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Gastrointestinal infections caused by nontyphoidal Salmonella (NTS) remain one of the main causes of foodborne illness
worldwide. Within the multiple existing Salmonella enterica serovars, the serovar Rissen is rarely reported, particularly as a
cause of human salmonellosis. Between 2015 and 2017, the Portuguese National Reference Laboratory of Gastrointestinal
Infections observed an increase in the number of clinical cases caused by multidrug-resistant (MDR) S. enterica serovar Rissen,
particularly from the Azores archipelago. In the present study, we analyzed by whole genome sequencing (WGS) all clinical,
animal, food, and environmental isolates received up to 2017 in the Portuguese Reference Laboratories. As such, through a
wgMLST-based gene-by-gene analysis, we aimed to identify potential epidemiological clusters linking clinical and samples from
multiple sources, while gaining insight into the genetic diversity of S. enterica serovar Rissen. We also investigated the genetic
basis driving the observed multidrug resistance. By integrating 60 novel genomes with all publicly available serovar Rissen
genomes, we observed a low degree of genetic diversity within this serovar. Nevertheless, the majority of Portuguese isolates
showed high degree of genetic relatedness and a potential link to pork production. An in-depth analysis of these isolates
revealed the existence of two major clusters from the Azores archipelago composed of MDR isolates, most of which were
resistant to at least five antimicrobials. Considering the well-known spread of MDR between gastrointestinal bacteria, the
identification of MDR circulating clones should constitute an alert to public health authorities. Finally, this study constitutes the
starting point for the implementation of the “One Health” approach for Salmonella surveillance in Portugal.

1. Introduction

Nontyphoidal Salmonella (NTS) are zoonotic pathogens that
remain one of the main causes of gastrointestinal infection
and one of the most important causes of foodborne illness
around the world. Annually, an estimated 93.8 million cases
of gastroenteritis are caused by NTS worldwide, of which

80.3 million are considered foodborne [1]. Salmonellosis is
also estimated to be responsible for 155,000 deaths each year
[1]. In 2015, over 95,000 cases of salmonellosis were reported
in the European Union (EU) [2]. Although more than 2600
Salmonella enterica serovars have been identified to date,
most of the cases in developed countries are caused by S. enter-
ica serovar Enteritidis or S. enterica serovar Typhimurium,
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accounting for 63% of all reported cases in the EU in 2012
[3, 4]. On the other hand, S. enterica serovar Rissen is rarely
reported as a cause of human salmonellosis in Europe, but is
frequently reported in the United States of America and
particularly in Asia [5-7]. As a matter of fact, between
2014 and 2016, this serovar was not even among the 20
most frequently reported serovars responsible for human
salmonellosis in the EU/EEA [8]. In Portugal, only 31 cases
of human salmonellosis caused by S. enterica serovar Rissen
were identified in a 12-year period (2000-2012) [9]. How-
ever, this is one of the most commonly reported serovars
in pigs and pork, in several European and Asian countries
[10-17]. This serovar has also been isolated less frequently
from other sources, namely, beef, chicken, and seafood
[14, 15, 18, 19]. In Portugal, it has been identified in several
studies, not only in pig and pork but also in beef, chicken,
and wild animals [11, 20-22].

Salmonella serotyping has been the gold standard for
Salmonella surveillance for years, allowing monitoring of
shifts in prevalence of certain serotypes in specific regions,
which are strong indicatives of existing clusters [23-25].
Until recently, Salmonella outbreak investigations have been
conducted using different molecular typing methods, such
as phage typing, MLVA, or PFGE [26-29]. With the devel-
opment of next-generation sequencing technologies, those
classical typing methods are being used to a lesser extent
and genomic approaches based on single nucleotide poly-
morphisms and wgMLST-based gene-by-gene analysis are
progressing as frontline tools for high-resolution isolate
characterization and outbreak detection [30-32].

