subsequently fragmented, 

reverse transcribed and Illumina-ready libraries were generated. The libraries were 

sequenced on the MiSeq platform from Illumina. Paired-end sequences were adaptor and 

quality trimmed with Trimmomatic (Bolger et al., 2014). Contigs were then assembled with 

Trinity 2.0.4 (Grabherr et al., 2011) and HIV transcripts were identified by aligning the 

contigs against HXB2 using standalone BLAST+ version 2.2.30 (Altschul et al., 1990).

3’-half and env single HIV genome sequencing—RNA extracted using RNAzol RT 

was subjected to cDNA synthesis using SuperScript III reverse transcriptase according to 

manufacturer’s recommendations (Invitrogen). In brief, a cDNA reaction of 1× RT buffer, 

0.5 mM of each deoxynucleoside triphosphate, 5 mM dithiothreitol, 2 U/ml RNaseOUT 

(RNase inhibitor), 10 U/ml of SuperScript III reverse transcriptase, and 0.25 mM antisense 

primer HIV.BK3.R1:5’-ACT ACT TGA AGC ACT CAA GGC AAG CTT TAT TG was 

incubated at 50°C for 60 min, 55°C for 60 min and then heat-inactivated at 7 0°C for 15 min 
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followed by treatment with 1 U of RNase H at 37°C for 20 min. Env gene or 3’-half 

genomes were then amplified via limiting dilution PCR where only one amplifiable 

molecule was present in each reaction. PCR amplification was performed with 1× PCR 

buffer, 2 mM MgCl2, 0.2 mM of each deoxynucleoside triphosphate, 0.2 μM of each primer, 

and 0.025 U/μl Platinum Taq polymerase (Invitrogen) in a 20-μl reaction. First round PCR 

was performed with sense primer HIV.BK3.F1: 5’– ACA GCA GTA CAA ATG GCA GTA 

TT and antisense primer HIV.BK3.R1 under the following conditions: 1 cycle of 94°C for 2 

min, 35 cycles at 94°C for 15 sec, 55°C for 30 sec, and 72°C for 4 min, followed by a final 

ext ension of 72°C for 10 min. Next, 1 μl from the first-round PCR product was added to a 

second-round PCR reaction that included the sense primer HIV.BK3.F2: 5’– TGG AAA 

GGT GAA GGG GCA GTA GTA ATA C and antisense primer HIV.BK3.R2: 5’– TGA AGC 

ACT CAA GGC AAG CTT TAT TGA GGC performed under the same conditions used for 

first-round PCR, but with a total of 45 cycles. In some low RNA samples, Env only PCR 

was performed identically as described but with unique primers: envB5out: 5’– TAG AGC 

CCT GGA AGC ATC CAG GAA G; envB3out: 5’– TTG CTA CTT GTG ATT GCT CCA 

TGT; envB5in: 5’– TTA GGC ATC TCC TAT GGC AGG AAG AAG; envB3in: 5’– GTC 

TCG AGA TAC TGC TCC CAC CC. Correct sized amplicons were identified by agarose 

gel electrophoresis and directly sequenced with second round PCR primers and HIV specific 

primers using BigDye Terminator technology. To confirm PCR amplification from a single 

template, chromatograms were manually examined for multiple peaks, indicative of the 

presence of amplicons resulting from PCR-generated recombination events, Taq polymerase 

errors or multiple variant templates. Sequences, including those obtained on the Illumina 

platform, were aligned using Geneious 9.1.7. All trees were constructed using the neighbor-

joining method.

A complete list of oligonucleotides with sequences can be found in Table S8.

QUANTIFICATION AND STATISTICAL ANALYSIS

R (R Core Team, 2014) was used as the platform for quantification and statistical analysis, 

as described below. Data graphics were generated with ggplot2 (Wickham, 2009).

Statistical Modeling of Viral Establishment

Introduction: Assumptions and Definitions: The expected number of latently-infected 

CD4 T cells giving rise to detectible HIV RNA per well, Λ, was estimated from the number 

of CD4 T cells placed per well C (from an HIV-infected donor on ART) and the frequency 

of gag RNA RT-PCR positive well supernatants Pdet, using Extreme Limiting Dilution 

Analysis (ELDA) (Hu and Smyth, 2009) from Yifang Hu and Gordon Smyth, implemented 

in the R statmod library or as a webtool. Another webtool, IUPMstats (Rosenbloom et al., 

2015) from Daniel Rosenbloom and the laboratory of Robert Siliciano provides similar 

analysis. When using such methods, an assumption is that detection of latently-infected cells 

in wells is Poisson distributed, as in Equation [1].

As such, we assumed that detection of any HIV release arising due to reactivation of a 

latently-infected cell occurred independently of the number of such cells present in the well. 

In support of this, we performed a preliminary likelihood ratio test of the independent 
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“single-hit” model in ELDA for each donor, in both the viral inhibition and outgrowth 

cultures and found that in each case the p-value exceeded 0.10, indicating little evidence for 

a “multi-hit” model (synergy) for any HIV release.

Consistent with an independence assumption, in the viral inhibition cultures, there was little 

evidence for a difference in the log10 maximum HIV RNA copies per latently-infected cell 

for wells with, on average, less than or equal to 1 expected seeded latently-infected cell 

compared to those with more than 1 (Figure 6B, p = 0.22, Welch t-test). In contrast, for viral 

outgrowth condition wells there was a profound increase in the log10 maximum HIV RNA 

copies per seeded latently-infected cell for wells with greater than expected 1 seeded latent 

cell compared to those with 1 or fewer (Figure 6C, p = 0.0003 Welch t-test). These results 

together indicate synergy for de novo infection, but not for the initial HIV release during 

latency disruption.

Consider a non-synergistic model in which each latently-infected cell shares an 

establishment probability θ less than 1 that is independent of the exact number x of these 

cells initially present. Such independence has been a tacit but untested assumption in HIV 

reservoir quantitation for which exponential viral outgrowth is the outcome (Rosenbloom et 

al., 2015). The probability of viral extinction following reactivation of a single latently-

infected cell is 1 − θ, and for exactly x such cells we have extinction probability g(x) = (1 − 

θ)x. Pest is then (Leung et al., 2004):

Pest x; θ = 1 − 1 − θ x
[2]

However, x is not experimentally known. Assuming x is Poisson distributed around Λ and 

the probability of extinction in a well with x reactivated latently-infected cells is g(x), then:

Pest Λ = 1 − ∑x = 0
∞ g x Λx

x! e−Λ [3]

with Λ = C/π. Using g(x) = (1 − θ)x, Equation [3] reduces to:

Pest Λ; θ = 1 − e−θΛ
[4]

Equations [3] and [4] are formally derived in the next section. For Equation [4], as Λ 
increases, Pest increases toward 1 in a monotonic concave fashion. Rearranging Equations 

[2] and [4] to yield 1 – Pest gives the probability of extinction. These then model stochastic 

extinction due to relevant mechanisms with an independent basis, including virus removal 

for sampling, and the case in which a fraction of the total released HIV is replication-

defective, an interpretation of outgrowth failure in early studies (Tsai et al., 1996).

In addition to extinction processes with an independent basis, a synergistic dynamic may be 

concurrent by which the per latently-infected cell probability of establishment increases in 

the presence of 2 or more such cells. In ecology, synergy among individuals leading to 
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population establishment is called an Allee effect (Kramer et al., 2009), named for the 

zoologist Warder Clyde Allee who studied it. The mechanism generating an Allee effect 

varies. Zoologic examples of the Allee effect include behaviors such as schooling in fish or 

cooperative feeding in a pack of wild dogs, but analogous synergistic population dynamics 

have recently been studied in microorganisms including the yeast Saccaromyces cerevisiae 
(Dai et al., 2012), bacteria of genera Vibrio (Kaul et al., 2016) and Streptococcus (Smith and 

Smith, 2016), and Vesicular stomatitis virus (Andreu-Moreno and Sanjuán, 2018).

For a synergistic Allee effect, the initial population size, x, versus Pest curve is expected to 

be sigmoid shaped rather than monotonic concave (Dennis, 2002), with the inflection point 

representing a critical population size below which, on average, growth collapses, and above 

which growth to establishment occurs. Due to stochasticity, extinction may occur above the 

critical threshold, and establishment from below.

To detect an Allee effect in the presence of stochastic extinction, a WeibullCDF has been 

previously applied for x exact individuals (Kaul et al., 2016):

Pest x; k; λ = 1 − e
− x

λ
k

[5]

The WeibullCDF [5] is sigmoid shaped for k > 1, indicating synergy, and monotonic concave 

for k ≤ 1. Incorporating g(x) = exp(− x/λ)k from Equation [5] into Equation [3] provides an 

expression for Pest that allows deviation from the pure independence mode given Λ expected 

latently-infected cells:

Pest Λ; k; λ = 1 − ∑x = 0
∞ e

− x
λ

k
Λx

x! e−Λ [6]

Like Equation [5] from which it was partly derived, Equation [6] can also assume a 

monotonic concave versus sigmoid shape, enabling empiric detection of an Allee effect. In 

this case, the monotonic concave mode is demarcated from the sigmoid as k and λ each 

approach 1 asymptotically (Figure 6D). We implemented our model incorporating Equations 

[1] and [6] in the statistical programming language Stan, given the outgrowth data: Pest, Pd, 

and C; the unknown parameter 1/πd was estimated for each of 7 donors, and k and λ were 

estimated assuming their values were the same for all donors.

Statistical Model Details—We define the random variables:

χ, number of resting memory CD4+ T cells placed into a culture well on day 0

X, number of latently infected CD4+ T cells placed into a culture well on day 0

D, indicator (0 or 1) that culture well supernatant has HIV gag RNA detectable by RT-PCR 

at any point during culture
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E, indicator (0 or 1) that a well established viral infection. This is defined as attaining HIV 

RNA copies greater than 200,000 on any day, as discussed in main text. Alternatively, in 

some special cases (noted in main text and here) we utilized establishment declaration at 

100,000 or 1,000,000.

