
Protein interaction networks revealed by proteome coevolution

Qian Cong1,2, Ivan Anishchenko1,2, Sergey Ovchinnikov3, David Baker1,2,4,*

1Department of Biochemistry, University of Washington, Seattle, WA 98105, USA.

2Institute for Protein Design, University of Washington, Seattle, WA 98105, USA.

3John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 
02138, USA.

4Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA.

Abstract

Residue-residue coevolution has been observed across a number of protein-protein interfaces, but 

the extent of residue coevolution between protein families on the whole-proteome scale has not 

been systematically studied. We investigate coevolution between 5.4 million pairs of proteins in 

Escherichia coli and between 3.9 millions pairs in Mycobacterium tuberculosis. We find strong 

coevolution for binary complexes involved in metabolism and weaker coevolution for larger 

complexes playing roles in genetic information processing. We take advantage of this coevolution, 

in combination with structure modeling, to predict protein-protein interactions (PPIs) with an 

accuracy that benchmark studies suggest is considerably higher than that of proteome-wide two-

hybrid and mass spectrometry screens. We identify hundreds of previously uncharacterized PPIs in 

E. coli and M. tuberculosis that both add components to known protein complexes and networks 

and establish the existence of new ones.

Coevolution-based prediction of interacting residues from aligned protein sequences has 

enabled considerable progress in predicting the structures of monomeric proteins (1–3) and 

complexes of proteins known to interact (4–7). However, using coevolution to identify 

previously uncharacterized proteinprotein interactions (PPIs) over the whole proteome, 

which requires fishing out the 0.1% of pairs (8) that interact among the vast majority of 

noninteracting pairs, remains a formidable task (9, 10). Determining the extent of 

coevolution between residues in two different protein families requires pairing each protein 

in one family with its partner in the other (7,11). This pairing is not straightforward if either 

family includes multiple paralogues with different functions and partners in a species; 

previous studies have thus been largely limited to proteins encoded on the same operon (4–
7). These difficulties, and the complexity of working with millions of protein pairs, have 
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prevented coevolution-based approaches from being used to systematically identify PPIs on 

the whole-proteome scale.

To systematically investigate coevolution in the E. coli proteome (Fig. 1B), we began by 

using the “reciprocal best hit” criterion (12,13) to identify, when possible, putative orthologs 

for each of the 4262 E. coli proteins in each of the 40,607 representative bacterial 

proteomes. We aligned these orthologs (14,15) and constructed paired alignments for all 

4262 × (4262 − 1) ÷ 2 = 9,080,191 protein pairs. The alignments for 5,433,039 pairs contain 

sufficient sequence information (Nf 90 >= 16, see Fig. 1 legend) to assess coevolution (Fig. 

1A). Coevolution detection methods that eliminate transitivity using global statistical 

models, which consider all residue pairs simultaneously (16–18), are too slow for datasets of 

this size. Instead, we used the residue-residue mutual information 

[MI; ∑aa1, aa2P aa1, aa2 · log P aa1, aa2
P aa1 · aa2 ] as an initial screen (19); this is a local 

statistical model because each residue pair is considered independently. We used the 

maximum value of the MI over all residue pairs as a metric for protein-protein coevolution 

(rather than an average or sum over the most strongly coevolving residue pairs) to reduce the 

impact of lack of independence due to transitivity.

We hypothesized that the most strongly co-evolving protein pairs would likely physically 

interact. We assessed this by constructing a “gold-standard” PPI set from E. coli protein 

complexes (20) in the Protein Data Bank (PDB) (table S1) and a negative control set 

consisting of protein pairs drawn from two different complexes (table S2), with no 

experimental data (21–23) indicating interactions between them (we cannot be sure that all 

such pairs do not interact, but the fraction is likely to be small). Selection of coevolving pairs 

with high MI increases the frequency of physically interacting pairs compared with negative 

control pairs (Fig. 1C). Considerably better discrimination (Fig. 1C, green versus red curves) 

of the positive from the negative control could be achieved by down-weighting proteins that 

appear to coevolve with many others through an average product correction (APC) (19).