Between 2015 and 2017, an increase in the number of S.
enterica serovar Rissen isolated from clinical samples, espe-
cially multidrug-resistant (MDR) isolates from the Azores
archipelago, was observed. We used whole genome sequenc-
ing (WGS) to analyze all clinical isolates received from 2014
up to 2017 at the National Reference Laboratory (NRL) of
Gastrointestinal Infections at the Portuguese National Insti-
tute of Health (INSA), in order to gain insight into the
genetic diversity of S. enterica serovar Rissen Portuguese
(PT) isolates and eventually identify suspected outbreaks.
All animal, food, and environmental S. enterica serovar Ris-
sen isolates received at the NRL from the National Institute
of Agrarian and Veterinary Research (INIAV), between
2014 and 2017, were also included in this work to investigate
potential sources of infection.

2. Materials and Methods

2.1. Bacterial Isolate Typing and Antimicrobial Susceptibility
Testing. S. enterica isolates included in the present study
were obtained from the INSA and INIAV culture collec-
tions. The isolates were serotyped by the slide agglutination
method, according to the Kauffman-White-Le Minor scheme
[23]. In total, 60 S. enterica serovar Rissen isolates, collected
from 2014 to 2017 in Portugal, were selected for WGS
(Supplementary Table S1A). Twenty-two were isolated
from human clinical samples, 14 from animals, mostly
pigs (N =9) but also bovine (N =4), and chicken (N =1),
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22 from food products of animal origin, and 2 from
environmental samples.

Antimicrobial Susceptibility Testing was performed by
disc diffusion, following the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) [33] recommen-
dations, on a panel of 17 antimicrobials: ampicillin (AMP),
amoxicillin-clavulanic acid (AMC), cefoxitin, cefotaxime,
ceftazidime, ceftriaxone, cefepime, meropenem, pefloxacin
(PEF), nalidixic acid (NAL), gentamicin (GEN), azithromy-
cin (AZM), tetracycline (TET), tigecycline, chloramphenicol
(CHL), sulfamethoxazole (SMX), and trimethoprim (TMP).
Results were interpreted using current epidemiological cut-
off values for nalidixic acid, azithromycin, tetracycline, and
sulfamethoxazole or the EUCAST breakpoints for the
remainder [33-37]. An isolate was classified as MDR when
it presented resistance to three or more antimicrobial classes.

2.2. Whole Genome Sequencing and Genome Characterization.
DNA was extracted from each PT isolate using the NucliSens
easyMAG platform (bioMérieux, France) for total nucleic
acid extraction according to the manufacturer’s instruc-
tions. DNA was then subjected to the NexteraXT library
preparation protocol (Illumina, USA) prior to paired-end
sequencing (2 x 250bp or 2 x 150 bp) on either a MiSeq or
a NextSeq 550 instrument (Illumina, USA) according to
the manufacturer’s instructions (detailed in Supplementary
Table S1A).

All genome sequences were assembled using the INNUca
v3.1 pipeline (https://github.com/B-UMMI/INNUca), an
integrative bioinformatics pipeline for read quality analysis
and de novo genome assembly. Read quality analysis and
improvement is performed, respectively, using FastQC
v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and Trimmomatic v0.36 [38] (with sample-specific
read trimming criteria determined automatically based on
FasQC report). Genomes are assembled with SPAdes v3.10
(Bankevich et al. [39]) and subsequently polished using Pilon
v1.18 [40], with QA/QC statistics (such as depth of coverage
and number of contigs) being monitored and reported
throughout the analysis. In silico MLST prediction is per-
formed using the mlst v2.4 software (https://github.com/
tseemann/mlst). The full characterization of isolates, includ-
ing specimen type and source, sampling date, sequence type
(ST), final genome assembly sizes, and depth of coverage
values, is reported in Supplementary Table S1A.

For all isolates, the serotype was predicted in silico
using SeqSero software [41]. The ResFinder 3.1 web server
[42] (https://cge.cbs.dtu.dk/services/ResFinder/) was used
to identify acquired antimicrobial resistance genes and/or
chromosomal mutations, using a threshold of 80% identity.
The predicted results from both platforms were then com-
pared with antimicrobial susceptibility testing results. After
genome annotation using Prokka v1.13 [43], metal tolerance
was accessed by inspecting the presence of several genes
from different metal export systems, such as the copper tol-
erance genes pcoABCDRSE, silver tolerance genes silCF-
BAPRSE, arsenite transmembrane pump genes arsABCR,
mercury tolerance genes merACDE, and tellurite resistance
gene tehAB [44].
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2.3. Additional S. enterica Serovar Rissen Genome Dataset.
For comparative purposes, all S. enterica genomes from ser-
ovar Rissen identified in the EnteroBase database were
downloaded (on November 2018) from the European
Nucleotide Archive (ENA) and were assembled as described
above using the INNUca pipeline. After postassembly
inspection and confirmation of serotype using SeqSero, a
total of 270 genomes from strains isolated worldwide,
described in Supplementary Table S2.

