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Abstract

Approximately half of all cancer patients receive radiation therapy, which is conventionally 

delivered in relatively small doses (1.8 to 2 Gy) per daily fraction over 1–2 months. Stereotactic 

body radiation therapy (SBRT), in which a high daily radiation dose is delivered in 1 to 5 

fractions, has improved local control rates for several cancers. However, despite the wide-spread 

adoption of SBRT in the clinic, controversy surrounds the mechanism by which SBRT enhances 

local control. Some studies suggest that high doses of radiation (≥10 Gy) trigger tumor endothelial 

cell death, resulting in indirect killing of tumor cells through nutrient depletion. On the other hand, 

mathematical models predict that the high radiation dose per fraction used in SBRT increases 

direct tumor cell killing suggesting that disruption of the tumor vasculature is not a critical 

mediator of tumor cure. Here, we review the application of genetically engineered mouse models 

to radiosensitize tumor cells or endothelial cells in order to dissect the role of these cellular targets 

in mediating the response of primary tumors to high-dose radiotherapy in vivo. These studies 

demonstrate a role for endothelial cell death in mediating tumor growth delay, but not local control 

following SBRT.
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Introduction

Stereotactic body radiation therapy (SBRT) is now routinely used in the clinic to deliver 

large doses of daily radiation in a small number of fractions to a very precise target volume 

(1). This type of radiation delivery was first developed for the treatment of brain tumors in 

the early 1950s (2) and was not shown to be feasible in the setting of extracranial tumors 

until the 1990s (3, 4). With advances in imaging and medical physics, non-small cell lung 

cancer patients with inoperable tumors were among the first patients to be treated with 

SBRT (5). Remarkably, local control rates reached approximately 80–90% across several 

clinical trials (6–9), significantly higher than historical rates achieved with conventional, low 
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dose per fraction radiotherapy. Therefore, SBRT is now being employed for the treatment of 

a wide variety of cancers, including non-small cell lung cancer, hepatocellular carcinoma, 

and oligometastatic disease at a variety of sites, with impressive rates of local control (10–

15). Despite the efficacy of SBRT in the clinic, controversy surrounds the mechanism by 

which high-dose radiotherapy leads to tumor eradication. Two competing models on the 

mechanistic basis for improved efficacy with SBRT predominate: (1) functional impairment 

of tumor vasculature results in indirect cell death by killing tumor cells that would otherwise 

not have died from radiation or (2) higher radiation dose per fraction increases the 

biologically effective dose which leads to more direct tumor cell death. By understanding 

the mechanism of improved local control by SBRT, new therapeutic approaches with 

targeted agents can be designed to enhance the therapeutic ratio.

Indirect Tumor Cell Killing Hypothesis

Data supporting the first model were recently reviewed by Song and colleagues (16). They 

argue that radiation-induced tumor cell death alone is insufficient to explain the increased 

rates of local control achieved with SBRT as radiation doses are not large enough to kill 

every tumor cell (17–23). For example, in vitro survival studies using human tumor cell lines 

suggest that single radiation doses between 22 and 36 Gy are required to eradicate the 

number of cells estimated to be present in a 3 cm tumor (24). Although single doses of 30 

Gy and higher are used in the clinic to achieve local control (25, 26), the in vitro survival 

studies found that the curative radiation dose increased by a factor of approximately three 

when 20% of the tumor cells were assumed to be hypoxic as hypoxic tumor cells are more 

resistant to radiation (24). As the calculated radiation dose for in vitro cell killing exceeded 

the SBRT dose used in the clinic, the investigators concluded that the efficacy of SBRT 

required indirect in addition to direct tumor cell death (27). Further supporting this model, 

the number of surviving tumor cells in a fibrosarcoma xenograft several days after high-dose 

radiotherapy was significantly less than the number of cells immediately following radiation 

exposure, suggesting that indirect killing mediates a second wave of tumor cell death after 

irradiation (21).

Early studies using tumor allografts revealed that low doses of radiation (< 5 Gy) caused 

only a temporary impairment in vascular function, while irradiation with 10 Gy triggered a 

persistent decrease in circulating blood volume in tumors (28, 29). A connection between 

such vascular dysfunction and indirect tumor cell death has been well described (30–33). 

