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Abstract

Comprehensive identification of direct, physical interactions between biological macromolecules, 

such as protein-protein, protein-DNA, and protein-RNA interactions, is critical for our 

understanding of the function of gene products as well as the global organization and 

interworkings of various molecular machines within the cell. The accurate and comprehensive 

detection of direct interactions, however, remains a huge challenge due to the inherent structural 

complexity arising from various post-transcriptional and translational modifications coupled with 

huge heterogeneity in concentration, affinity, and subcellular location differences existing for any 

interacting molecules. This has created a need for developing multiple orthogonal and 

complementary assays for detecting various types of biological interactions. In this introduction, 

we discuss the methods developed for measuring different types of molecular interactions with an 

emphasis on direct protein-protein interactions, critical issues for generating high-quality 

interactome datasets, and the insights into biological networks and human diseases that current 

interaction mapping efforts provide. Further, we will discuss what future might lie ahead for the 

continued evolution of two-hybrid methods and the role of interactomics for expanding the 

advancement of biomedical science.
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1. INTERACTOMICS AND GENOMICS

The astonishing rate at which next generation sequencing technologies have been 

implemented over the past decade has ushered in an era of rapid genome sequencing that 

would have been unthinkable just a short time ago. The initial price tag of three billion 

dollars and years of global collaboration required to complete the initial draft sequence by 

the Human Genome Project [1] has since been entirely supplanted by sequencing costs of 
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approximately $1,000 per genome that now require a processing time of no more than a few 

weeks [2]. A significant outcome of this sequencing technology revolution and adoption has 

been the ever-expanding ability to use whole genome sequencing to pinpoint genes and 

mutant alleles associated with a variety of heritable traits and sporadic genetic disorders 

[3,4]. While such knowledge is critical to understand the genetic basis of many human 

diseases or dysfunctions in any organism, sequence information alone is limited in its ability 

to describe how genetic variation arising within the cell can lead to given phenotypic 

outcomes [5].

Biophysical interactions among and between proteins, DNA, RNA, lipids, and metabolites 

lie at the heart of all cellular functions. While the genome encodes the blueprint for all 

macromolecular entities, their biophysical interactions and macromolecular assemblies 

decode and implement the genetic information into all biochemical reactions, pathways, and 

structural components in cells. Studying macromolecular interactions, therefore, allows 

researchers to delineate the precise molecular mechanisms and biological functions that 

underlie a given genetic trait that are inaccessible by genomics investigations alone. The 

complete set of macromolecular interactions provides a necessary bridging of genotypes to 

phenotypes [6], in which gene products are viewed as components of an interaction network 

that collectively carry out a particular biological function, and genetic variants and disease 

associated mutations are perturbing agents that alter particular functional interactions within 

the network to give rise to specific phenotypic outcomes depending on the perturbed 

interactions [7]. This frequently elusive functional information is critical to address complex 

human diseases and develop specific and effective therapeutics.

Focusing on the collective behavior of genes, gene products, and their interactions contrasts 

with the traditional approach that typically seeks to identify the relationship between a 

particular gene and its function in isolation. In this collective view, biological functions 

emerge from complex interactions of individual components. A light bulb, by analogy, is 

made of glass, a filament, electric wires, and a socket, yet none of these components are 

individually capable of producing its core function of light emission. Only assembled parts 

with specific interaction partners and with correct interaction orientations can create a 

functional light bulb. The information found in macromolecular interactomes, therefore, is 

necessary for identifying synergistic relationships among various gene products and their 

collective contributions to underlying biological processes.