2.4. wgMLST-Based Gene-By-Gene Analysis. A wgMLST-
based gene-by-gene analysis was performed by taking advan-
tage of a publicly available panel of 8558 loci [45] derived
from the EnteroBase Salmonella wgMLST schema [46],
curated and prepared using chewBBACA [47], downloaded
on August 2018 (10.5281/zenodo.1323684). Allele calling
was performed on all genomes using chewBBACA v2.0.11
[47] with default parameters and a publicly available training
file for S. enterica (https://github.com/mickaelsilva/prodigal
training_files). Exact and inferred matches were used to con-
struct an allelic profile matrix, where other allelic classifica-
tions (see https://github.com/B-UMMI/chewBBACA /wiki)
were assumed as “missing” loci. Minimum spanning trees
(MSTs) were constructed using the goeBURST algorithm
[48] implemented in the PHYLOViZ online web-based tool
[49], based on 100% shared loci between all isolates (i.e.,
shared-genome MLST) [50].

An initial MST was constructed enrolling all genomes
(i.e., 60 PT plus 270 retrieved from ENA) to integrate all
these novel PT genomes within the known S. enterica serovar
Rissen diversity. Additionally, in order to perform WGS-
based epidemiological cluster analysis, a second MST was
constructed enrolling only the 60 novel PT genomes. To
increase the resolution power for cluster analysis of the PT
isolates for both initial MSTs, we took advantage of PHYLO-
ViZ online 2.0 Beta version (http://online2.phyloviz.net/).
This platform allows maximization of the shared genome in
a dynamic manner, i.e., for each subset of isolates under com-
parison, the maximum number of shared loci (at 100%)
between them is automatically used for subtree construction.
All allelic distance thresholds used during cluster investiga-
tion were expressed as percentages of allele differences
(AD) (i.e., the number of observed allelic differences divided
by the total number of shared loci under comparison).
Thus, to explore isolate subsets, a conservative step-by-step
approach was performed by applying three allelic distance
cut-offs of 1, 0.5, and 0.25% to both initial MSTs, based on
previously described data for cluster investigation in a
wgMLST-based surveillance [51].

3. Results

3.1. Antimicrobial Susceptibility and Heavy Metal Tolerance.
All antimicrobial resistance phenotype and genotype data,
including MDR profiles, are presented in Supplementary
Table S1B. Although none of the 60 PT isolates are resistant
to either meropenem, cefoxitin, cefotaxime, ceftazidime,
ceftriaxone, cefepime, or tigecycline, most are resistant
to at least one of the remaining antimicrobials tested

(i.e., ampicillin, amoxicillin-clavulanic acid, pefloxacin,
nalidixic acid, gentamicin, azithromycin, tetracycline,
chloramphenicol, sulfamethoxazole, and trimethoprim).
Moreover, resistance to more than one antimicrobial was
verified in 88.3% of the isolates and 83.3% are MDR. Only
one isolate (PT11) is fully susceptible to the antimicrobials
tested (1.7%). Sulfamethoxazole resistance is the most
common (83.3%), followed by tetracycline (81.7%),
trimethoprim (80.0%), ampicillin (73.3%), chloramphenicol
(53.3%), and azithromycin (50.0%) resistance. Of note, two
distinct food-associated isolates exhibit resistance to
quinolones, with PT60 being resistant to both pefloxacin
and nalidixic acid while PT44 only to nalidixic acid.
Additionally, only one isolate (PT03) reveals intermediate
susceptibility to gentamicin (1.7%). None of the isolates
presents the genes that confer resistance to colistin (i.e., the
mcr genes).