We define the parameters:

1/π, frequency of latently infected CD4+ T cells among resting memory CD4+ T cells for 

volunteer donor d. (i.e. 1/10,000 = 1 in 10,000 = 0.0001),

C expected number of CD4 T cells placed in a well,

such that C/π = Λ gives the expected number of latently infected CD4+ T cells (that give 

rise to detectable virus) in a well.

We aim to describe the joint distributions of D and E. Denoting Pr[E=1] = Pest and Pr[D=1] 

= Pdet,

Pr[D=0, E=1] = 0

Pr[D=0, E=0] = 1 − Pdet

Pr[D=1, E=0] = Pdet − Pest

Pr[D=1, E=1] = Pest

We make the following distributional assumptions for a well:

χ ~ Poisson(C)

X | χ ~ Binomial(χ, 1/π)

D | X = I[X > 0]

where I is an Indicator function such that D = 0 when X = 0 and D = 1 when X > 0.

This definition of D means that we are defining X as the number of latently-infected cells 

seeded in a well that give rise to (either directly or through lineage transition or 

proliferation) detectible virus. This is different than the true number of initial latently-

infected cells, since some may die before producing any virus, may not be stimulated to 

produce virus, or may produce virus that is not detected. We describe the probability of 

failure to establish given x seeded latently infected cells with a function g(x) such that

Pr E X = 1 − g x

g(x) may be chosen to represent independence or synergy among cells.

Marginal distribution of X—The marginal distribution of X (number of initial latently 

infected cells) is Poisson with parameter Λ = C/π from the following:
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Pr X = k = ∑n = k
∞ Pr X = k χ = n Pr χ = n

= ∑n = k
∞ n

k
1
π

k
1 − 1

π
n − k Cn

n! e−C

= ∑n = k
∞ n!

k! n − k !
1
π

k
1 − 1

π
n − k Cn

n! e−C

=
1
π

k
e−CCk

k! ∑n = k
∞ 1 − 1

π
n − k

C n − k

n − k !

=
1
π

k
e−CCk

k! ∑n = k
∞ 1 − 1

π C
(n − k)

(n − k)!

=
1
π

k
e−CCk

k! e
1 − 1

π C

= e
1 − 1

π C − C
C
π

k

k!

= e
− C

π
C
π

k

k!

which gives X ~ Poisson(C/π).

Marginal Distribution of D—Assuming D = I[X > 0] (I is an Indicator function such that 

D = 0 when X = 0 and D = 1 when X > 0), the marginal distribution of D (indicator function 

of any HIV RNA detection) is given by:

Pr[D = 1] = ∑x = 0
∞ Pr[D = 1| X = x] Pr[X = x]

= 0 × Pr[X = 0] + ∑x = 1
∞ Pr[X = x]

= ∑x = 1
∞ e

− C
π

C
π

x

x!

= 1 − e
− C

π [1]

This is the PoissonCDF for seeding one or more latently-infected cells that give rise to 

detectable virus in a well, Equation [1].

Marginal Distribution of E—The marginal distribution of E (indicator function of 

establishment) is given by:
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Pr[E = 1] = 1 − Pr[E = 0]

= 1 − ∑x = 0
∞ Pr[E = 0| X = x] Pr[X = x]

= 1 − ∑x = 0
∞ g x

C
π

x

x! e
− C

π [3]

This is Equation [3] with generic extinction function g(x). Assuming independence, g(x) = 

(1 − θ)x. Alternatively, g(x) may be chosen to allow deviation from the independent mode, 

as described in more detail below.

Joint Distribution of D, E—As above the joint distribution of D, E is given by

Pr[D=0, E=1] = 0

Pr[D=0, E=0] = 1 − Pdet

Pr[D=1, E=0] = Pdet − Pest

Pr[D=1, E=1] = Pest

with:

Pdet = 1 − e
− C

π [1]

Pest = 1 − ∑x = 0
∞ g(x)

C
π

x

x! e
− C

π [3]

Independent Establishment—If we assume the probability of establishment from one 

latently infected cell is θ and that this establishment probability is independent of the exact 

number x of latently-infected cells in a well, we have

g x = 1 − θ X

Using g(x) = (1 − θ)x in the equation for the marginal distribution for E:

Pest = 1 − ∑x = 0
∞ g X

C
π

x

x! e
− C

π [3]
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Pest = 1 − ∑x = 0
∞ (1 − θ)x

C
π

x

x! e
− C

π

Pest = 1 − ∑x = 0
∞ (1 − θ)C

π
x

x! e
− C

π

Pest = 1 − e
− C

π ∑x = 0
∞ (1 − θ)C

π
x

x!

= 1 − e
− C

π e
(1 − θ)C

π

= 1 − e
− θC

π [4]

Equation [4] provides the probability of independent establishment, with random variable X 
Poisson distributed around Λ (= C/π), X ~ Poisson (Λ). Equation [4] can be used with 

Equation [1] to simultaneously estimate θ and 1/π, given Pdet, Pest, and C. For Equation [4] 

as Λ (= C/π) increases, Pest increases in a monotonic concave fashion.

Synergistic Establishment with X ~ Poisson(Λ)—There are a number of functions 

that could be used to describe synergistic establishment including but not limited to the 

WeibullCDF, GammaCDF, and Hill function. We use one of the following for g(x) in [6]:

g(x) = exp(− (x/λ)k) a, from WeibullCDF,

g(x) = 1 − GammaCDF(x,k,1/λ) b, from GammaCDF

g(x) = 1 − (xk /(xk + λk)) c, from Hill function

in:

Pest = 1 − ∑x = 0
∞ g x

C
π

x

x! e
− C

π [6a][6b][6c]

Equation [6a], [6b], or [6c] provides the probability of establishment, assuming X is Poisson 

distributed around Λ, using g(x) based on the WeibullCDF, GammaCDF, or Hill respectively. 

Equation [6a], [6b], or [6c] can be used with [1] to jointly estimate k, λ, and 1/π, given Pdet, 

Pest, and C to test for an independent versus synergistic mode of viral establishment. For [6a] 

and [6c] based on the WeibullCDF (Figure 6D and S6A–B) and Hill (Figure S6A and S6D) 

respectively, k and λ each approach 1 asymptotically in the monotonic concave mode, but 
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beyond this lies the sigmoid regime, with similar behavior for the GammaCDF (Figures S6A 

and S6C).

Model Fitting in Stan—We estimated the parameters of models from the observed HIV 

RNA detection and establishment data using the probabilistic programming language Stan 

(Carpenter et al., 2017) via the Rstan interface for Bayesian inference of the unknowns. All 

model fits were implemented using Stan Hamiltonian Markov chain Monte Carlo (MCMC) 

with no U-turn sampling, which provides machine-automated tuning (Hoffman and Gelman, 

2014). For each fit, we performed 16 Markov chains each with 8000 iterations, the first 4000 

of which were warm-up. Log likelihoods were determined through use of an explicit vector 

in the generated quantities block of the Stan code. In all analyses below fitting proceeded as 

expected: the split Rhat = 1.00 (< 1.1), the effective sample size was sufficiently high relative 

to the number of iterations for each parameter, treedepth remained well below the default 

maximum of 10, and there were no divergent transitions. Posterior distributions do not 

include warm-up. Leave-one-out cross validation (LOO) (Vehtari et al., 2017) was used to 

estimate model prediction accuracy with all Pareto k diagnostic parameter estimates less 

than 0.7.

We first compared ELDA and our implementation in Stan using Equation [1] for estimating 

the frequency of initial latently-infected CD4+ T cells for each of 7 donors (40 culture 

replicates per donor for a total of 280 culture replicates for viral inhibition, and a separate set 

of corresponding 280 culture replicates for viral outgrowth), with HIV RNA detection in the 

culture supernatant on any day interpreted as a binomial outcome (Figures 5A–C, S5). We 

performed separate analyses for viral outgrowth and viral inhibition conditions, and, for the 

Stan implementation, used uniform priors for each parameter 104/πd (subscript d denotes 

specific volunteer human donor) with wide bounds (0,100). For optimal scaling during 

fitting, we scaled the number of cells down by 104, searched for 104/πd such that the 

parameter was on the order of 1, and then converted the fit result back to 1/πd. As expected 

for wide flat priors, the Stan implementation produced results that were very similar to 

results obtained with ELDA (Table S5).

Prior and model assumptions and implications—In our analyses incorporating both 

HIV RNA detection and establishment, we assumed that the values of the parameters of the 

extinction function g(x) were shared across the volunteer donors. For the independence 

establishment model, we set the prior for θ as uniform bounded from 0 to 1, θ ~ Uniform 

(0,1).

Establishment models incorporating Equations [6] each have a synergistic mode versus 

monotonic concave mode indicated by the k and λ parameters. For Equations [6a] and [6c] 

derived from the Weibull and Hill respectively, sigmoid form is inside the curve bounding 

the limits of the monotonic concave form such that k and λ each approach 1 asymptotically 

(blue line in Figure 6D for Weibull, in Figure S6D for Hill). For Equation [6b] derived from 

the Gamma, k and λ each approach asymptotes as well (Figure S6C). A defining feature of 

Bayesian inference is formal incorporation of prior assumptions into the analysis. Because 

the standard assumption in the field for reservoir quantification based on viral outgrowth is 

independence (Rosenbloom et al., 2015), Bayesian inference with a prior within the 
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monotonic concave regime is particularly appropriate. We therefore set the prior for k with a 

maximum frequency at 1 and normally distributed with a standard deviation of 1, k ~ 

Normal (1,1), truncated at zero. By having a weakly informed prior around 1 we avoid 

unreasonably high values of k in the posterior distribution (more explanation below), 

focusing the analysis on the key question of curve shape--monotonic concave versus 

sigmoid--given the data. Compared to a wide-bounded uniform prior for k with bias toward 

high k, the k ~ Normal(1,1) prior provides a more stringent test for synergy by providing 

sufficient density in the non-synergistic, monotonic concave, regime. Using this prior for k, 

for each of the three models incorporating Equation [1] and [6a,b,or c], allowing for Poisson 

variability around Λ (X ~ Poisson(Λ)), given the data, we observed a greater than 97% 

posterior probability of the sigmoid shape (Figures 6D–E, S6, Table S6. The three choices 

for g(x) in Equation [6] (1-WeibullCDF, 1-GammaCDF, and 1-Hill function) each resulted in 

equivalent log likelihood and expected log pointwise predictive density (ELPD LOO), 

indicating that the sigmoid curve posterior is robust across these statistical models (Table 

S6).