Garcia-Barros et al. assessed endothelial cell death in xenograft tumors along a range of 

radiation doses, but reported endothelial cell death only at doses greater than 8 Gy (34), 

suggesting that radiation doses associated with conventional radiotherapy are not capable of 

killing vascular endothelial cells. In this study, tumors transplanted into mice lacking acid 

sphingomyelinase were resistant to endothelial cell apoptosis and had a shorter growth delay 

following high-dose radiotherapy when compared to tumors implanted into wild type mice 

(34). The authors concluded that a decrease in endothelial cell death caused resistance to 

SBRT, although this finding was later challenged (35, 36). Recently, these investigators 

further characterized the response of transplanted tumors in acid sphingomyelinase knock 

out mice and proposed a new mechanism, which did not rely on endothelial cell death, to 

explain the indirect cell death associated with SBRT. They argued that high single dose 
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radiotherapy triggers ischemia/reperfusion injury that interferes with homologous 

recombination, thereby preventing the repair of radiation damage in tumor cells (37). 

Regardless of the mechanism of indirect cell death, these studies indicate that high-dose 

radiotherapy (≥10 Gy) can cause indirect tumor cell death and suggest that this “new 

biology” could explain increased efficacy of SBRT.

Proponents of the indirect cell death hypothesis contend that the linear quadratic model, 

which is commonly used to model radiation-induced cell death, does not accurately estimate 

tumor cell killing at high doses per fraction. It is argued that this mathematical model 

overestimates the amount of cell death caused directly by radiation-induced DNA damage 

because it does not account for indirect cell death mediated by the immune system or 

vascular dysfunction (38). Incorporation of a secondary tumor cell killing mechanism into 

the model results in a downward bend of the dose response curve at radiation doses greater 

than 10 Gy (27). Thus, the adapted model predicts that SBRT causes more cell death than 

would be estimated by the standard linear quadratic model, which may explain the increased 

rates of local control with SBRT.

Direct Tumor Cell Killing Hypothesis

The second model rejects the need for a “new biology” to explain the efficacy of SBRT and 

argues that improved outcomes after SBRT simply reflect increased direct tumor cell death 

from the higher radiation dose (39, 40). Experimental evidence supporting this model comes 

from Budach et al., who investigated the radiation dose required to cure 50% of tumors 

implanted into either nude or severe combined immunodeficiency (SCID) mice. Although 

SCID mice are three-fold more radiosensitive than nude mice due to a mutation in DNA-
dependent protein kinase (DNA-PK) that impairs DNA repair, no difference was detected in 

the single dose of radiation needed to achieve local control in a panel of human tumors (41). 

These data indicate that the radiosensitivity of tumor stromal cells, such as endothelial cells, 

are not critical regulators of tumor cure. This study supports the direct cell killing 

hypothesis, which asserts that stromal cell death is not a critical mediator of local control. 

Importantly, the direct tumor cell killing hypothesis does not imply that stromal cells lack 

any role in tumor response to radiation therapy. Indeed, using doses of radiation that were 

not sufficient for tumor cure, Budach and colleagues observed increased growth delay of 

some xenografts in radiosensitive SCID hosts (41). Other studies combining molecularly 

targeted drugs with radiation therapy have also demonstrated that an increase in tumor 

growth delay does not always translate to an enhanced rate of local control with a curative 

radiation dose (42, 43). These studies highlight the importance of characterizing the impact 

of stromal cell death directly on local control.

Furthermore, local control for patients with non-small cell lung cancer treated with 

conventional radiotherapy or SBRT is enhanced with an increase in the biologically effective 

dose (BED) (44). BED provides a mathematical framework to adjust for dose fractionation 

to compare different radiation therapy prescriptions (45). Correcting the human lung cancer 

dataset for BED resulted in comparable rates of local control between the conventional RT 

and SBRT arms (39). These data suggest that the higher BED associated with SBRT may 
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completely explain the increased rates of local control, thus eliminating the need for indirect 

tumor cell killing to explain the efficacy of SBRT.

Proponents of the direct tumor cell killing model also argue that the linear-quadratic model 

accurately predicts radiation-induced cell killing at high, single fraction doses (46). Data 

collected in irradiated rat spinal cord, mouse skin, and mouse small intestine in vivo fit the 

linear-quadratic model over a wide range of doses (47–49). Likewise, local control data in 

patients with primary lung cancer or brain metastases irradiated with SBRT were better fit 

by the linear-quadratic model than any adapted model that factored in indirect tumor cell 

death at high doses (50). Therefore, these results suggest that the linear quadratic model 

should not be replaced with an adapted model that incorporates increased cell death at high 

doses and they argue against the need for a “new biology” to explain the efficacy of SBRT.