We selected the top 961,929 pairs (to the left of the black vertical line in Fig. 1C) for further 

analysis using the global methods direct coupling analysis (DCA) (6) and generative 

regularized models of proteins (GREMLIN) (16). These methods improved discrimination 

of the gold-standard set with DCA followed by GREMLIN performing better than DCA 

alone (Fig. 1D, purple versus red curves); still better discrimination was achieved by again 

penalizing residues and proteins that coevolve with many others (Fig. 1D, green versus 

purple curves). Choosing a threshold balancing sensitivity and specificity, we selected the 

top 21,818 pairs (to the left of the black vertical line in Fig. 1D). As a final screen, three-

dimensional models for proteins in each pair were docked together (24), guided by distance 

constraints between coevolving residue pairs, and we selected 804 protein pairs that 

exhibited the strongest coevolution across the docked interface (Fig. 1E and materials and 

methods M7.2). With each increasingly stringent screen step, the number of negative control 

pairs is reduced greatly, whereas the recovery of the gold-standard pairs decreases only 

slightly (table S3). We investigated whether deep learning methods (25) trained on contacts 

in monomeric proteins could provide better discrimination but found they did not improve 

performance (fig. S1; contacts are overpredicted as the prior probability of residue-residue 
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interactions between proteins is far lower than within proteins); such methods likely will 

require direct training on PPIs to be useful for this purpose.

We compared the accuracy of the coevolution-based interaction predictions with those of 

interactions inferred from high-throughput yeast two hybrid (Y2H) (8) and affinity 

purification-mass spectrometry (APMS) (26, 27) over several benchmark sets. One 

benchmark is from the Y2H study, one is from one of the two APMS (26) studies (the other 

APMS study did not contain a benchmark), and two additional benchmarks were derived 

from x-ray and cryo-electron microscopy complexes of E. coli proteins in the PDB and from 

gold-standard complexes in Ecocyc (20) (tables S4 to S7). We evaluate the performance of 

each method on each benchmark using precision (TP/P, where TP is the number of true 

interactions that are correctly predicted, and P is the number of predicted interactions) and 

recall (TP/T, where T is the number of true interactions in a bench-mark). Our coevolution 

screen outperforms the experimental methods (Fig. 1F) in both precision and recall except 

for a worse recall on the Y2H benchmark–this includes more transient interactions that are 

not well conserved among many species and hence are harder to detect by using coevolution 

methods. The interacting partners predicted by coevolution, like those in structurally 

confirmed complexes, have more closely related functions (fig. S2) than those identified in 

the large-scale experiments. The fast coevolution detection methods used in the early, 

higher-throughput steps in our protocol may miss interactions that can be recognized by the 

slower but more sensitive methods in later steps. Therefore, we input protein pairs reported 

to interact in experimental studies or on the same operon directly into the GREMLIN and 

docking screens, resulting in 814 additional pairs (1618 in total, table S8) that pass our 

coevolution and docking thresholds (coevolution+ protocol).

We observed strong coevolution (predicted interacting probability > 0.7) across the 

interfaces of 40% of the gold-standard PPI set but little coevolution (interacting probability 

< 0.2) for 20% of interfaces in this set. To understand why there was such a wide range of 

coevolution across known protein-protein interfaces, we compared the properties of strongly 

coevolving protein complexes with those showing little coevolution (table S9). Overall, 

coevolution across interfaces in binary complexes (two components) was stronger than that 

in larger complexes (Fig. 2A); in large assemblies with interfaces between several protein 

pairs, any single interface may be less critical for complex formation, reducing the extent of 

coevolution. Coevolution was also lower in complexes that contain nucleic acids (Fig. 2B): 

the protein-nucleic acid interactions may contribute to the stability of the complex along 

with the PPIs. Less coevolution was also observed for small and low-affinity interfaces (fig. 

S3) and for interfaces exhibiting more variation between different species (fig. S4). On the 

basis of these observations, we expect that the large set of strongly coevolving protein pairs 

we have identified includes most of the higher-affinity binary complexes in the core 

prokaryotic proteome (we are not able to observe coevolution between proteins present in 

small numbers of species) but likely is quite incomplete in the coverage for larger protein 

and protein–nucleic acid assemblies.

It is instructive to consider three examples in which the interfaces revealed by coevolution 

are incompatible with a single static complex, suggesting dynamic interactions important for 

function. We observed coevolution between the periplasmic lipopolysaccharide (LPS)–
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binding subunits LptA and LptE and between the N-terminal tail of LptE and the outer-

membrane β-barrel LptD in the LPS transporter. LptE sits inside LptD in the cocrystal 

structure (PDB ID: 4RHB), where it cannot bind LptA (Fig. 2C). The coevolution data 

suggest a handoff mechanism: LptE dips into the periplasmic space to accept LPS from 

LptA, maintaining interaction with LptD through the N terminus, and then delivers LPS to 

the extracellular space by transitioning to the conformation seen in the crystal structure. In 

addition to the experimentally determined interfaces between the biotin carboxylase sub-unit 