For each Bayesian analysis, we truncated the prior for k at zero because negative k has Pest 

decreasing as Λ increases, which is blatantly contrary to our prior beliefs of the system. 

Despite this, to provide a k prior with a normal distribution truly centered at 1, we also 

performed an analysis using Equations [1] and [6a] in which we allowed for k ~ Normal(1,1) 

to have wide bounds from −9 to 11. As might be expected, this yielded results equivalent to 

that utilizing truncation bounds at zero and 10, as in Table S6.

Use of more diffuse normally distributed priors around 1, truncated at zero, such as k ~ 

Normal(1,4) or Normal(1,8) merely resulted in a k posterior further from 1 (Table S6). For 

an extreme case, we utilized a uniform prior with wide bounds, k ~ Uniform(0,100) but this 

resulted in k likelihoods becoming unidentifiable at high values. (Use of a uniform prior 

with wide bounds can bias toward extreme values, contrary to basic prior assumptions. See 

case study from Michael Betancourt at http://mcstan.org/users/documentation/case-studies/

weakly_informative_shapes.html). Use of a uniform prior with wide bounds for k resulted in 

extremely high and unreasonable posterior distributions, but also divergent transitions. 

Hence a weakly informative prior for k, such as k ~ Normal(1,1) was necessary to obtain a 

valid posterior distribution using Hamiltonian Monte Carlo sampling.

And finally, the synergistic model from [1] and [6a] was favored over the pure independence 

model from [1] and [4] in both leave-one-out and chi-square comparisons (p < 0.01) (Tables 

S6–S7).

Population Dynamics of Initial HIV Release—This section provides further rationale 

and method details for proposing and fitting Models 1–3 (Figures 3 and 4) for the initial HIV 

release following latency reactivation, in the absence of de novo infection. Here, we define 

the initial HIV release as the total HIV RNA produced from latency disruption, but in the 

absence of de novo infection resulting in successful new proviral integration events. As we 

are specifically interested in the total HIV release potential arising from one latently-infected 

cell following reactivation, we calculate statistics on the total HIV RNA summed from all 

days, rather than on a single day.
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The statistical properties of the basic model of latency reactivation (Figure 3A with ρ = μ = 

0) (Conway and Coombs, 2011; Rong and Perelson, 2009), in isolation, were insufficient to 

fully account for the observed HIV release kinetics (Figure 2A and 4A). First, productively 

infected cells were previously estimated to have an average lifetime of 1 day (Markowitz et 

al., 2003), which is not consistent with the many multi-day sustained detections, up to 7 

days, we observed (Figure 2A). Second, we also have to account for disparate delays before 

initial HIV detection that vary between one day and 9 days, as well as detections that start 

and stop as in the lower right panel of Figure 2A. And finally, the variability in the observed 

total HIV detected at limiting dilution was much too high for this model to account for.

To understand this last point in detail, consider just the productively infected cell I that 

releases virus V at a rate p per cell and dies at rate δ per cell. This 2-compartment model has 

binary outcomes for an I cell: either an HIV release event with probability p/(p + δ), or I cell 

death with probability δ/(p + δ). I cell outcomes can be modeled as a series of Bernoulli 

trials (a fair coin flip is a Bernoulli trial with a probability of success P = 0.5) in which the 

total HIV release is the number of single HIV RNA release events, or “failures,” before a 

single “success” of I cell death. The number of Bernoulli trial failures before the first 

success is by definition distributed geometrically. The probability mass function is (1-P)kP 

where k is the number of failures (1 HIV RNA release event is a failure; k is the total HIV 

release) before the first success (cell death) with probability P = δ/(p + δ). In this 

formulation of the geometric distribution, the expected value E (mean) = (1 − P)/P and 

variance = (1 − P)/P2, and variance/E = 1/P. This last statistic, variance/E is also known as 

the Fano factor (FF) (Rouzine et al., 2014) and is a measure of dispersion. Since P = 1/(E 

+ 1), FF = E + 1 for the geometric distribution. The mean from the distribution for total HIV 

detected from the 42 HIV RNA positive limiting dilution wells (Figure 2A) was E = 2600 

HIV RNA copies with an experimental FF of 5200, Bootstrap 95%CI 3200 to 6700. 

However, with a mean E = 2600, for a geometric distribution we expect FF = 2601 (the same 

as E considering experimental error and significant figures). Thus, the experimental FF was 

twice as high as that expected for a geometric distribution generated from the same mean. 

The observation of such a high experimental FF factor is not likely due to insufficient 

sampling, as indicated by the lower limit of 3200 for the bootstrapped 95% confidence 

interval. (Although this initial analysis does not account for the HIV RNA assay detection 

limit, we formally take this into account later.) We conclude that this basic geometric-based 

model provides insufficient dispersion relative to the observed high variability in total initial 

HIV detected.

We allowed for higher variability in the initial HIV release beyond this basic model by 

introducing additional complexity in three steps corresponding to Models 1–3 (Figure 3) : 1) 

eclipse phase cell division and death (Figures 3A and 4B), 2) multi-compartment single 

eclipse phase to better model detection delay (Figures 3B and 4C), and 3) two eclipse phases 

to model heterogeneity in latent cell potential for producing HIV (Figure 3C and 4D).

We introduced eclipse phase cell division and death during latency reactivation, before 

transition to the productive state. Not only is proliferation the observed outcome following 

stimulation of CD4 T cells (Figures 1D and 2D), but incorporation of cell division and death 

in the model increases the variability in total initial HIV release. As indicated in the main 
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text, we derived estimates for ρ and μ used in Models 1 to 3 from 2 experiments (Figures 2C 

and 2D). Given the frequency of the population at each cell division generation G (Figure 

2D) on day 5, we then used a model with Gi representing the frequency of cells having 

undergone i divisions for i = 0 to 9.

Gi
ρ 2Gi + 1 Gi

μ ⊗ for i = 0 to 8

G9
ρ 2G9 G9

μ ⊗

The last stage i = 9 feeds into itself given that CFSE dilution beyond 8 divisions cannot be 

resolved on our flow cytometer. This well studied model (De Boer et al., 2006) was 

implemented with a system of ordinary differential equations (ODE) in which ρ = μ (Figure 

2E)

dG0
dt = − ρG0 − μG0 = − 2ρG0

dGi
dt = 2ρGi − 1 − μGi − ρGi = 2ρGi − 1 − 2ρGi

dG9
dt = 2ρG8 + ρG9 − μG9 = 2ρG8

This system of ODEs was solved numerically with the Runge-Kutta-Fehlberg based method 

ode23 (Bogacki and Shampine, 1989) in the R package deSolve. This system of ODEs has 

only one unknown, ρ, to be estimated from the CFSE dilution frequency data at day 5 for 

generations G0 through G9 (Figure 2D). We performed nonlinear least-squares fitting of the 

model with the data using the Levenberg-Marquardt algorithm within the Minpack (More et 

al., 1980) R package minpack.lm. to derive, ρ = 0.48 per day (Figure 2E). [RSS=0.006, 

CFSE_fit-nls.R]

To appreciate how variability in HIV release arises from stochastic cell division and death, 

imagine a set of replicate Gillespie simulations of Model 1 (Figure 3A) in which ρ = μ = 0 

and that each start with 1 latently-infected cell in the first eclipse phase compartment E. 

With no cell division and no cell death in the E compartment, 1 productively infected cell I 
will be realized in every simulation, and the total HIV release will remain geometrically 

distributed. Now consider what happens as ρ (= μ) increases from zero. The fraction of 

simulations resulting in transition to the productive I state begins to decrease from 1 due to 

cell lineage extinction in some realizations. Given ρ = μ, for every 1 latently-infected cell 

that enters the eclipse phase, on average 1 productively infected I cell will be realized. Some 

simulations will realize 2 latently-infected cells from cell division, and these will be 

averaged out by other simulations in which the only latently-infected cell present dies. In 
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this way, the level of dispersion in total HIV RNA released increases above that expected 

from a geometric distribution.

Also, each eclipse phase cell (including the original single and any progeny) will transition 

to the productive I state at different times, providing variability in HIV release timing. These 

statistical properties made incorporation of cell division and death in the eclipse phase a 

compelling choice. This choice makes sense if we just consider averages derived from the 

experimentally observed dynamics. With the average lifetime of a CD4 T cell in culture of 

1/μ = 2 days and an average time to first HIV RNA detection of 4 days (Figure 4A), many of 

the latently-infected CD4 T cell lineages initially present in culture should go extinct before 

they produce virus.

The experimental time delay to first HIV RNA detection, most frequently 3 days (Figure 

4A), was not concordant with a single transition rate a (Model 1) in which the delay time is 

exponentially distributed with a maximum frequency at day 1 (Figure 4B). To reconcile this 

discrepancy, we extended the number n of eclipse phase compartments from n = 1 for Model 
1, to up to n = 10 (Figure 3B shows n = 5, where n is an integer from 1 to 10), with transition 

to the next compartment in series at rate a, Model 2. This construct results, for ρ = μ = 0, in 

an Erlang distributed delay time with mean n/a (Mittler et al., 1998), which has been used 

for modeling in vitro lentiviral production delay (Kakizoe et al., 2015). For non-zero ρ and 

μ, as we used here, the distribution for the delay time was determined by direct Gillespie 

simulation (Figure S3 for n = 5).