Using Primary Mouse Models to Dissect the Cellular Target of Radiotherapy

To address the controversy regarding the cellular target that mediates the efficacy of SBRT, 

we utilized genetically engineered mouse models of cancer. Although transplanted tumor 

models are relatively fast and inexpensive for radiation therapy studies, experiments with 

xenografts are often unable to predict clinical outcomes (51–53). Genetically engineered 

mouse models (GEMMs), by contrast, require additional time and expense to develop but 

enable the study of autochthonous tumors that arise in their native microenvironment with an 

intact immune system (51). These primary tumors may more accurately model the role of 

stromal cells in human cancer compared to transplanted tumors (54, 55). Indeed, patterns of 

tumor vascularization and hypoxia differ significantly between spontaneous and transplanted 

models (51, 56, 57). Therefore, GEMMs may better recapitulate the response of human 

cancer to treatment in the clinic (58–60). Like all model systems, GEMMs have limitations, 

including the limited number of genetic alterations and decreased heterogeneity. 

Nevertheless, the intact stromal cell compartment and similarity with human cancer are 

critical considerations when investigating the impact of the tumor microenvironment on 

response to radiation therapy.

Dual Recombinase Technology

The utilization of the Cre/loxP system to mediate site-specific recombination in the 1980s 

(61, 62) revolutionized the field of cancer biology by enabling the generation of 

sophisticated GEMMs of cancer. Cre is a bacteriophage P1-derived enzyme that recombines 

a pair of DNA sequences termed loxP sites. These sites are often engineered into genomic 

DNA in order to flank a target or “floxed” gene so that the flanked region will be deleted in 

the presence of Cre. In a similar manner, the Flp-FRT system, adopted from Saccharomyces 
cerevisiae in the mid-1990s, employs the recombinase activity of flippase (Flp) to delete 

genomic targets flanked by Flp recombinase target (FRT) sites, referred to as “FRTed” 

regions (63). The recombinase activity of Cre and Flp can be controlled by a variety of 

mechanisms, including viral delivery and expression under the control of a cell-type specific 

promoter (64). Thus, Cre and Flp can temporally and spatially restrict recombination to 

study tumor development and response to radiation therapy (65). By combining Cre and Flp 

in a GEMM, the sophisticated interactions between tumor cells and the supporting stroma 
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can be dissected by using one recombinase for tumor initiation and the second recombinase 

to genetically manipulate a specific stromal compartment (66, 67). Recently, we applied this 

dual recombinase technology to investigate the role of endothelial cells in mediating the 

response of primary tumors to SBRT (68–70).

Radiosensitization of Specific Cell Types within a Tumor

As DNA damage is a key cause of cell lethality following exposure to ionizing radiation 

(71), blocking DNA repair mechanisms may increase the number of unresolved DNA 

double-stranded breaks thus enhancing radiation-induced cell death. Ataxia telangiectasia 

mutated (ATM) is a protein kinase that regulates homologous recombination and cell cycle 

arrest through the phosphorylation of a large number of downstream targets, including p53, 

MRE11, RAD50, BRCA1, and CHK2 (72–75). Additionally, patients with inherited 

homozygous mutations in ATM, human cell lines lacking functional ATM, and Atm 
knockout mice are hypersensitive to radiation (76–78). Therefore, genetic deletion of Atm in 

either primary tumor or endothelial cells can be utilized to radiosensitize specific cell 

populations in order to define the roles of these cell types during tumor response to 

radiotherapy. To specifically assess the impact of vascular damage on tumor response to 

radiation, we employed dual recombinase technology to delete floxed alleles of Atm 
specifically in endothelial cells. In this model, viral delivery of Flp recombinase initiated 

tumorigenesis by deleting FRTed alleles of the tumor suppressor p53 and drove expression 

of the mutated oncogene KrasG12D by deleting an upstream FRTed STOP cassette at the 

endogenous promoter (79). Cre recombinase was not used to initiate the primary tumor in 

this system, but instead was expressed under the control of the VE-Cadherin promoter to 

direct Cre expression to endothelial cells in order to delete floxed Atm alleles specifically in 

the vasculature without affecting Atm gene expression in the primary tumor cells (Table 1). 

To specifically radiosensitize tumor cells, we used Cre-loxP technology to simultaneously 

initiate tumorigenesis and modulate expression of Atm exclusively within the tumor cells. 