Much like technological advancements that have led to the expansion of the genomics field, 

so too has the development of a variety of different methodologies over the past few decades 

greatly enhanced the study of protein-protein interactions (PPIs). Owing to the inherent 

complexity of PPIs, such as vast heterogeneities in individual protein abundancies, affinities, 

subcellular localizations, and post-translational modifications, comprehensively 

characterizing protein interactions requires a variety of technological innovations and 

development of different PPI detection methods.
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2. DETECTING PROTEIN-PROTEIN INTERACTIONS OR THEIR 

DISRUPTIONS WITH YEAST TWO-HYBRID

Forward Y2H: One of the most trusted, early-developed, and widely-used systems for 

detecting direct, biophysical interactions between two proteins is the yeast 2-hybrid (Y2H) 

assay. Y2H was introduced by Stanley Fields and Ok-Kyu Song in 1989 [8] as a genetic tool 

for the in vivo detection of direct binary PPIs. Y2H is based on the reconstitution of a 

transcription factor; summarized as DB-X:AD-Y, where DB encompasses a sequence-

specific DNA-binding domain, AD encompasses a transcriptional activation domain, and X 

and Y are the proteins or protein fragments being tested. When selectable markers such as 

the yeast HIS3 gene, involved in histidine biosynthesis, are expressed from a promoter 

containing DB-binding sites, the DB-X:AD-Y interaction confers a selective advantage to 

cells grown on medium lacking histidine, for example. In principle, any such selectable 

marker could be employed. An important benefit from having a positive growth selection is 

that the Y2H assay is scalable. Given the availability of genome-scale clone repositories 

such as human ORF clone collection [9] or complex cDNA libraries covering most 

expressed genes, the assay is suitable for conducting systematic and unbiased screens to 

identify specific interacting protein pairs from a pool of hundreds to thousands of 

candidates, and has led to the construction of proteome-scale PPI networks, or “protein 

interactomes” [6].

Reverse Y2H: Y2H is typically implemented as a positive growth selection for detection of 

direct, binary interactions. A reverse Y2H system has been developed that employs a 

positive selection for the disruption of a binary PPI. In this assay, a counter-selectable yeast 

reporter gene allows the detection of both the presence and absence of an interaction. Under 

the control of a heterologous promoter sequence that binds DB-X, the URA3 gene is 

expressed only when X and Y (expressed as DB-X and AD-Y fusion proteins) interact [10]. 

The Ura3 protein catalyzes the conversion of 5-fluoroorotic acid (5-FOA) in the media into a 

toxic compound, 5-florouracil (5-FU), which causes cell death [10]. A positive growth 

selection ensues when loss of the interaction precludes expression of URA3, resulting in 

resistance to 5-FOA. This is particularly useful when the goal is to isolate mutant alleles in 

which a mutation in either X or Y prevent an interaction or when small molecules capable of 

disrupting an X:Y interaction are present.

3. OTHER METHODS FOR DETECTING PROTEIN-PROTEIN 

INTERACTIONS

A variety of alternative assays for studying biophysical interactions exist that have their own 

advantages, such as the ability to measure binding kinetics, localization-specific interactions, 

interaction visualization, compatibility with live cells, and discovery of PPI inhibitors. 

Assays designed to detect binary interactions often follow a similar split-protein strategy that 

characterizes Y2H, whereby a reporter protein function is reconstituted when two of its 

fragments that are covalently-linked to a pair of proteins are brought in contact through a 

physical interaction. While the modular nature of the DB and AD fragments in Y2H retain 

their respective functions independently, many of the split-protein assays require the two 
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fragments to refold before the reporter’s function can be reconstituted. The ubiquitin split-

protein sensor system [11] is an example of a yeast-based assay that follows this paradigm. 

N-terminal and C-terminal fragments of ubiquitin expressed as fusions to test proteins re-

associate into a functional ubiquitin protein when the protein pair interacts. This prompts a 

signal cascade that ends in the activation of a transcriptional reporter gene in the nucleus. 

Whereas Y2H requires both test proteins to localize to the nucleus for reporter gene 

activation, a key feature of the split-ubiquitin system is that the bait and prey fusion proteins 

interact at the cell membrane. This makes it an especially advantageous assay for the study 

of membrane-bound proteins that are otherwise unable to localize to the nucleus [12]. Along 

with the split-ubiquitin system, other PPI assays, such as the optimized yeast cytosine 

deaminase (OyCD) assay [13], the split-dihydrofolate reductase (DHFR) assay [14], split-

luciferase assay [15–17], and bimolecular fluorescence complementation assay [18] are 

classified as protein complementation assays due to the requirement of the reporter protein 

fragments to refold with each other in order to signal a proper interaction.