AccC and the biotin carboxyl carrier AccB (PDB ID: 4HR7) and between the 

carboxyltransferase subunits AccA and AccD (PDB ID: 2F9Y) in the acetyl–coenzyme A 

(CoA) carboxylase complex, we observed coevolution between AccC and AccD and 

between AccB and AccA (Fig. 2D). These interactions suggest a dynamic model in which 

AccB shuttles biotin carboxyl from AccC (which produces it) to AccA-AccD complex, 

which then transfers the carboxyl group from biotin to the substrate acetyl. For polymerase 

V (UmuD2C), coevolution data predict a model of the complex between UmuD and UmuC 

that can explain the self-inhibition mechanism (Fig. 2E). In the predicted UmuD-UmuC 

complex, the active site of UmuC is obstructed by a segment of UmuD that strongly 

coevolves with residues around the active site. After cleavage of the 24 N-terminal amino 

acids of UmuD to generate UmuD’, which then dimerizes (28), the active site-blocking 

segment changes conformation and relieves the inhibition. These examples show that 

coevolution can suggest transient interactions difficult to capture by using conventional 

structural biology methods.

As shown in Fig. 3A, 936 (332 + 604) of the strongly coevolving pairs have been reported 

previously. Because the false-positive rate is non-negligible (10 to 20% overall, see materials 

and methods M8), we searched for additional supporting data for each of the remaining 682 

(1618 – 936) new predictions. We found homologous PDB templates consistent with 

coevolution data for 126 pairs, nearby genomic locations for an additional 143 pairs, and an 

additional 231 pairs with related functions and/or particularly strong coevolution across the 

docked interface (fig. S5 and table S10). The predicted PPIs include both previously 

unknown complexes and previously uncharacterized components of known complexes (table 

S11). The ribosome provides a notable illustration of the latter. We find considerable 

coevolution between core ribosomal proteins and other components, extending over the full 

surface of the assembly (Fig. 3B and table S15). Some of these PPIs have been structurally 

characterized (green bars) or inferred in high-throughput experiments (blue bars), whereas 

others to our knowledge have not been reported previously (magenta bars).

Our coevolution-guided docking models (Fig. 3, C to T) reveal interfaces that may provide 

new insights into biological processes: for example, how the type II toxin MqsR and 

antitoxin MqsA intermesh, enabling antibiotic-resistant cells to dominate in a bacteria 

community (Fig. 3C); how MutS cooperates with MutL to repair DNA mismatches (Fig. 

3D); and how the expression, folding, and secretion of flagellar proteins is controlled by the 

dedicated sigma factor FliA and regulatory proteins such as FlhB (Fig. 3L). Other predicted 

interactions suggest functional roles for poorly characterized proteins. For example, we 

predict that uncharacterized proteins YfhL (Fig. 3G), YbbJ (Fig. 3R), and YjjV (Fig. 3T) are 

involved in regulation of DNA replication, membrane protein quality control, and 

chromosome segregation based on their coevolution with DNA polymerase III subunit delta, 
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membrane protein quality-control factor QmcA, and mac rodomain Ter protein MatP, 

respectively. Particularly interesting cases involve cross-talk between different pathways 

(Fig. 3, F and M to P). For example, some metabolic enzymes (Fig. 3M) and transporters 

(Fig. 3O) coevolve with transcriptional and translational regulators (ribosome hibernation 

factor and sigma D regulator) involved in the transition from growth to stationary phase; 

these may link the metabolic status of the cell with the transition to stationary phase.

Beyond the binary interactions considered above, we observe extended networks of mutually 

coevolving proteins (Fig. 4). Some of these in volve proteins with similar biochemical 

functions–for example, networks of sequentially acting enzymes (fig. S6) and of adenosine 

triphosphate (ATP)-binding cassette (ABC) transporters (fig. S7). Given the number of 

components and range of functions, many of the networks are unlikely to form single 

complexes; rather, they may form multiple reconfiguring complexes involved in more 

complex functions (fig. S8). Some of the larger networks involve proteins mediating the 

same biological processes, such as transcriptional regulation (Fig. 4A), outer-membrane 

integrity maintenance (Fig. 4B), and flagella biosynthesis and assembly (Fig. 4F). Other 

networks connect different processes and perhaps enable bacteria to modulate DNA 

replication (Fig. 4D), or transcription and translation (Fig. 4C) on the basis of the internal 

and external environment–for example, under stress conditions (Fig. 4E).