Cre expression in tumor initiating cells activated expression of oncogenic KrasG12D by 

deleting a floxed STOP cassette and deleted floxed alleles of the tumor suppressor p53 in 

addition to Atm. Because Atm was deleted in the tumor initiating cells, which gave rise to 

the primary tumor, this genetic approach specifically enhanced the radiosensitivity of the 

tumor cells (Table 1).

Primary Sarcomas

A GEMM of primary soft tissue sarcoma (79–81) was the first setting in which we 

employed dual recombinase technology to examine the impact of endothelial or tumor cell 

radiosensitization on tumor response to SBRT. In this primary mouse model, an SBRT dose 

of 20 Gy caused vascular injury as measured by dual energy micro-Computed Tomography 

(micro-CT) and histology (82). To characterize whether endothelial cells are critical targets 

of SBRT, we used adenoviral delivery of Flp to initiate sarcomagenesis in FRT-STOP-FRT 
(FSF)-KrasG12D; p53FRT/FRT; VE-Cadherin-Cre; AtmFL/+ (KPVAFL/+) or AtmFL/FL 

(KPVAFL/FL) mice (69). Thus, primary sarcomas expressing oncogenic KrasG12D with both 

alleles of p53 deleted were compared, with one cohort lacking expression of both alleles of 

Atm in endothelial cells (KPVAFL/FL) and the other retaining expression of one wild type 

allele of Atm in endothelial cells (KPVAFL/+). As expected, loss of ATM signaling in the 
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vasculature enhanced endothelial cell death 24 hours post irradiation with 20 Gy. Consistent 

with results in transplanted tumor models, radiosensitization of the endothelial cell 

compartment of primary sarcomas resulted in vascular dysfunction, as indicated by a 

decrease in perfusion after radiation exposure. Furthermore, an increase in the total amount 

of cell death in KPVAFL/FL tumors suggested that functional changes to the tumor 

vasculature triggered indirect killing of adjacent tumor cells.

To evaluate the impact of enhanced vascular dysfunction after SBRT, tumor-bearing mice 

were treated with a single 20 Gy dose of focal irradiation (69). Growth delay to a volume 

tripling endpoint in tumors lacking expression of Atm in the vasculature was significantly 

longer, when compared to control tumors that retained expression of one allele of Atm. 

These results in a primary sarcoma model support the indirect tumor cell hypothesis by 

demonstrating that an increase in the number of dying tumor cells after SBRT leads to an 

increase in growth delay. However, these data are not sufficient to conclude that the 

increased indirect tumor cell death caused by vascular dysfunction contributes to the efficacy 

of SBRT to achieve local control, which is a more relevant clinical endpoint. In order to 

assess the role of endothelial cell radiosensitivity on primary tumor eradication by SBRT, 

sarcomas in KPVAFL/+ and KPVAFL/FL mice were treated with a curative single dose of 50 

Gy (68). Although 50 Gy was sufficient to cure approximately 10% of the sarcomas, mice 

bearing tumors with enhanced vascular radiosensitivity did not achieve a higher rate of local 

control. Why was the rate of local failure the same in tumors with enhanced indirect tumor 

cell killing? One potential explanation is that different tumor cells have different 

susceptibilities to indirect cell killing. Just as hypoxic tumor cells are resistant to radiation 

therapy, cells that have adapted to survive in the hypoxic microenvironment far from tumor 

vasculature may also be resistant to indirect cell death caused by vascular dysfunction. In 

this scenario, the radiation dose required to kill every hypoxic tumor cell with the capacity to 

cause local recurrence would not be affected by increased indirect tumor cell death adjacent 

to blood vessels. Regardless of the explanation, these findings support a role for endothelial 

cell death in sarcoma growth delay following SBRT, but not in local control following high 

single dose irradiation.

As a positive control for the ability to modulate rates of tumor eradication with SBRT, we 

also deleted Atm specifically in tumor parenchymal cells. Pax7-CreER; LoxP-STOP-LoxP 
(LSL)-KrasG12D; p53FL/FL; AtmFL/+ (P7KPAFL/+) and AtmFL/FL (P7KPAFL/FL) mice were 

injected into the gastrocnemius muscle with 4-hydroxy-tamoxifen to activate Cre 

recombinase to initiate sarcomagenesis and delete Atm within the same cell population (68). 