Similarly, MAPPIT, KISS, BATCH, and RRS systems measure binary PPIs [19–23] by 

reconstituting or mimicking the function of a multi-subunit protein complex in a signal 

transduction pathway. When test bait and prey proteins interact, a signal transduction 

cascade is activated that leads to reporter gene expression in the nucleus. While these 

systems have been very useful for studying and validating binary interactions in various host 

cell settings such as bacteria, yeast, and mammalian cells, a proteome-scale interactome 

determination has not been implemented.

While Y2H and other split-protein assays detect direct binary interactions, biochemical 

methods utilizing co-fractionation or affinity purification return information on co-complex 

associations. Affinity purification frequently involves using antibodies immobilized on a 

solid substrate to capture a bait protein, either directly or via a particular epitope tag along 

with all other proteins that inhabit the same protein complex. Mass spectrometry is then 

employed to determine the identity of the proteins that co-purify with the bait. In contrast to 

Y2H, these associations of prey proteins with the bait are a mix of both direct and indirect 

interactions and follow up studies are required to determine the precise contacts between any 

given pair of interactors. Affinity purification methods can be used with proteins that are 

endogenously expressed in their native cellular environment rather than having to be 

expressed in a heterologous host organism, such as yeast. This permits the possibility of 

capturing proteins containing post-translational modifications that may be critical for 

mediating an interaction between a particular set of proteins.

The different benefits and drawbacks exhibited by these assays speak to the importance for 

selecting the most appropriate assay for the task at hand. By the same token, however, the 

complementarity in the data generated by orthogonal assays underlies a potential benefit for 

implementing a “toolbox” of different assays, each with its own ability to detect a subset of 

different interactions, to uncover all possible interactions of a given protein.

The great success of two-hybrid methods has been due largely to their relatively simple, 

inexpensive, and rapid determination of binary macromolecular interactions in an in vivo 
cellular environment. Further, yeast and bacterial cell-based two-hybrid methods (either as 
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transcription factor reconstitution or protein complementation assays) are easily scalable to 

high-throughput, proteome-scale experimental settings often aided by powerful genetic 

selections with relatively little hands-on time and technical requirements, while such 

advantages are not readily attainable by pure biochemical interaction determinations.

4. BINARY ASSAYS TO DETECT OTHER MACROMOLECULAR 

INTERACTIONS

The two-hybrid paradigm has also been adapted for detecting interactions between proteins 

and other macromolecules. A yeast one-hybrid assay (Y1H) detects DNA-binding proteins 

that are expressed as AD-fusions in the presence of a DNA target sequence that is cloned 

immediately upstream of a transcriptional reporter gene. The AD-fusion protein will activate 

the reporter gene only if it binds to the target sequence in the reporter gene promoter and 

then recruits the RNAPII transcriptional machinery [10]. While other DNA-binding assays 

such as chromatin immunoprecipitation (ChIP) are primarily used to identify the specific 

DNA target sequences that a particular protein binds to, Y1H identifies the DNA-binding 

proteins among many hundred candidates that interact with a particular DNA target 

sequence [24]. Some limitations of Y1H method were noted, where Y1H may detect 

protein-DNA interactions (PDI) that do not occur in native host cell environments or miss 

PDIs that require specific post-translational modifications [24].

The yeast three-hybrid system (Y3H) was developed to study protein interactions with 

RNAs, small molecules, and natural ligands. In a Y3H system for identifying RNA-binding 

proteins, a target RNA is expressed in yeast as a hybrid sequence by adding cognate binding 

sites for a DB-fusion protein that tethers the target RNA to the DB-fusion protein. When an 

AD-fusion protein interacts with the target RNA, thereby forming a tripartite complex, 

RNAPII transcriptional machinery is recruited and reporter gene expression ensues [25,26]. 