We investigated the applicability of coevolution-based interaction prediction to 

Mycobacterium tuberculosis, a human pathogen evolutionarily distant from E. coli: only 

41% of M. tuberculosis proteins have clear E. coli homologs (BLAST e-value < 10−5). 

Using the protocol developed for E. coli, we inferred 911 PPIs in M. tuberculosis with an 

expected precision of 83%. Of the predicted PPIs, 662 do not have E. coli orthologs, and 593 

do not have E. coli homologs (BLAST e-value < 10−5). The majority (95%, fig. S9) of these 

predicted PPIs have not been previously described, because of the limited experimental 

characterization of M. tuberculosis proteins (for E. coli, 42% have not been characterized). 

Forty percent of the predicted interacting partners are functionally related according to the 

STRING (functional protein networks) database (23) (Fig. 5); in comparison, the agreement 

between pairs identified in the bacterial two-hybrid screen (29) and functional networks in 

STRING is almost as low as that of randomly selected pairs and much lower than Y2H or 

APMS studies on E. coli (fig. S2), reflecting the challenge of carrying out experimental 

screens on nonmodel organisms (poor protein expression, etc.). In contrast, our coevolution 

screen is likely as accurate for M. tuberculosis as it is for E. coli. We provide a full list of the 

predicted PPIs in table S12. Among these predictions, 293 link poorly characterized proteins 

to partners with well-annotated function (table S13), and 70 involve proteins that were 

suggested to contribute to the virulence of M. tuberculosis (table S14) (30). We expect this 

list to be useful for therapeutic target identification and deciphering the hard-to-study 

biology of M. tuberculosis.

The large number of previously unpredicted binary interactions, networks, and protein 

complex structures described here is notable because no new experiments were required; 

these results instead leverage ongoing genome sequencing efforts. Despite the inevitable 

errors in such large-scale studies, our benchmarking suggests a considerably higher accuracy 

than previous large-scale experimental screens and, hence, a sound starting point for detailed 
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experimental testing by biochemistry and mutagenesis. It will be particularly interesting to 

follow up on interactions that shed light on the function of previously uncharacterized 

proteins and to investigate the suggested couplings between different biological processes 

such as metabolism and translation regulation. The coevolution screen can be carried out on 

organisms like M. tuberculosis, for which experimental PPI screens are difficult or 

intractable. By carrying out the analysis on many organisms, it should be possible to follow 

the evolutionary dynamics of PPI networks. The use of coevolution to unravel interaction 

networks in the core eukaryotic proteome will likely require improved decoupling of 

coevolutionary and phylogenetic contributions to residue-residue covariation and more 

genome sequence data on less complex eukaryotes spanning a wide evolutionary distance. 

Deep learning methods, which have greatly improved the contact prediction in individual 

proteins by considering the full spectrum of amino acid substitutions (3,11,25) rather than 

just the overall magnitude of the covariation, have the potential to more accurately predict 

contacts across interfaces with fewer sequences and further facilitate the identification of 

PPIs in eukaryotes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. PPI identification by using coevolution.
(A) Distribution of E. coli protein family sizes. Nf90 = N90 / L, where L is the number of 

aligned positions in the alignment, and N90 is the number of sequences in the alignment, 

filtered at 90% sequence identity. The black box indicates selected protein pairs. (B) 

Screening pipeline. (C) Protein pairs were ranked by MI, and lines sweep MI threshold 

values from high (left) to low (right). The number (P) of pairs above a MI threshold, the 

number (T) of gold-standard pairs, and their overlap (TP) are used to calculate Precision 

(TP/P, y-axis) and Recall (TP/T, x-axis). Baseline (blue) represents random ranking of pairs. 

Improved performance (green) is achieved by using an average product correction (APC). 

(D) Enhanced recovery of gold-standard pairs by using global statistical methods (DCA and 

GREMLIN). Green curve includes APC-like procedures to penalize false-positive hubs. (E) 

Further increase in precision through protein-protein docking calculations. Pairs were ranked 

by the sum of the probability of contacts made in the best-fitting docked complex. (F) 

Performance of experimental and coevolution screens on diverse benchmarks. The size of 

each benchmark is shown in parentheses. Cells are colored by performance: green for the 

best and red for the worst. Coevolution+, increased coverage by supplementing input to 

GREMLIN and docking screens with pairs missed in initial stages but identified in previous 
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experimental studies (materials and methods M6.1); F-score, harmonic mean of precision 

and recall; Pre, precision; Rec, recall; TP, true positives.
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Fig. 2. Coevolution in known protein complexes.
The extent of coevolution is higher in complexes with fewer subunits (A) and varies with the 

function of the complexes (B). (C to E) Obligate and transient interactions revealed by 

coevolution provide insights into function. Bars connecting coevolving residues are in green 

if an experimental structure containing the interface has been determined and in red if not. 