Metal  resistance-associated ~ genes  for  copper
(pcoABCDRSE), arsenic (arsABCR), and tellurite (tehAB)
were observed in all PT isolates analyzed (Supplementary
Table S1B). Thirteen isolates (21.7%) presented the
mercury resistance-associated genes merACDE, which was
always collocated with the ampicillin and sulphonamide
resistance genes bla-TEM-1B and sull, respectively. All
these isolates also presented c¢mlAl, conferring resistance
to chloramphenicol, and dfrAl, conferring resistance to
trimethoprim. Fifty-three isolates (88.3%) also present the
complete silver tolerance cassette silCFBAPRSE, which
was located contiguously with the pco gene cluster.

3.2. Global Genetic Diversity of S. enterica Serovar Rissen. All
novel PT isolates were firstly integrated with all publicly
available S. enterica serovar Rissen genomes (N = 270), using
a wgMLST-based approach, in order to assess their genomic
diversity and phylogenetic relationships within the world-
wide circulating population. In silico seven gene MLST anal-
ysis revealed that all enrolled isolates belonged to ST469. The
initial MST (Figure 1(a)), based on 2305 shared loci between
all 330 isolates, reveals low genetic diversity between all iso-
lates, with an overall mean pairwise AD of 35+ 9, and that
most PT isolates from the present study are closely related.
While an initial conservative threshold of 1% (i.e., an AD of
24) still maintains all PT isolates phylogenetically linked,
when applying a cut-off of 0.5% (i.e., an AD of 12) to the
MST (due to the overall low genetic diversity observed),
10 out of the 60 isolates showed up as unlinked (with two
pairs and six single isolates segregating independently)
(Figure 1(a)), potentially indicating that they are epidemio-
logically unrelated. In order to further analyze the cluster
containing most PT isolates (at a 0.5% threshold), a sub-
MST of this cluster was generated (Figure 1(b)) which
increased the number of shared loci to 3162 and an overall
mean pairwise AD of 29 + 10 was observed. This subset of
97 isolates comprises not only most PT isolates but also iso-
lates from the United States of America, the United King-
dom, Spain, Denmark, and Vietnam. Applying a cut-off of
0.5% to this subset, corresponding to an AD of 16, two
main clusters containing PT isolates remain and one isolate
segregates independently (PT10). Nevertheless, when a
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FiGUrek 1: Phylogenetic analysis of S. enterica serovar Rissen, based on a gene-by-gene approach using a wgMLST schema with 8558 loci. (a)
Minimum spanning tree (MST) enrolling 270 publicly available genomes and the 60 novel “Portuguese” (PT), constructed based on the allelic
diversity of 2305 shared loci. The numbers in red on the connecting lines represent the AD between isolates. Nodes linked with allelic
distances (AD) equal to or below 0.5% (i.e., 12 AD) have been collapsed for visualization purposes. Node sizes are proportional to the
number of isolates they represent. Nodes are colored according to the country of origin. (b) Sub-MST constructed based on the maximum
number of shared loci (3162 loci) between the subset of isolates linked at an allelic distance of 0.5% and containing most PT isolates. Two
major clusters containing mostly PT isolates linked with AD < 0.25% are highlighted in grey.

more restrict cut-off is applied (0.25%; 8 AD), more consis-
tent with outbreak clustering investigation [51], all the PT
isolates separate from strains of other countries (with the
exception of an isolate from the United Kingdom, ENA
accession # SAMNO09298461) and two main clusters con-
taining most of the PT isolates are observed, suggesting
two main circulating clones.

3.3. WGS-Based Epidemiological Analysis of the PT Isolates.
We then proceeded with the same wgMLST-based approach,
strictly for the 60 PT S. enterica serovar Rissen isolates, to
assess their potential epidemiological relatedness (Figure 2).
The initial MST reveals that the isolates share 3465 loci, with
a mean pairwise AD of 35 + 17 (ranging from 0 up to 47).
While the number of shared loci between the PT isolates
was increased by more than 1100 loci, the overall genetic
diversity is still low. As a means to exclude potential epidemi-
ologically unrelated cases of S. enterica serovar Rissen within
this set of isolates, an initial conservative threshold of 1% (i.e.,
35 AD) reveals that at least 3 isolates (PT60, PT40, and PT17)
segregate independently. Two linked isolates (cluster E) still
sustained their close genetic relatedness (AD of 3) after
sub-MST construction (3801 shared loci). Nevertheless, an