Likewise, in a Y3H setting for identifying small molecule binding proteins, a hybrid 

synthetic molecule is created by adding a chemical spacer to a particular small molecule, 

and this chemical spacer mediates the attachment of the tested molecule to DB-fusion 

protein. If an AD-fused protein binds to the target small molecule, the resulting tripartite 

complex mediates transcriptional activity of a reporter gene [27–29]. Although several 

limitations are observed for these two methods such as difficulties in detecting weak ligand-

protein interactions and targeting multimeric protein complexes, and the loss of activities by 

the chemical modification of ligands [30], they allow a high-throughput screen of candidate 

proteins that interact with target RNA or small molecules.

5. EMPIRICAL FRAMEWORK FOR INTERACTOME DATA GENERATION 

AND QUALITY ASSESSMENT

Various two hybrid methods and other interaction assays allow the systematic determination 

of macromolecular interactions such as protein-protein, protein-DNA, and protein-RNA 

interactions. Yet, several important considerations remain [31]. The first issue is how to 

ensure that an interaction dataset is of high-quality, and the second is how to assess the 

completeness of an interactome. To achieve the highest quality maps and assess their 
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completeness, it is important to implement a rigorous experimental and analytical 

framework. Four parameters that have been suggested for gauging the quality and 

completeness of an interaction dataset are assay sensitivity, assay precision, sampling 

sensitivity, and search space [31].

All interaction assays have a limited assay sensitivity such that each assay can detect only a 

fraction of all true-positive interactions. Assay sensitivity is affected by various experimental 

parameters, such as the presence and orientation of various tags or linkers fused to the 

proteins being tested, the choice of reporters, expression levels of the two tested proteins, 

and various cellular environments or in vitro assay conditions, which collectively affect the 

detectability of true-positive interactions. For binary PPI assays of all types performed under 

different cellular environments, all individual assays were shown to detect only 10~30% of a 

positive reference set of well-established binary interactions. Therefore, each assay exhibits 

a false negative detection rate of 70–90%, and different assays display limited overlap 

among detected PPIs [32].

Assay precision refers to the fraction of observed pairs in an interactome dataset that are true 

positives. The precision of an interactome dataset can be estimated with a positive reference 

set (PRS), a random reference set (RRS), and a random subset of pairs of the interactome 

dataset in question. Using another interaction assay orthogonal to the mapping method, the 

random subset, PRS, and RRS pairs are tested for interactions. The quality of the dataset can 

be inferred by comparing the recovery rate of the sample from the interactome to the PRS, at 

a threshold with a very low recovery rate for the RRS. A comparable recovery between the 

interactome pairs and the PRS indicates a high quality, low false positive rate. If there is a 

statistically significant non-zero correlation between testing positive in the interactome 

mapping assay and in the validation assay, then this should be accounted for. This is 

achieved by using only the subset of the PRS that is found with the same experimental 

method as the interactome dataset. A full quantitative estimation of the precision value and 

its uncertainty can be estimated by modeling the results as two binomial distributions.

PPRS Bin(nPRS, α + β), PDATA Bin (nDATA, ρα + β)

Where PPRS and PDATA are the number of pairs scored positive in the orthogonal assay out 

of the total number of tested pairs for PRS and the dataset (nPRS and nDATA respectively). a 

is the probability of true positive interactions to score positive with the orthogonal assay, 

estimated by testing PRS. β is the false positive rate of the orthogonal assay, estimated by 

RRS. ρ is the parameter of interest, which is the precision of the dataset. The estimate of the 

precision parameter and its uncertainty are calculated using a Monte Carlo method. Two 

underlying assumptions for this method that the PRS is of very high precision and that it is 

representative of the interactions found in the interactome dataset. High-quality interactome 

datasets have been reported to show ~80% estimated precision using this method [31].

‘Sampling sensitivity’ is the percentage of all identifiable true-positive interactions detected 

by a single run of a given assay performed under a specific set of experimental conditions. 