We performed nonlinear least-squares fitting for ODE implementations of Models 1, 2, and 
3 (Figure 4, Column 2). Model 1 is a special case of Model 2 with n = 1. The following is 

the system of ODEs for n = 5 latently-infected cell eclipse phase compartments, with no de 
novo infections. Note that the eclipse phase transition constant here is a times n (n = 5 in 

example below and in Figures 3B and 4C; transition constant a times n was abbreviated as a 
in these figures since n was constant). In addition, since ρ = μ, these terms cancel out of the 

ODE implementation with i = 1 to 4:

dE0
dt = − anE0

dEi
dt = an Ei − 1 − Ei

dI
dt = anE4 − dI

dV
dt = pI − cV
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This system of ordinary differential equations was solved numerically with the Runge-Kutta-

Fehlberg based method ode23 in the R package deSolve. We performed nonlinear least-

squares fitting of the model to the HIV RNA copies detected, averaged over the 225 limiting 

dilution wells (Figure 4B–4E), using the Levenberg-Marquardt algorithm within the 

Minpack R package minpack.lm.

We also implemented our models stochastically using Gillespie simulation. Of particular 

relevance for the stochastic implementation, unlike the ODE model, given ρ = μ these terms 

must be retained. The branching process model can be represented as a series of “chemical” 

reactions and a transition matrix.

In this model each reaction rate corresponds to a transition probability with an exponentially 

distributed delay time, represented in the figure diagrams (Figure 3B for this example) as 

arrows:

Stochastic Implementation Model 2 Transitions:

Ei
μ ⊗ Eclipse phase cell death

Ei
ρ 2Ei Eclipse phase cell division

Ei
an

Ei + 1 i = 0 to 3 Transition to next eclipse compartment

E4
an

I Transition to productive/compartment

I
δ ⊗ Productive/cell death

I
p

V Virus release

V
c ⊗ Viral signal decay

Stochastic Model transition matrix for n = 5 eclipse phase compartments corresponding to 

Model 2

Reaction Rates (columns) vs. Model Compartment (rows)

μE0 μE1 μE2 μE3 μE4 ρE0 ρE1 ρE2 ρE3 ρE4 anE0 anE1 anE2 anE3 anE4 qI δI pI cV

−1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 E0

0 −1 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 0 0 0 E1

0 0 −1 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 0 0 E2

0 0 0 −1 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 0 E3

0 0 0 0 −1 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 E4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 0 0 I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 V

This branching process model was implemented by direct method Gillespie simulation 

(Gillespie, 1977) using the GillespieSSA R library (Pineda-Krch, 2008).

A Weibull cumulative distribution function (CDF) was fit to the experimental limit of 

detection data (Figure 1E). To determine whether to report HIV RNA copies realized from 
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Gillespie simulation as “detected,” we used the probability corresponding to those HIV 

RNA copies, given by the fit Weibull, in a Bernoulli trial with a binary result of “not 

detected” or “detected.” Consider an instance in which the Gillespie simulation realizes 70 

HIV RNA copies at the day 2 collection. Based on the Weibull fit to the LOD data (Figure 

1E) 70 HIV RNA copies has a 50% chance of detection. The reported HIV RNA copies 

“detected” from simulation will have a 50% chance of being zero, and a 50% chance of 

being 70.

We note that while the number of initial latently-infected CD4 T cells per replicate that gave 

rise to detectable HIV, Λ, could be estimated from the frequency of HIV RNA positive 

replicate wells at a given cell dilution using ELDA, some initial latently-infected CD4 T cell 

lineages beginning in compartment E0 would become extinct before transitioning to a virus 

productive state I, and therefore go undetected. Thus, final model fitting would require an 

estimate of the initial number of latently-infected CD4 T cells, only some of which would 

give rise to detectable virus. Stochastic model sensitivity analysis indicated that for 

simulations, each starting from exactly 1 latently-infected cell at the beginning of the eclipse 

phase E0, for a given n, the fraction of simulations resulting in detectable HIV, fHIV, 

depended on ρ, μ, and a, but not p and δ, within a range of reasonable values given p ≫ δ.

Each replicate simulation was initiated with an integer number of latently-infected cells in 

the first compartment, including the integer 0. This integer was drawn randomly from a 

Poisson distribution with parameter Λ/fHIV; Λ was derived from the original experiment 

(Table S2) using ELDA, and fHIV, the fraction of initial single latently-infected cells that 

result in detectable HIV, derived as explained in the following paragraphs. Note that fHIV < 1 

for two reasons: 1) the lineage may go extinct before producing any virus, and 2) virus 

might be realized in Gillespie simulation, but it is below the assay detection limit. In 

addition, it was possible to draw 0 initial latently-infected cells from the Poisson 

distribution, and thus such a simulation could not realize an HIV release.

For each number of eclipse phase compartments n, we estimated the fraction of simulations, 

each starting from exactly 1 initial latently-infected cell giving rise to detectable HIV, fHIV. 

We first needed to derive an estimate for a from the daily HIV RNA copies detected in the 

225 limiting dilution virial inhibition wells, only 42 of which were positive (Figure 2A). 

Using a preliminary guess for the initial number of latently infected cells = 126 among 225 

wells, we performed least-squares fitting on the deterministic ODE model, simultaneously 

obtaining a, δ, and p (Columns 2, 3, 4 respectively in Table S3) for each n, 1 through 10 

(Column 1, Table S3). Of note, for this fitting, p, but not a and δ, was sensitive to the initial 

number of seeded latently infected cells in E0.

As an example, for n = 5, we obtained a reasonable deterministic model fit resulting in a = 

0.30/day, δ = 1.48/day and p = 1367/day (Similar to that in Figure 4C). These parameters, 

along with previously derived ρ = μ = 0.48/day and c = 0.22/day, were then used in 

stochastic simulations, each starting from 1 latently infected cell seeded in E0. The fraction 

of n = 5 simulations resulting in detectable HIV (Column 5, Table S3) was fHIV = 0.398 

(again, this number was sensitive to ρ, μ, and a, but not δ and p). In the original 225 limiting 

dilution experimental wells, 42 were positive with an ELDA estimated 48 seeded latently 
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infected CD4 T cells that each gave rise to detectable virus. Thus, the initial number of 

latently-infected cells in the original 225 wells (Column 6, Table S3), under the n = 5 model, 

was estimated as 48/0.398 = 121. Using this result, the deterministic model was then re-fit 

for n = 5, with an initial E0 population = 121/225 (number of seeded latently infected cells 

per well averaged over 225 wells), resulting in a = 0.30/day, δ = 1.48/day, and p = 1423/day 

with the residual sum squared (RSS) = 875 [eclipse_phase-fit.R] (Figure 2C). The mean 

total release for one productively-infected cell over its entire release lifetime was p/δ = 965 

HIV RNA copies.

We next compared simulations using the optimized parameter sets for each n to the 

experimental results from the 225 limiting dilution wells (Figure 2C & Figure S3). We 

performed 2000 simulations for each of the 225 experimental wells, for a total of 450,000 

simulations for n = 1 to 10. Although the residual sum squared (RSS) for the deterministic 

fit was marginally lowest for n = 7, we found that n = 5 gave better overall agreement of the 

stochastic model with respect to the experimental total HIV RNA detected, time to first 

detection, and detection duration (Figures 2C and S3, Table S3). Also, the productively-

infected cell lifetime for the n = 7 fit of 1.4 days (1/δ) approached the lifetime of a typical 

(non-infected) CD4 T cell of 2 days (1/μ). Thus, we favored the n = 5 model with a shorter 

productively infected cell lifetime of 0.7 days.

Nevertheless, even the n = 5 stochastic Model 2 underestimated the variability in total HIV 

RNA detected at both extremes, below 100 copies, and above 10,000 copies. Moreover, the 

stochastic model missed a population of latently-infected cells that yielded releases that 

were of short duration of less than 1 day, low magnitude less than 250 HIV RNA copies or 

less, and delayed 4 or more days.

Dual eclipse phase Model 3—We noted that the single eclipse phase yielded a unimodal 

distribution for total HIV RNA copies detected (Figure 4C), whereas the experimental was 

bimodal with highest frequencies around 100 and 2000 HIV RNA copies (Figure 4A). We 

reasoned that the missing population could be modeled by introducing an eclipse phase B, to 

result in Model 3, with new parameters initial transition into eclipse phase A, fa, initial 

transition into eclipse phase B, fb, transition from eclipse phase B compartments, b, and 
release rate from productively infected cell B, pB. Parameters b and pB were fixed to yield a 

long delay before a low magnitude release of short duration. fa and fb could in principle be 

fractions rather than rates, but we regard them as rates to facilitate use of them as a rate of 

latent cell reactivation in other applications. In this case, we simply made fa and fb much 

higher than the other transition rates a and b. A proportion fa/(fa + fb) of the Li compartment 

transitions to eclipse phase A, and fb/(fa + fb) transitions to eclipse phase B. Fixing the 4 

parameters fa, fb, b, and pB we then performed nonlinear least-squares fitting of the ODE 

implementation to obtain unknowns a, pA and δ. Through many cycles of fixing the 4 new 

parameters (fa = 10.5/day, fb = 5 /day, pB = 112 /day, and b = 0.75 /day), and ODE fitting for 

a, pA and δ, and simulation, we arrived at the parameter set in Table S4, and Figures 4D and 

4G. For this parameter set in simulation, exactly 1 latently-infected cell in Li, resulted in 

detectable HIV 41% of the time. Starting from an initial condition of 48/0.41 = 117, we 

obtained new estimates for the deterministic ODE fit of a = 1.5 /day (Bootstrap 95% CI 1.1 

to 2.3), δ = 1.3 /day (Bootstrap 95% CI 0.4 to 1.9), and pA = 2030/day (Bootstrap 95% CI 
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370 to 3600). Given that the stochastic simulations but not the ODE model account for the 

experimental HIV RNA limit of detection, we increased pA = 2166/day (determined by 

cycles of simulation with small incremental increases to pA) to further improve the 

stochastic model agreement with the data. We obtained improved fits for total HIV RNA 

detected, time to first positive, and HIV detection duration (Figure 3D). For all three 

outcomes, application of the Kolmogorov-Smirnov test indicated little evidence for a 

significant difference in the distributions from simulation versus experiment.