Deletion of both floxed alleles of Atm (P7KPAFL/FL) within the tumor cells of the primary 

sarcoma resulted in enhanced radiosensitivity. This radiosensitivity translated to a 

significantly improved tumor response to 50 Gy compared to tumors with deletion of one 

floxed allele of Atm (P7KPAFL/+), as measured by the time to tumor volume tripling and 

rate of local control. Collectively, these findings in a primary sarcoma mouse model 

demonstrate that tumor cell death, rather than endothelial cell death, is a critical mediator of 

achieving local control following SBRT, which supports the direct cell killing hypothesis.
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Primary Lung Cancer

In the clinic, SBRT is routinely used to treat inoperable non-small cell lung cancer because 

of the high rate of local control (4). To study the role of endothelial cell death in SBRT for 

lung cancer, we utilized a sophisticated GEMM of non-small cell lung cancer to 

radiosensitize the tumor vasculature (79, 83). An adenovirus expressing Flp recombinase 

was administered intranasally to KPVAFL/+ and KPVAFL/FL mice to initiate tumorigenesis in 

the lung epithelium, while the Cre-driver, VE-Cadherin, mediated recombination of Atm in 

the vasculature (70). Upon detection of lung tumors by micro-CT imaging, mice were 

treated with a single 15 Gy dose of whole thorax irradiation and individual tumors were 

monitored every two weeks by micro-CT to evaluate tumor growth. As expected, an increase 

in tumor endothelial cell death as well as total cell death was observed in KPVAFL/FL mice 

24 hours post radiation exposure, which supports the occurrence of indirect tumor cell death. 

Despite the enhanced radiosensitivity of the tumor vasculature and indirect tumor cell death, 

no significant difference in tumor growth delay was detected 2 to 6 weeks after 15 Gy in 

tumors lacking Atm expression in the vasculature as compared to tumors retaining one wild 

type allele of Atm. A small, though not statistically significant, decrease in tumor volume 

was detected in KPVAFL/FL tumors 8 weeks after irradiation. Overall, this study suggested 

that endothelial cell death has only a modest effect on the response of primary lung tumors 

to SBRT.

To investigate the impact of tumor parenchymal cell radiosensitization on the lung tumor 

response to SBRT, lung tumors were initiated in LSL-KrasG12D; p53FL/FL; AtmFL/+ 

(KPAFL/+) and AtmFL/FL (KPAFL/FL) mice (70). In this model, inhalation of a lentivirus 

expressing Cre facilitated the recombination of Atm specifically in lung tumor-initiating 

cells. Disruption of ATM signaling enhanced lung cancer cell radiosensitivity in a colony 

survival assay in vitro. Radiosensitization of lung tumor cells in KPAFL/FL mice translated to 

a significant decrease in tumor volume 6 and 8 weeks after 15 Gy irradiation to the whole 

thorax. Taken together, these results support a model in which tumor cells play a larger role 

than endothelial cells in regulating the response of primary lung cancers to SBRT and 

provide further evidence for the direct tumor cell killing hypothesis to explain the efficacy of 

SBRT.

Discussion

The large dose per fraction (≥10 Gy) radiotherapy schedules used to treat cancer with SBRT 

have increased local control rates for several diseases when compared to 2 Gy daily fractions 

delivered with conventional radiotherapy (10, 11, 84–86). However, biologists and physicists 

continue to debate the mechanism by which SBRT improves tumor response to radiation 

therapy. Many investigators have shown that radiation can induce proliferative defects in 

endothelial cells, thereby triggering endothelial cell death, increased vascular permeability, 

and indirect tumor cell death (34, 69, 70, 87–90). The controversy surrounding the 

mechanism of SBRT revolves around whether such functional changes to the vasculature 

and the accompanying indirect tumor cell death are sufficient to enhance tumor eradication. 

While some investigators argue that indirect cell killing caused by vascular impairment can 

regulate tumor cure in response to radiation (34, 91, 92), others have employed 
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mathematical modeling to counter that the level of endothelial cell death does not accurately 

predict clinical outcomes and therefore increased dose per fraction simply kills more tumor 

cells directly (41, 93, 94). These divergent views may be reconciled by strictly limiting the 

conclusions of transplanted tumor models to the endpoints studied: indirect tumor cell death 

does occur as a consequence of vascular injury following single high-dose radiotherapy, and 

this increases tumor growth delay but not local control. Indeed, others have previously 

demonstrated that prolonged tumor growth delay using a radiotherapy regimen with a 

targeted agent does not always translate into increased tumor cure when a curative dose of 

radiotherapy is delivered (42, 43). This conclusion is consistent with the results of Budach 

and colleagues studying tumors transplanted into nude and SCID mice (41) as well as our 

results using GEMMs of sarcoma (68, 69) and lung cancer (70) following SBRT. 