Since a single screen never detects 100% of all detectable true positive interactions, 
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experiments are usually repeated multiple times to approach a detection saturation. In a 

high-throughput experiment setting, several parameters can contribute to the sampling 

sensitivity. In Y2H, for example, the mating efficiency of yeast cells and the pooling density 

of AD proteins limit the ability to systematically test all possible combinations of protein 

pairs in any one screen (e.g. particular yeast cells fail to mate with yeast strains of their 

interaction partner in the pool of many candidate yeast strains). Typically, as an example, 

there is a fraction of positive interactions repeatedly detected in multiple experiments while 

some interactions are detected in only one experiment among many repeats. If everything is 

properly set up, the number of uniquely identified pairs should approach a plateau after a 

number of repeated screens with decreasing numbers of newly identified positive interactors 

in each subsequent screen.

‘Search space’ indicates the fraction of all possible pairwise protein interactions that are 

tested. Depending on the list of bait and prey constructs or the expressed host cell proteome 

for mass spectrometry-based assays, the resulting dataset is derived from only a fraction of 

the entire proteome, which consequently limits the maximal detection of true-positive 

interactions.

When all these parameters are considered and optimized, a well-defined, high-quality 

interactome map can be generated.

6. SYSTEMS BIOLOGY ANALYSIS OF MACROMOLECULAR 

INTERACTOMES

With high-quality interactome maps, interesting biological questions can be addressed, often 

utilizing graph theory analysis of the network. From a high-quality, systematically derived 

and unbiased human interactome map, the vast majority of proteins associated with human 

diseases are distributed uniformly throughout the entire protein interactome space, while the 

interactions reported in the literature tend to be highly focused on only a very small fraction 

of the space [6]. This observation indicated a tendency that individual studies have been 

heavily influenced by the popularity of genes and their pathways, rather than the actual 

occurrence of diseases, which leaves many disease-associated genes and their interaction 

partners significantly understudied. As an interactome map is meant to bridge the gap 

between various genetic events and underlying biological and phenotypic responses, it has 

been used to identify how diseases are manifested in the network of interacting proteins. 

When all known phenotypes and disease-associated genes were linked as a network, Goh et 

al observed that multiple diseases share common genetic origins across a wide range of 

diseases [33]. Conversely, proteins encoded by genes associated with similar disorders 

exhibited a tendency to physically interact with each other more than random proteins and 

form clusters in the same neighborhood of the interactome network [33,34]. These clusters 

are called disease modules [35], where diseases can be viewed as localized perturbations 

within a certain interactome neighborhood [36]. A high similarity of phenotype and disease 

comorbidity was observed when disease modules overlap in the interactome network 

[37,38], and applied to identify new drug targets [38]. Similarly, interactome maps have 

helped to identify genes that have not been previously associated with a given disease 
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[39,40], for example, candidate cancer gene products in GWAS loci exhibit significant inter-

connectivity to known cancer gene products encoded by Sanger Cancer Census genes [6]. 

Likewise, a high-quality interactome map is often combined with other comparable quality 

interaction datasets to generate more comprehensive interactome maps [41] or integrated 

with other omics datasets to address various biological questions [42,40].

The tsunami of human population genetic variation data from modern genetic studies [43] 

highlights the need to be able to discern phenotypes conferred by disease-associated 

mutations versus natural variants. Nearly half of all reported inherited disease mutations in 

nuclear genes are missense mutations in a protein coding region leading to single amino acid 

substitutions [44]. From 4,222 structurally resolved PPIs, it was observed that such 

mutations are significantly enriched in amino acid sequences located in or near the interface 

with interacting partner proteins represented by 56% of all cases [45], which often results in 

the perturbation of interaction edges (‘edgetic’) rather than a ‘nodal’ perturbation [46,45]. 

Interestingly, when these mutations occur at different positions of a single protein, different 

phenotypes could be conferred as a reflection of differently perturbed interactions in the 

interactome network [46,45]. The question of whether disease-associated mutations 

specifically perturb the protein interactome has been systematically explored in the context 

of 2,890 disease-associated human mutations with non-synonymous missense changes [47]. 