Notably, for the Model 3 best parameter set (Table S4), the eclipse phase B population 

represented just 1% of total HIV RNA detected. The Model 3 parameter set is not fully 

identifiable from the available data such that other combinations of fa, fb, and b may be 

found that would also result in concordance with both the ODE system and stochastic 

simulation. As discussed in the main text, eclipse phase A and B may correspond to central 

memory and effector memory populations respectively. Further research such as sorting 

these two populations and documenting the initial release from each subset in isolation 

would allow more specific parameter identification of Model 3. Moreover, because the 

relative proportions of CD4 T cell subsets will differ from donor to donor, ultimate 

identification of the Model 3 parameters would likely be donor specific.

To better understand our rationale for incorporating cell division and death into eclipse phase 

A, consider the opposing hypothesis that ρ = μ = 0. For ρ = μ = 0, we can fit the distribution 

for total HIV RNA copies detected by boosting the per productively infected cell HIV 

release rate (increase pA), but this forces a shorter average detection duration and a lower 

frequency of multi-day sustained detections than that observed experimentally (Figure 4E). 

This is based on the assumption that the productively infected cell lifetime, 1/δ, does not 

itself have high variability. A way to fit all of the data assuming no cell division and death, 

might be to instead assume high variability in 1/δ. This would require many single 

productively infected cells to release virus for several days to be consistent with the 

observed sustained detections. We disfavor this hypothesis because such an extended release 

by a single cell would make it an easy “sitting duck” target for the immune system, which is 

difficult to reconcile with the fact that HIV has evolved to successfully evade most human 

immune systems. We instead favor Model 3 (Figure 4D) incorporating latent cell division 

and death because this leads to potentially covert amplification of the initial release which is 

consistent with evolutionary pressure to evade the immune system. Incorporation of cell 

division and death is also consistent with the natural proliferative outcome for CD4 T cells 

following vigorous stimulation (Figure 2D), the previous in vivo estimate of an average 1 

day survival for a productively infected cell (Markowitz et al., 2003) and recent direct 

evidence of intact proviral amplification due to cell division (Bruner et al., 2019).

Simulating Model 3 with parameters in Table S4, on average, a single latently-infected cell 

resulted in 934 detected HIV RNA copies, although on an individual basis, just 41% gave 

rise to detectable virus. In particular, simulations of the limiting dilution experiments from 

Figure 2A predicted that 50% of initial HIV releases yielding greater than 10,000 HIV RNA 

copies resulted from stochastic proliferation originating from 1 latently-infected cell (e.g. 

Figure 4F simulation with 15400 HIV RNA copies), and 50% arising from 2 or more (e.g. 

Figure 4F simulation with 11200 HIV RNA copies). On the other hand, because of 
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stochastic cell death and/or HIV release below the detection limit, many replicates that were 

negative for HIV were nevertheless seeded by 1 or more latently-infected cells (not shown in 

Figure 4F). When considering Figure 4F, recall limiting dilution pertains to the low 

frequency of HIV RNA positive replicates, statistically equivalent to the culture experiments 

(42 of 225, Figure 2A). The simulated initial latently-infected cells (Figures 4D and 4F) are 

not themselves at limiting dilution, because experimental determination of limiting dilution 

depends on the initial latently-infected cells that give rise to detectable virus. Hence, there 

are many “limiting dilution” simulations with relatively high numbers of initial latently-

infected cells, e.g., 4 to 6 in Figure 4F.

Model 3 Predicts Trends in Data Not Used For Fitting—We next explored the 

predictive performance of the fit Model 3 on the non-limiting dilution experimental data not 

used for fitting. We performed stochastic simulations, using the parameters optimized on the 

limiting dilution data (Table S4), and using the initial number of seeded latently infected 

cells for 4 groups of experimental results that were not at limiting dilution corresponding to 

an expected 2.2, 3.9, 4.6, and 5.6 seeded latent cells per well (Figure S4 bottom 4 rows). 

These initial population sizes are corrected (The four highest Λ from Table S2 divided by 

0.41) to account for latently-infected cells that did not give rise to detectable virus due to 

stochastic death or release below the detection limit.

For total HIV RNA detected per positive well (Figure S4, left), as the number of seeded 

latent cells increases, the model predicts that the frequency of high copy detections above 

10000 should increase. Likewise, the frequency of very low detections below 100 should 

decrease. This indeed is the overall trend in the experimental data (Figure S4, left). However, 

there is additional variability in the experimental data that the model does not account for, 

perhaps variability among different donors or due to a low number of non-limiting dilution 

replicates.

For time to first positive (Figure S4, center), we have an outlier at 2 latently-infected cells, 

but otherwise the model predicts the experimental trend, which is the higher the number of 

initial latent cells, the earlier the first detection.

And finally, the higher the initial latent cells, the longer the detection duration should be on 

average (Figure S4, right). Again, the model correctly predicted the experimental trend. As 

the initial latently-infected cells increased, the distribution for detection duration shifted 

toward longer durations.

Toggling and Dispersion for Total V produced—For an alternative modeled source of 

dispersion for the initial HIV release, consider the simplified case of the basic 2-

compartment model in which virus V is produced at rate p from the I compartment, which 

has a zero decay rate, δ = 0. Here, the total V produced is Poisson distributed (FF = 1), and 

this distribution does not change with introduction of an eclipse phase E of latently-infected 

cells that each can only activate at rate af to the I state (Model 1; Figure 3A with ρ = μ = 0 

and δ = 0). This construct produces Poisson stochasticity in V, and is directly analogous to 

that used previously to model constitutive RNA transcription.
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As opposed to a constitutive process, RNA transcription from the HIV long terminal repeat 

(LTR) promotor is episodic, occurring in short bursts interspersed with periods of low or 

zero transcription resulting in an ON-off-ON-off dynamic (Dar et al., 2012). This can be 

modeled by introducing a reverse transition from I to E, at rate ar, with parameterization of 

af / ar ~ 0.1 (Hansen et al., 2018), such that transcription toggles from ON in state I to off in 

state E, and vice versa (E ↔ I, also known as random telegraph model) and the distribution 

for total V produced goes from Poisson for ar = 0 (constitutive, no toggling) to super-

Poisson for ar > 0 (bursty, with toggling), with FF > 1. For a specific example, consider the 

parameterization af = ar = 0, δ = 0, and p = 1000. 10000 Gillespie simulations each with an 

initial condition I = 1, E = 0, V = 0 to time = 12 results in a mean total V production of 

12001, with FF = 1.0, as expected for a Poisson process. Introduction of toggling with af = 

0.3, ar = 3, δ = 0, and p = 1000 results in a mean total V production of 1370 with FF = 445. 

Under the assumption δ = 0, introduction of E ↔ I toggling increases dispersion for total V 
produced above that of Poisson.

However, the assumption of δ = 0 for I, i.e. an infinite lifetime for an HIV producing cell, is 

not realistic. If this were the case, then there would not be a rapid viral load decline upon 

initiation of ART. Modeling of in vivo viral load decay after initiation of ART has resulted in 

an estimate on the order of δ = 1 /day (Markowitz et al., 2003). As discussed earlier in this 

section, for δ > 0, such as δ = 1 /day, the dispersion without toggling is Geometric, i.e. 

already super-Poisson with FF = Mean + 1. Without toggling, Gillespie simulation with af = 

ar = 0, δ = 1, and p = 1000 yields for total V produced, mean = 997 and FF = 993, consistent 

with a geometric distribution. Introduction of toggling with af = 0.3, ar = 3, δ = 1, and p = 

1000 yields a mean total V produced of 665 and FF = 445; the dispersion decreases, 

becoming sub-geometric. Adjusting p to result in the same mean total V produced in 

simulation, with af = 0.3, ar = 3 δ = 1, and p = 1490 yields for V, a mean = 1002 and FF = 

667. A FF less than the mean for total V produced also occurs when reversing the toggle 

with af = 3, ar = 0.3, δ = 1, and p = 1490. In summary, for the case in which we assume I cell 

death (δ > 0), the introduction of toggling results in a decrease in dispersion for total V 
produced, as measured by FF.