epidemiological link between these isolates could not be
traced. In order to generate potential clusters to be subjected
to the dynamic MST analysis, we then applied a lower thresh-
old of 0.5% (i.e.,, 17 AD) which reveals four additional
clusters and nine more potential isolated cases. Cluster D
contains two food isolates (Figure 2(c)) retrieved from
chicken meat in 2016 (Figure 2(b)), one from the Lisbon met-
ropolitan area (PT45) and the other from Spain (PT44)
(Figure 2(a)). After increasing the number of shared loci
under analysis to 3828, the sub-MST shows that these isolates
are distinguishable by only 7 AD. We also observed a more
heterogeneous cluster (Cluster C) where the epidemiological
linkage between the four isolates is unclear, due to the dif-
ferences in all four presented metadata (Figure 2). Still, the
sub-MST for this cluster (3805 shared loci) suggests that
these isolates are genetically related, as they present a mean
pairwise AD of 14 + 3.

Regarding Cluster B, sub-MST analysis now enrolling
3686 shared loci shows that isolates are still linked at the
0.5% threshold, with a mean pairwise AD of 14 + 6. Although
this cluster is comprised by isolates from animal, food, and
clinical samples (Figure 2(c)), it is hard to suggest a direct
transmission link from these sources to human, with the
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multidrug resistant.

clinical cases all detected prior to 2016, contrarily to all but
one nonhuman sample (PT24) (Figure 2(b)). However, all
isolates from this cluster are MDR (Figure 2(d)). In addition,
12 out of the 13 isolates from this cluster possess the mercury
tolerance genes merACDE, in association with the chloram-
phenicol resistance gene, ¢mlAI, and trimethoprim resis-
tance gene dfrAl which further distinguishes this cluster
from all others where these genes are absent. The only other
isolate possessing these genes in the entire dataset is PT50,
which is very closely related to this cluster at an AD of 18,
suggesting its genetic close relatedness but lacking epidemio-
logical relationship. Moreover, the absence of the silver
tolerance-associated genes (silCFBAPRSE) was only observed
in isolates from this cluster (7 out of the 13, including the five
isolates from pork skewers). Of note, the five 2016 isolates
from pork skewers with an undisclosed origin (PT29, PT30,
PT31, PT32, PT33) are very likely meat products from an
identical pig holder, as within 3831 shared loci they only
exhibit up to 6 AD between them and share the same resis-
tance profile (AMP-TET-CHL-TMP-SMX). These isolates
share the same year of isolation and resistance profile, to both

antibiotics and heavy metals, with a pork isolate from the
Azores archipelago (PT35) with a maximum AD of 8, all
indications of the existence of a possible cluster in Azores.
Finally, the largest cluster (Cluster A) is mostly com-
prised by isolates from the Azores archipelago (n =21) but
also includes two isolates from Lisbon metropolitan area,
two from Center region and one from North region
(Figure 2(a)). All isolates are still linked after sub-MST con-
struction, sharing 3639 loci with a mean pairwise AD of 12
+ 4. This cluster presents distinct sources (Figure 2(c)), with
the majority of isolates (14 out of 29) originating from pigs
(Supplementary Table S1A) or being human clinical cases
(11 out of 29). Of note, we observed that a clinical isolate
(PT20) and a food isolate (PT13), collected two months
apart in Azores, presented the same allelic profile, strongly
indicating an epidemiological link between them. Moreover,
with the exception of PT48 and PT49, all isolates from
this cluster are MDR, presenting 4 to 7 resistance
determinants (Figure 2(d)). The two non-MDR isolates are
likely epidemiologically linked (1 AD between the two)
and present the same resistance profile (AMP-AMC-



CHL). Most isolates are resistant to azithromycin, with the
exception of PT02, PT48, and PT49. In addition, four sets
of isolates present the same resistance profiles between
them (Supplementary Table S1B): (i) PT26, PT28, and
PT46 are TET-TMP-SMX-AZM,; (ii) PT37, PT51, and PT55
are AMP-TET-TMP-SMX-AZM; (iii) PT25, PT38, PT39,
and PT52 are AMP-AMC-TET-TMP-SMX-AZM; and (iv)
PTO6, PT13, PT14, PT15, PT20, PT34, PT41, PT43, PT57,
and PT58 are AMP-TET-CHL-TMP-SMX-AZM.