After filtering WT genes for displaying multiple Y2H positive PPIs found in a screen against 

7200 human proteins, the interactome of 197 disease associated mutant proteins were 

determined and subsequently compared to the interactome of WT proteins and that of 

natural variants. In the study, two-thirds of disease-associated mutants exhibited a 

perturbation in their wild-type PPIs, while the interactions among natural variants were 

largely unaffected. A similar observation was made for the DNA-binding capability of 

transcription factors that harbor disease mutations in that they showed a tendency of 

perturbed DNA-binding profile compared to those of natural variants and wild-type proteins. 

These findings presented the concept that interactomics can be applied to discern “wheat 

from chaff” such that functionally defective mutations can be prioritized over benign natural 

variants by testing their perturbation signature within a reference interactome network. 

Utilizing this concept, interactomics have been applied to interpret genetic variants 

associated with a particular disease such as cancer [48,49], neurodegeneration [50], and 

others, all of which help to prioritize candidate genes based on the global view of 

macromolecular interactome.

7. FUTURE PERSPECTIVE OF TWO HYBRID METHODS

In the three decades since the invention of the first two-hybrid method, we have witnessed 

the expansion and various adaptations of this general method [15,19,20,51,21,10], which has 

been instrumental in broadening our understanding of complex biological systems [33]. In 

spite of these advances, challenges remain for two hybrid methods. The cost, time, and 

resources for determining an interactome are several orders of magnitude higher than the 

cost of genome sequencing and gene expression profiling. However, genome-sequencing 

alone cannot unambiguously establish function and phenotype. Limited assay sensitivity and 

the need for combining multiple complementary two-hybrid methods to maximize the 

identification of true-positive interactions all make building a complete interactome very 
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challenging. Adherence to an empirical framework approach will ensure that high quality 

datasets that approach a complete reference interactome are produced. A comprehensive 

characterization of macromolecular interactomes in normal tissue or under disease 

conditions in human or other model organisms has not yet been attained, nor is yet 

understood how interactomes might change over time, under various physiological 

conditions or under disease states, which will be a very important goal to address in the 

years to come. How two-hybrid methods can and will evolve remains to be seen. Systematic, 

unbiased two-hybrid methods are still the most effective way to generate high quality binary 

interaction maps, and, when the networks are integrated with high quality data from other 

technologies, are best suited to provide the most proximal, mechanistic information to 

elucidate the molecular and genetic events that increase or decrease susceptibility to a wide 

range of human disease.

Continued development of versatile, ultra-high-throughput, robust, cost-effective, and highly 

sensitive two-hybrid methods is expected to come. Recent adaptations of DNA-barcoding 

technologies to protein interactomics are quite promising, ongoing developments. There, 

individual plasmids or proteins are labeled with unique DNA barcodes, and the protein 

interactions are determined by next-generation DNA sequencing of the genetic fusion of 

DNA barcodes in yeast [52] or their co-localization on a polyacrylamide thin film [53] by 

library-by-library format multiplex assays. Similarly, a massive multiplex Y2H method that 

employs the use of a Cre recombinase as a reporter gene was developed [54] whereby the 

gene fusion of interacting bait and prey proteins is induced by the expression of Cre. By 

converting the problem of detecting PPIs into a much simpler problem of DNA sequencing 

for detecting DNA-barcoded proteins [53], fused DNA-barcodes [52], or fused genes [54], 

these methods have the potential to drastically increase the throughput capacity of protein 

interactomics by several orders of magnitudes. With such advances, two hybrid methods can 

be applied to new frontiers such as building precision medicine tools for a patient diagnosis 

by profiling the interactome of patient-specific variants [55] or predicting their drug 

responses. The development of therapeutic drugs against specific PPIs is beginning to 

emerge [56], which are characteristically distinctive from traditional drug targets. Such 

efforts will be further facilitated by technological advances in two-hybrid methods, since one 

of major technological bottlenecks involves testing large numbers of therapeutically relevant 

human PPIs against vast numbers of small molecules in a combinatorial fashion to discover 

highly specific PPI modulatory compounds.

Altogether, the field of interactomics and its continued evolution holds great promise for 

advancing biology and medicine and understanding and precisely controlling complex 

biological networks.
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