This finding is further confirmed in Gillespie-based direct simulation that additionally 

accounts for the Poisson distributed latently-infected cells among wells, daily culture virus 

dilution, and the experimental limit of detection in which the parameters are adjusted so that 

the simulation results closely match the means for total HIV detected (2600 HIV RNA 

copies), time to first HIV detected (4.1 days), and detection duration (2.5 days), across the 

42 HIV RNA positive limiting dilution wells. Consider Model 1 in which we introduce E ↔ 
I toggling such that ρ = μ = 0, af = 0.22, ar = 2.2, δ = 1.3, and p = 4850 (each parameter with 

unit/day); this results for total HIV detected a mean 2661, and FF just 2128, again with FF < 

mean. For ρ = μ = 0.5, af = 0.048, ar = 0.8, δ = 1.5, and p = 3000 (each/day) results in a total 

HIV detected mean 2547 and FF 2619. Although the FF marginally increased in the case 

allowing for division and death in the E compartment, it is still far below the experimental 

FF and that generated from the fit Model 3 of about 5200. In addition, just as with the non-

toggling case (Figure 4B) we could find no parameterizations for a Model 1 E ↔ I toggle 

for which we could fit the ODE model to the average HIV RNA detected.
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To the 5 eclipse phase compartment model (Figure 3B), we next incorporated E4 ↔ I 
toggling and explored parameterizations that were limited to af4 / ar4 = 1, 2, 4, 5, 0.01, 0.1, 

or 0.5. For af4 / ar4 ≤ 4, we were able to obtain good ODE fits (similar to Figures 4C–4E) to 

the average HIV RNA detected and obtained parameters for a, δ, p, and af4. af4 / ar4 = 5 and 

above resulted in a poor ODE fit. We found that to obtain in simulation a FF for total HIV 

detected in the 5000–6000 range as in experiment, ρ4 = 3 and μ4 = 0.5, or ρ4 = 2.6 and μ4 = 

0.1 would work for the toggled eclipse compartment, with ρ = μ = 0.5 for the eclipse phase 

compartments 0 to 3. Hence, to match the experimental FF for total HIV detected, we had to 

assume rates for CD4 T cell division and/or death that were not realistic, conflicting with 

those derived from experiment. This was also the case for a two toggle E3 ↔ E4 ↔ I 
model. Although the dispersion as measured by FF could be made equivalent using 

unrealistic rates of cell division, the simulated distributions were still unimodal with a very 

low frequency of release detections less than 100 HIV RNA copies, unlike that observed 

experimentally and with the fit Model 3.

Toggling could potentially be used to model the variability in timing of HIV production, 

particularly for culture replicates in which HIV detection occurs, followed by a period of no 

detection, and then a second detection. For Model 3 (Figure 3C, without toggling), this ON-

off-ON-off dynamic arises due to more than 1 latently infected cell seeded in a well on day 0 

giving rise to virus at different times, through stochastic proliferation from an original single 

latent cell with transition to the productive state at different times, or consecutive presence of 

HIV at the detection limit. Toggling could be an additional mechanism by which the ON-off-

ON-off dynamic arises. Due to the overall complexity and inability to distinguish among 

specific mechanisms, we have opted to leave toggling out of our core Model 3, but it could 

be further explored in future experimental and modeling work, particularly for a less 

heterogenous CD4 T cell population.

Summary—The stochastic Model 3 provides useful framework to understand and predict 

the process of initial HIV release arising directly from the reservoir following latency 

disruption. In particular the model features the role of cell division in amplifying the 

magnitude and temporally extending the total HIV release, and initial latently-infected cell 

lineages that go extinct without giving rise to detectable virus. It accounts for heterogeneity 

in CD4 T cell subsets through the use of two eclipse phases. Interestingly, the 2 eclipse 

phase model (Figure 4D) leading to high and low producers IA and IB respectively, fit much 

better than a single eclipse phase model (Figure 4C), formalizing a hypothesis that virus 

arises from two cell compartments, such as central memory and effector memory, each with 

distinct potentials for virus release, as mentioned in the Discussion section. Model 3 with the 

proposed parameterization (Table S4), defined solely with simple exponential transition 

rates, quantitatively accounts for the variability in the timing and magnitude of HIV RNA 

release in the viral inhibition cultures.

Additional Quantitative Analyses—Statistical methods were not used to predetermine 

sample size, and the investigators were not blinded for experimental allocation or analysis. 

There was no randomization of experiments.
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Kolmogarov-Smirnov tests to compare distributions were performed using ks.test within the 

stats R library (Figures 4, S3, and S4). Two sample Welch t-tests (t.test in R stats library) 

were performed to compare the per latently infected cell HIV detection for wells with less 

than or equal to 1 expected latently-infected cell with wells with greater than 1 expected 

latently-infected cell (Figure 6B and 6C).

The 95% confidence intervals for outgrowth establishment probability (Figures 6A and S6, 

red vertical lines) were calculated using previously published R code (Kaul et al., 2016).

The 95% confidence intervals for parameters during deterministic fitting were constructed 

using a percentile bootstrap procedure ((Efron and Tibshirani, 1993); Section 13.3) from 

1000 bootstrap data sets. Each bootstrap data set was generated in a way that preserved the 

design of the study. Specifically, among the 225 limiting dilution wells, those with the same 

donor ID and number of cells/well were grouped together, resulting in ten distinct groups. 

To generate a single bootstrap dataset, wells were sampled with replacement within each of 

the ten groups. Thus, each bootstrap dataset also had ten groups; further, the number of wells 

in a group within each bootstrap dataset also matched the number of wells in each group in 

the original dataset. Parameter estimates for each bootstrap dataset were then obtained by 

fitting the same deterministic system of ordinary differential equations that was used for the 

original dataset.

The 95% confidence intervals for viral inhibition simulations (Figure 4) were obtained by a 

simplified bootstrap sampling method to estimate the range of the mean value given the 

number of experimental replicates. As an example, for the experimental 225 limiting 

dilution wells, 42 were HIV RNA positive. Each of the individual wells within these 225 

limiting dilution wells was simulated 2000 times, for a total of 450,000 simulations. Thus, 

from these 450,000 simulations, a random sample of 225 simulations was drawn with 

replacement, and the means were calculated for total HIV RNA copies detected, time to first 

positive, and detection duration. This was done 2000 times, to obtain a list of 2000 means, 

for each. Each of the 3 mean lists were sorted from lowest to highest, and the values at the 

2.5% and 97.5%iles were taken as the limits of the 95% confidence interval.

To calculate the establishment probability Pest for an exact number of latently infected cells 

x (Figure 7), we used the binomial distribution to determine the probability of each possible 

number of initial cells giving rise to detectable virus and multiplying that with Pest(x), as in 

(Kaul et al., 2016), given by the WeibullCDF [5] (k = 2.2 and λ = 3.7 obtained from fitting 

Equations [1] and [6a] (Figure 6A and 6D)). The sum of these products was reported as the 

establishment probability.

DATA AND CODE AVAILABILITY

Guide for Accessing Data and Code—The viral sequencing data has been deposited at 

Genbank (https://www.ncbi.nlm.nih.gov/genbank/) with accession numbers MN515491-

MN516420, corresponding to 930 HIV env sequences. Each HIV env sequence has a header 

indicating the Donor ID, experimental culture set, culture well, and clone in the format: 

“>DonorID#.experimental-set#.culture-well#.clone#”.
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The HIV RNA copy data for each experimental set (in table format and plotted in a single 

PDF file) and R code for mathematical modeling and analysis are available in a zipped file, 

“code-data-HatayeJ.zip” and can be accessed on the Dryad Digital Repository (https://

datadryad.org) and using “doi:10.5061/dryad.wdbrv15j3” as the Digital Object Identifier, 

which can be placed into a web browser address bar.

Computer code in this study was written in R or Stan within an R script, implemented using 

rstan 2.17 and 2.18 interfaces. Scripts were tested and run on R 3.4.2 using RStudio 1.0.153. 

Several other versions of R have also worked. We tried but could not run rstan using 

Microsoft R Open. Each script has been successfully run on Mac OS 10.12.6. Both the 

stochastic simulations and Stan analyses have been run on Ubuntu 16.04 workstations and 

on the NIAID Locus High Performance Computing cluster running Red Hat Enterprise 

Linux Server 7.2.

We recommend using a workstation with 4 or more CPU cores with optional use of cluster; 

the stochastic simulations and Stan code scripts are written to be run in parallel. Here are the 

steps needed to run the code, which should take about 2 hours:

1. Install R. https://www.r-project.org

2. Install Rstudio. https://www.rstudio.com

3. Install R libraries.

R libraries needed:

deSolve, doMC, dplyr, foreach, ggplot2, GillespieSSA, Hmisc, iterators, 

loo, MASS, minpack.lm, plyr, RColorBrewer, rstan, scales, statmod. In 

RStudio, use the “Install” button under the “Packages” tab and enter the 

name of the package.

4. Install Stan. https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

5. Uncompress the file “code-data-HatayeJ.zip”. This can be done on Mac OS X or 

Ubuntu by placing this file on the Desktop, and then double clicking on it. If you 

put the zip file on the Desktop, this will hopefully correspond to the path set in 

the code.

6. Place experimental and simulation data files in path, if needed. Many of the 

scripts require the experimental data tables HIVrna1.txt and HIVrna2.txt, or 

simulation data tables. To run the script, these files must be placed in a directory 

and referred to in the script using setwd(“put the path here”). In each script, the 

setwd is set to setwd(“~/Desktop/code-data-HatayeJ/….”) such that if you unzip 

the “code-data-HatayeJ.zip” file in “~/Desktop” the code as written should work.

To verify the integrity (verify intact download) of the “code-data-HatayeJ.zip” file, one can 

check the SHA-256 hash of this file. On Mac OS X, this can be done by opening a terminal, 

typing “cd Desktop” to change to the Desktop directory (if you put the file there), and typing 

“shasum -a 256 code-data-HatayeJ.zip”. On a Linux system the command is “sha256sum 

code-data-HatayeJ.zip”. The SHA-256 hash of “code-data-HatayeJ.zip” is:
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92fff454a014518690deb0c2f29592b17993cdc1566db6ef5cf019d3552c99e9

Note that this hash on the “code-data-HatayeJ.zip” file will be different than the hash done 

on the zip package “doi_10.5061/dryad.wdbrv15j3_v2.zip” which is a zipped version made 

by Dryad. To check the SHA-256 hash of “code-data-HatayeJ.zip” one needs to first unzip 

that file downloaded from Dryad. We’ve gathered the most important files here. Additional 

files are available upon request.

Contents of code-data-Hataye.zip

Experimental Data Tables & Plots—/expData

HIVrna1.txt: HIV RNA detection data from primary ex vivo culture experiments, 

comprising sets 126, 132, 135, 145, 159, 163, 166, 210, 211, 223, 224, 229, 230, 236, 237.