Black arrows indicate inferred movements of proteins. (C) LPS transporter consisting of 

periplasmic LPS-binding protein LptA (orange), LptE (yellow), and outer-membrane β-

barrel LptD (light blue). (D) Acetyl-CoA carboxylase complex consisting of biotin 

carboxylase (AccC, yellow), biotin carboxyl carrier (AccB, pink), and carboxyltransferase 

subunits (AccA and AccD, light blue and orange). (E) Self-inhibitory mechanism of DNA 

polymerase V (umuD2C). The magenta β-strand in umuD (yellow, top) is cleaved upon 

activation by RecA. The remaining umuD’ dimerizes (bottom) and causes the green β strand 

blocking the active site (black spheres below the magenta strand) in umuC (light blue) to 

move away and release inhibition of polymerase activity.
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Fig. 3. Examples of new components of known complexes and newly identified complexes.
(A) Fractions of coevolving complexes that are consistent with previous structural and 

experimental data. (B) Predicted interactions between nonribosomal proteins and core 

ribosomal proteins are indicated by bars color-coded as in (A) (full names are in table S15). 

(C and D) Previously unknown interfaces extending those in crystal structures. (E to H) 

Interactions supported by large-scale experiments. (I to T) Previously unidentified 

interactions. (C) Coevolution suggests that both the C- (shown) and N-terminal (not shown, 

in cocrystal) domains of antitoxin MqsA interact with toxin MqsR, possibly forming a 

higher-order complex. (D) DNA mismatch repair proteins MutS and MutL (C terminus). (E) 

Sec translocon accessory protein YajC and membrane protein insertase YidC. (F) Cell 

division protein FtsX and murein hydrolase activator EnvC. (G) DNA polymerase III subunit 

delta and ferredoxin YfhL. (H) Protein YciI and riboflavin biosynthesis protein RibD. (I) 

Thioesterase TesA and protein YbbP. (J) tRNA methyltransferase TrmD and tRNA 

sulfurtransferase ThiI. (K) 1,2-phenylacetyl-CoA epoxidase, subunits C and D. (L) RNA 

polymerase sigma factor FliA (green), flagellar biosynthetic protein FlhB (orange), and 

secretion chaperone FliS (yellow). (M) D-ribose pyranase RbsD and sigma D regulator Rsd. 

(N) Cell division topological specificity factor MinE and tRNA-modifying protein YgfZ. (O) 

Phosphate transporter ATPase PstB (green), phosphate transporter accessory protein PhoU 

(blue), phosphate regulon sensor protein PhoR (yellow), and ribosome hibernation 

promoting factor Hpf (pink). (P) Transcriptional factor BolA and ribosome modulation 

factor Rmf. (Q) LPS exporter ATPase LptB and protein YbbN. (R) Membrane protein 

quality-control factor QmcA and protein YbbJ. (S) Nucleoside triphosphatase RdgB and 

DNA utilization protein HofN. (T) Macro-domain Ter protein MatP and protein YjjV.
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Fig. 4. Examples of coevolving protein networks.
Blue lines connect coevolving protein pairs, and green lines connect proteins interacting in 

experimentally determined structures. (A) Network of transcription elongation factors. (B) 

Outer-membrane integrity maintenance network. (C) Linkage between phosphate transport 

and regulation of transcription and ribosome activity. (D) Chaperones and tRNA 

modification enzymes are coupled to DNA replication initiation, perhaps decreasing it under 

stress conditions. (E) Stress response network. (F) Network connecting flagella components 

and regulators of their synthesis.
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Fig. 5. Functional relatedness of predicted interacting partners in M. tuberculosis.
Functional relatedness was assessed by using the M. tuberculosis functional network in the 

STRING database (high: STRING combined score ≥ 0.4, missing: not in the STRING 

database). A considerable fraction (40%) of coevolution-based predictions (green) involve 

partners that are predicted to be functionally related, whereas a much lower fraction (orange, 

2.0%) of PPIs identified in a previous experimental screen involves functionally related 

partners, almost as low (gray, 1.3%) as randomly selected pairs. The 384 predicted PPIs 

involving partners lacking homologs in E. coli and without STRING annotations (blue bar 

on left) are likely to be of most interest to M. tuberculosis researchers. Mtb, M. tuberculosis.
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