Furthermore, this discrepancy between growth delay endpoints and tumor cure may explain 

why some clinical trials of radiation therapy and targeted agents don’t recapitulate 

preclinical data (95).

Tumor Cells as Critical Mediators of Single High-Dose Radiation Therapy

By genetically manipulating the radiosensitivity of either tumor cells with Cre-loxP 

technology or endothelial cells with dual recombinase technology, we generated data to 

address the controversy of the critical cellular target of SBRT. Importantly, SBRT triggered 

an increase in fractional blood volume and vascular permeability in primary soft-tissue 

sarcomas in a dose-dependent manner (82, 96). Radiosensitization of the endothelial cells 

through the deletion of Atm further disrupted AngioSense accumulation and blood flow into 

sarcomas, indicating an impairment of vascular function (69). Importantly, radiation-induced 

endothelial cell death in both the primary sarcoma and lung tumor models triggered indirect 

cell death of neighboring tumor cells (69, 70). Thus, primary tumors lacking Atm expression 

specifically in the vasculature represent powerful tools to assess whether vascular 

impairment can regulate growth delay and local tumor control following radiotherapy. 

Despite the observed increase in endothelial cell death and indirect tumor cell death in these 

GEMMs following irradiation with 15 Gy to 20 Gy, tumors lacking functional ATM in the 

vasculature displayed only a modest increase in growth delay (69, 70). Remarkably, 

endothelial cell radiosensitization and the resulting vascular dysfunction did not enhance 

local control in sarcomas treated with a curative radiation dose (69). While additional 

experiments with dual recombinase technology are needed to determine if these results 

extend beyond soft tissue sarcoma and lung cancer to other primary cancer mouse models, 

the available data in these two autochthonous tumor models suggest that the indirect tumor 

cell killing hypothesis may play a role in extending tumor growth delay and palliation with 

radiotherapy, but is unlikely to contribute to the impressive local control that can be achieved 

with SBRT (Figure 1).

In contrast, radiosensitization of the tumor cell population in the GEMMs significantly 

prolonged growth delay of lung tumors (70) and increased the incidence of sarcoma 

eradication (69). These results support the direct tumor cell killing hypothesis in which an 

increase in direct tumor cell death can promote local control following high dose per fraction 

radiotherapy (Figure 1). Taken together, these results suggest that a “new biology” mediated 
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via endothelial cell death is not required to explain the increased rate of local control 

observed with SBRT.

Stromal Cells as Potential Mediators of SBRT

Although endothelial cell death may not regulate tumor eradication by SBRT, this does not 

rule out the possibility of other stromal cell populations regulating tumor response and cure 

following SBRT. For example, Brown and colleagues have reported that macrophages and 

endothelial progenitor cells can replenish tumor endothelium after single high-dose 

radiotherapy to impact the response of xenografts (97, 98). Similarly, T cells within the 

immune system can respond to SBRT to promote or impede transplanted tumor response to 

radiotherapy (99–101). In the future, dual recombinase technology can be applied to these 

cell populations to investigate their role in primary tumor response to SBRT.
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Figure 1. Enhancing tumor parenchymal cell radiosensitivity preferentially promotes tumor cure
In wild type tumors that maintain functional ATM signaling in all cellular compartments, 

high-dose radiotherapy induces both endothelial and tumor cell death. Deletion of both 

alleles of Atm in the tumor vasculature using dual recombinase technology increases the 

amount of endothelial and total cell death by approximately 2–3 fold. Despite the resulting 

vascular dysfunction and indirect tumor cell killing, the tumors still recur following high-

dose radiotherapy. By contrast, radiosensitizing tumor parenchymal cells through the 

deletion of Atm enhances both radiation-induced growth delay and tumor cure.
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Table 1.

Genetic changes within primary tumor cells and tumor vasculature

VE-Cadherin-Cre; AtmfL/FL Viral Cre + AtmFL/FL

Tumor Cell Endothelial Cell Tumor Cell Endothelial Cell

No Cre Recombinase Wild Type N/A N/A Wild Type

Cre Recombinase No effect Atm deleted Atm deleted No effect

Resulting Radiosensitivity Wild Type Radiosensitive Radiosensitive Wild Type
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