HIVrna2.txt: HIV RNA detection data from secondary (Sets 169 and 180) and tertiary (Set 

273) culture experiments.

exp-set-plots.pdf: PDF document containing plots of HIV RNA copies in culture 

supernatant for each experimental set.

Simulation Data Tables—/simData/2eclipse

ws-vinh225.txt, dfmini-vinh225.txt, and ss-vinh225.txt: Summary results of running 

stochastic-2eclipse-225LDwells.R, for a total of 225 × 2000 simulations of Model 3 

(parameters Table S4). These results comprise Figure 4 (orange). Running these took several 

days using 8 cores. However, a smaller run can be done to roughly reproduce the results. For 

example, one could do 225 × 1 simulations (less than 1 hour to complete), to see the range 

of HIV RNA positive simulations that result.

/simData/2eclipse

ws-210w.txt and ss-210w.txt

ws-211w.txt and ss-211w.txt

ws-223w.txt and ss-223w.txt

ws-236w.txt and ss-236w.txt

Summary results of running stochastic viral inhibition simulations of Model 3 (parameters 

Table S4), corresponding to experimental sets 210, 211, 223, and 236. Together with ws-

vinh225.txt and ss-vinh225.txt, these results comprise Figure S4.

/simData/1eclipse

n is an integer from 1 to 10

wsLn-42well-8MC-test.txt
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ssLn-42well-8MC-test.txt

Summary results running stochastic simulations for Model 2, n = 1 to 10 eclipse phase 

compartments (Figure 4B shows n = 1 and Figure 4C shows n = 5), for Figure S3.

/simData/2eclipse0rho0mu

dfglobal42.txt

dfmini42.txt

ss-42w.txt

ws-42w.txt

Summary results running stochastic simulations for Model 3, for Figure 4E in which ρ = μ = 

0/d.

Plotting and analysis—/figuresCode

To make a plot, open the script in RStudio, press “Source” and then copy/paste the plot code 

(near the end of the script) into the RStudio console.

assay-LOD.R: Fits HIV RNA RT-PCR limit of detection data to Weibull CDF, for Figure 

1E; This fit Weibull was used (for stochastic simulation) to determine whether to report as 

detected HIV RNA realized from Gillespie simulation.

v_inhibition_plots.R: This takes as input HIV RNA detection data (HIVrna1.txt) and makes 

plots for Figure 2A and individual plots for each set.

v_inhibition_distributions.R: This takes as input HIV RNA detection data (HIVrna1.txt) 

and stochastic simulation data (ws-vinh225.txt and ss-vinh225.txt, ws-210w.txt and 

ss-210w.txt, ws-211w.txt and ss-211w.txt, ws-223w.txt and ss-223w.txt, ws-236w.txt and 

ss-236w.txt) and makes histograms of total HIV RNA detected, time to first HIV detection, 

and detection duration. It performs Kolmogorov-Smirnov comparison of experimental vs. 

simulation distributions. It generates the distribution histograms in Figure 4 and the density 

plots in Figures 7A–E.

4culture_plot.R: This takes as input HIV RNA detection data from primary cultures 

(HIVrna1.txt) and secondary cultures (HIVrna2.txt) and makes individual plots for each set.

stacked_outgrowth.R and stacked_inhibition.R: These take as input HIV RNA detection 

data from primary cultures (HIVrna1.txt) and secondary cultures (HIVrna2.txt) and makes 

plots respectively for Figures 5B and 5A.

stacked_vmax.R: This takes as input HIV RNA detection data from primary cultures 

(HIVrna1.txt) and secondary cultures (HIVrna2.txt) and makes plots respectively for Figures 

5C and S5.
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tertiary_plot.R: This takes as input HIV RNA detection data from tertiary culture Set 273 

(HIVrna2.txt) and makes plots.

tertiary_stacked.R: This takes as input HIV RNA detection data from tertiary culture Set 

273 (HIVrna2.txt) and makes plot for Figure 5D.

plot-sim42LDwells.R: This takes as input simulation data from ws-vinh225.txt, ss-

vinh225.txt, dfmini-vinh225.txt and makes the plot in Figure 4F.

binomial-weibull-Pest.R: This calculates establishment probability for Figure 7 for exact 

numbers of initial latently-infected cells using the binomial distribution with fHIV=0.41 

(from fitting Model 3 to Figure 2A data, Figures 4D and 4F) with the Weibull CDF 

(parameters from fitting [1] and [6a] to data) and produces Figure 7H.

Statistical Analysis using Stan—/stanCode

Each of these scripts may be run parallel; set the number of CPU cores on the line that calls 

stan(….cores=8…..…).

elda_v_stan_vinh.R: This takes as input HIV RNA detection data from primary cultures 

(HIVrna1.txt) and obtains estimates for the frequency of HIV RNA releasing CD4 T cells 

for each of 7 donors using ELDA, and an equivalent Stan-based implementation for viral 

inhibition wells (Table S5).

elda_v_stan_outg.R: This takes as input HIV RNA detection data from primary cultures 

(HIVrna1.txt) and obtains estimates for the frequency of HIV RNA releasing CD4 T cells 

for each of 7 donors using ELDA, and an equivalent Stan-based implementation for viral 

outgrowth condition wells (Table S5).

2Fish.R: This takes as input HIV RNA detection data from primary cultures (HIVrna1.txt) 

and performs a Stan-based implementation to fit the model incorporating [1] and [6] against 

the viral outgrowth condition well data. g(x) can be based on a Weibull, Gamma, or Hill 

function (Chosen in the code by commenting out the other 2 in both the model block and 

generated quantities block) with X ~ Poisson(Λ). This script will determine estimates for 

parameters k, λ, and 1/πd for the respective g(x) in [6]. Results refer to Figures 6A, 6D–6E, 

S6, Table S6.

indep2Fish.R: This takes as input HIV RNA detection data from primary cultures 

(HIVrna1.txt) and obtains estimates for the frequency of HIV RNA releasing CD4 T cells 

for each of 7 donors using ELDA, and a Stan-based implementation for fitting the model 

incorporating [1] and [4], with X = Poisson(Λ), Figures 6A and S6 and Table S7. g(x) = (1 − 

θ)x in [3] for pure independence model incorporating [1] and [4].

Nonlinear least squares fitting of deterministic ODE models—/ODEfitCode
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CFSE_fit-nls.R: This script contains CFSE dilution flow cytometry data acquired 5 days 

after CFSE staining and culturing isolated resting memory CD4 T cells from an HIV-

uninfected donor in the presence of stimulation particles (Figure 2D). To these data, it fits an 

ODE model of cell division and death (Figure 2E).

eclipse_phase_fit.R: This script contains HIV RNA detection data from Figure 2A, the total 

HIV RNA copies detected on each day, averaged over the 225 limiting dilution wells. It then 

fits eclipse phase ODE models with n = 1 to n = 10 eclipse phase latently-infected cell 

compartments to this data. Figures 3A and 3B show model diagrams, and Figures 4B and 4C 

show ODE fits.

2eclipse_phase_fit.R: This script contains HIV RNA detection data from Figure 2A, the 

total HIV RNA copies detected on each day, averaged over the 225 limiting dilution wells. It 

then fits the 2 eclipse phase ODE model in Figure 3C, and produces the ODE fits for Figures 

4D and 4E.

Stochastic Simulations of Compartmental Models—/simCode

Each of these scripts utilizes the GillespieSSA (Pineda-Krch, 2008) library to perform direct 

Gillespie simulation (Gillespie, 1977) and the doMC library to perform these in parallel; set 

the number of CPU cores by editing nthreads=4.

exp-growth-Gillespie.R: This is a demonstration script that performs Gillespie simulation 

for a simple model of exponential growth with one compartment, with a birth rate of 2 and a 

death rate of 1, and starting from an initial number of cells ranging from 1 to 10. The 

corresponding deterministic model is y = y0exp(x).

stochastic-1eclipse-225LDwells.R: This script performs simulations of Models 1 and 2 

(Figure 3A and 3B) and includes the expected lambdas calculated using ELDA from each of 

the limiting dilution experiments in Fig. 2A. This script performs stochastic simulations 

using n = 1 to 10 single eclipse phase latently-infected cell compartments (Figure 4B and 

4C, Figure S3). Choices include but are not limited to the initial number of latently infected 

cells to start with, the number of simulations to run, the number of CPU threads for parallel 

computation, and the model parameters. Depending on model parameters and the number of 

simulations, etc., this script can take a very long time to run. The script is set to run 225 × 1 

simulations (about 1 minute to run) for n = 5 latent cell compartments, but reported results 

utilized 225 × 2000 simulations to produce the output in /simData/1eclipse (Figure 4B–4C 

and S3).

stochastic-2eclipse-225LDwells.R: This script performs simulations of Model 3 (Figure 

3C) and includes the expected lambdas calculated using ELDA from each of the limiting 

dilution experiments in Figure 2A. These results are used to seed individual simulations with 

an initial number of latently infected cells. The script is set to run 225 × 1 simulations (about 

1 minute to run), but reported results utilized 225 × 2000 simulations to produce the output 

in /simData/2eclipse, specifically ws-vinh225.txt, dfmini-vinh225.txt, and ss-vinh225.txt. 

(Figure 4D and 4F). After running 225 × 1 simulations, copy the print code at the bottom 
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into the Rstudio console to view the simulations that resulted in HIV RNA release to 

produce unique plot like Figure 4F.

EIV-toggle-Gillespie.R: This script does Gillespie simulation with toggling between E <-> 

I compartments for Model 1 (Figure 3A) and was used to generate toggling results in STAR 

Methods.

KEY RESOURCES TABLE

Please see separate document.

Main Figures Code Index—Figure 1E figuresCode/assay-LOD.R

Figure 2A figuresCode/vinhibition_plots.R

Figure 4B–C simCode/stochastic-1eclipse-225LDwells.R ODEfitCode/eclipse_phase_fit.R 

figuresCode/v_inhibition_distributions.R

Figure 4D–F simCode/stochastic-2eclipse-225LDwells.R ODEfitCode/2eclipse_phase_fit.R 

figuresCode/v_inhibition_distributions.R figuresCode/plot-sim42LDwells.R

Figure 5A figuresCode/stacked_inhibition.R

Figure 5B figuresCode/stacked_outgrowth.R

Figure 5C figuresCode/stacked_vmax.R

Figure 5D–E figuresCode/tertiary_stacked.R

Figure 6A, 6D–E stanCode/2Fish.R

Figure 6B figuresCode/synergy-for-virus-release.R

Figure 6C figuresCode/synergy-for-outgrowth.R

Figures 7A–E figuresCode/v_inhibition_distributions.R figuresCode/binomial-weibull-

Pest.R

Figure 7H figuresCode/binomial-weibull-Pest.R

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transition from latency to exponential HIV growth is covert, rare, and 

stochastic

• After latency disruption, the initial HIV release amount is highly variable

• If the initial virus release exceeds a critical threshold, exponential spread 

ensues

• Coupling experimental and computational approaches can define the origin of 

HIV rebound
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Figure 1. Detection of Released HIV Following CD4 T Cell Latency Reactivation
(A) Experimental workflow.

(B and C) Resting memory (RM) CD4 T cells were cultured for 3 days with no stimulation, 

PHA, or stimulation through CD3 and CD28, and assayed for expression of HLA-DR (B) 

and CD69 (C).

(D) RM CD4 T cells were stained with CFSE and placed into culture for 8 days with or 

without stimulation through CD3 and CD28.

(E) Detection of ex vivo released HIV following serial dilution into new viral inhibition 

cultures with stimulated CD4 T cells from an HIV-uninfected donor.
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Figure 2. Kinetics of HIV RNA Release, and CD4 T Cell Proliferation and Survival, in Limiting 
Dilution Viral Inhibition Cultures
(A) Detection of HIV release into supernatant (total in red bold), arising from latency 

reactivation in culture with efavirenz. Of 225 replicate cultures, just the 42 with detectable 

HIV (5 donors, with Λ ≤ 0.51, Table S2) shown with replicate index.

(B) HIV RNA signal decay in viral inhibition CD4 T cell culture.

(C) Following stimulation of CD4 T cells isolated from HIV-infected donors 3 and 9, the 

number of live cells is stable in culture.

(D) Day 5 proliferation profile following stimulation of CFSE labeled resting CD4+ T cells.
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(E) ODE least-squares fit of cell division and death, assuming these rates are equal (Figure 

2C), to the CFSE data in Figure 2D (ρ = μ = 0.48/d).
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Figure 3. Population Dynamic Models of Initial HIV Release Following Latency Disruption
Circles represent cell compartments and arrows represent transitions. L is an initial latently-

infected CD4 T cell (LIC) that can transition to one of two eclipse phases E, which can 

transition to a productive-infected cell state I that releases virus V at rate p, and dies at rate 

δ. V decays at rate c, and under viral inhibition, there are no new infections. Eclipse phase 

cells E divide at rate ρ and die at rate μ, and transition to the next compartment in series at 

rate a or b.
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Figure 4. Stochastic Population Dynamic Model 3 Recapitulates the Highly Variable Initial HIV 
Release
Column 1 Indicates the Data Type for a given Row (A–E). Columns 2–5 show HIV RNA on 

each day (averaged over 225 wells), and histograms scaled to a maximum of 1 for Total HIV 

RNA Detected, Delay to First HIV Detection, and Detection Duration. Experimental HIV 

RNA detection data from Figure 2A (Red dots and histograms), ODE model fit (Blue 

curves), and stochastic model predictions (Orange histograms) are shown. D and p show 

Kolmogarov-Smirnov statistic comparing experiment and model with p-value.

(A) HIV RNA Detection from 225 viral inhibition wells at limiting dilution, from Figure 2A.
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(B) Model 1 Fits. ρ = μ = 0.48/d, a = 0.40/d, δ = 0.40/d, p = 628/d, c = 0.22/d. fHIV = 0.55 

(For a single cell starting in compartment E, fHIV is the probability of virus detection.).

(C) Model 2 Fits. ρ = μ = 0.48/d, a = 1.50/d, δ = 1.48 /d, p = 1423/d, c = 0.22 /d for n = 5 

eclipse phase compartments. fHIV = 0.40.

(D) Model 3 Fits. ρ = δ = 0.48/d, a = 1.54/d, δ = 1.38/d, pA = 2166/d, c = 0.22/d, b = 0.75/d, 

pB = 112/d, fa = 10/d, fb = 5.5/d, for n = 5. fHIV = 0.41. This parameter set (Table S4) used 

for Figures 5–7.

(E) Model 3 Fits with ρ = μ = 0. a = 1.52/d, δ = 1.44/d, pA = 5600/d, c = 0.22/d, b = 1.05/d, 

pB = 112/d, fa = 10/d, fb = 15/d, for n = 5. fHIV = 0.64.

(F) Model 3 simulations (with parameters in 4D) of 225 limiting dilution viral inhibition 

wells (Figure 2A), only the 42 on average that resulted in detectable HIV are shown. Each 

panel indicates L, the total high producer IA, total low producer IB, and simulated total HIV 

detected.
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Figure 5. Initial Release of Replication-Competent HIV Is Often Not Sufficient for Viral 
Establishment
The dotted red lines depict viral establishment definitions at 1 × 105, 2 × 105, or 1 × 106 

HIV RNA copies. The dashed green line at 5100 HIV RNA copies indicates the critical 

threshold, predicted from analysis in Figures 6A & 6D and the fit Model 3 (Figure 4D and 

Table S4). Each panel in A, B, and D represents 10 replicate cultures, many of which had no 

detectable HIV RNA. Solid red lines (5B) and filled red dots (5C) designate primary 

outgrowth condition supernatants that were HIV RNA positive on day 8 and that resulted in 

de novo virus production following transfer to secondary culture, confirming replication-

competent (rc) virus.

(A) Primary viral inhibition with efavirenz for Donor 19.

(B) Primary viral outgrowth cultures for Donor 19 with excess target cells.

(C) Each dot indicates the maximum HIV RNA copies detected from 3 samplings (typically 

days 4, 8 and 12) of one replicate culture, in viral inhibition or outgrowth conditions, pooled 

from experiments with 7 donors on ART. Figure S5 features faceting by donor and CD4 T 

cell dilution.

(D) Tertiary cultures in which virus passaged from a Donor 19 primary well was serially 

diluted (right column) on day 0 with cell wash on day 1. Orange-brown designates 

establishment to > 2 × 105 HIV RNA copies, purple wells did not establish despite de novo 
virus production following day 1, indicating the infecting virus was rc.
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(E) Count of the 51 replicates, binned by Log10 maximum HIV RNA copies, that were 

positive beyond day 0 from 5D.
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Figure 6. Viral Establishment Depends on an Initial Release Exceeding a Critical Threshold
(A) Probabilities of outcomes (y-axis) versus Λ (x-axis). Light red bar: Probability of HIV 

RNA detection, Pdet. Red filled squares: Probability of viral establishment Pest to > 2 × 105 

HIV RNA copies for experimental, with 95% confidence interval. Fit to non-summarized 

outgrowth well data (light red squares): wells that established (top) and did not establish 

(bottom): Pest synergistic model (Equations [1] and [6] in STAR Methods; Blue filled circle, 

Figures 6D and S6, and Table S6), and Pest independence model (Equations [1] and [4] in 

STAR methods; Blue open circle, Figure S6 and Table S7). Critical threshold predicted in 

6D shown in green.

(B-C) Expected initial LICs that gave rise to detectable HIV RNA Λ per well (x-axis) versus 

average log10 maximum HIV RNA copies per cell (y-axis) for viral INHIBITION (B) or 

OUTGROWTH (C) cultures. Horizontal black lines represent mean log10 HIV RNA copies 

per Λ, for Λ ≤ 1 and Λ > 1. Cell dilutions with no HIV RNA positive wells were excluded. 

Welch t-test for comparing these 2 groups, t = −1.26, df = 17.3, p = 0.22 shown in red for 

viral inhibition (B) and for (C) outgrowth, t = −5.75, df = 8.78, p = 0.0003.
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(D) Posterior distribution for k and λ parameters for Weibull-based statistical model to test 

for an Allee effect (See STAR Methods; Equations [1] and [6]). Pest(Λ) is monotonic 

concave (blue) up to and including line; inside this line Pest(Λ) is sigmoid (red) with the 

percentage of posterior k and λ estimates producing sigmoid form (Figure S6) indicated. (E) 

Bayesian inference results in a sigmoid (synergistic) mode using 3 distinct dual-mode 

(monotonic concave versus sigmoid) extinction functions g(x), 3 viral establishment 

definitions, and a prior for k with a maximum frequency at 1 or 0.5, outside the sigmoid 

regime (6D).
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Figure 7. A Cascade of Stochastic Processes and an Allee Effect Result in Rare Viral 
Establishment
Exact number of initial LICs, x (from Model 3 simulation, Figure 4D). Establishment 

probability to 2 × 105 HIV RNA copies, Pest, for exactly x cells (Equation [5] in STAR 

Methods), and mapped to the initial HIV release (red shading in A-E) using Model 3 
(parameters: Table S4). Dashed green lines depict critical threshold at 5100 HIV RNA 

copies.

(A-E) Simulated probability density of total initial HIV release detected (lower x-axis) 

arising from 1–5 exact initial LICs, with percentage resulting in detectable HIV (second 

column) and Pest (third column).
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(F-G) Outcomes of 100 lineages, each from a single initial LIC receiving stimulation. (H) 

Pest as a function of x. Pest (x = 1) = 0.02.
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