4. Discussion

WGS is quickly supplanting traditional procedures for Sal-
monella surveillance and outbreak detection in Reference
Laboratories. In this regard, food- and water-borne out-
breaks are detected either when a common source is deter-
mined through epidemiological inquiries, followed by the
characterization of all the isolates, or when a group of similar
isolates is identified, followed by the common source by epi-
demiological investigation [30]. The current study aimed for
the identification of S. enterica serovar Rissen genetic clusters
circulating in Portugal, and the detection of potential sources
of infection, as a follow-up of an unusual increment in the
number of isolates that arrived at the NRLs since 2015.
Even though S. enterica serovar Rissen is rarely reported
worldwide as a cause of human salmonellosis, it has previ-
ously been identified in Portugal associated with pig, pork,
beef, chicken, and wild animals [11, 20, 21, 22, 52], which
was also observed in this work. Using a dynamic shared-
genome-based approach, by progressively maximizing the
number of shared loci between isolates, we detected five
potential clusters of closely related clinical, animal, food,
and environmental S. enterica serovar Rissen ST469 isolates
[51], with the two largest clusters containing all the isolates
from the Azores archipelago (Cluster A and Cluster B)
(Figure 2(a)). This approach revealed a high degree of simi-
larity among the S. enterica serovar Rissen population, con-
trary to what was previously described through PFGE [12].
In fact, among the 330 studied isolates, we found a mean
genetic distance of about 35AD (with a maximum AD of
81) within the shared 2305 loci. Apart from a few isolates that
segregate independently, a great number of the PT isolates
formed very closely related clusters. Increasing the resolution
of the initial shared wgMLST approach by increasing the
number of loci analyzed reinforced the relatedness of the
Portuguese clusters, most specifically the clusters containing
MDR isolates from the Azores archipelago (Cluster A and
Cluster B). Even though this genomic approach seems to be
highly discriminatory, there is no universal cut-off defined
for identification of outbreaks; therefore, epidemiological
investigation is highly necessary to facilitate the interpreta-
tion of WGS data. Given the high degree of genetic similarity
within this serovar revealed in this study, several isolates that
seem very closely related may in fact be epidemiologically
unlinked. Nonetheless, the genomic analysis together with
the scarce epidemiological information points to the exis-
tence of two nonrelated MDR S. enterica serovar Rissen
clones circulating in the Azores archipelago for the past
years. Additionally, the identification of clinical isolates as
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well as isolates from animals and food in the Portuguese
mainland that show a perfect clustering with the isolates
from Azores strongly suggests the spread of the circulating
clones throughout the Portuguese territory, with a putative
origin in Azores, particularly from pig holding facilities.
The fact that the Azores archipelago is composed by nine
small islands with livestock as one of the major economic
resources reinforces this possibility. Another detected cluster
containing a PT isolate and a Spanish isolate (cluster D)
seems to suggest the existence of either a S. enterica serovar
Rissen strain already circulating within the Iberian Peninsula,
as a result of intensive trade of live pigs and pork between
Portugal and Spain [17], or a discrete phenomenon, as only
two cases were detected. Also, these isolates present the resis-
tance genes sull, dfrA12, and aadA2, mirroring what has
been previously reported [17].

Increased antimicrobial resistance in pig-associated S.
enterica serovars has become a reality for the past decades,
including the successful clone S. enterica serovar Rissen
ST469 [17, 53, 54]. MDR bacteria emerge as a direct conse-
quence of selective pressure derived from overall antibiotic
misuse. The use of antibiotics in food-producing animals
has been associated with the emergence of certain MDR
clones [55]. Additionally, the acquisition of novel properties,
such as antibiotic resistance and metal tolerance, may occur
by horizontal gene transfer between different bacteria and
even between bacterial species [56]. In fact, the success of
MDR clones of S. enterica serovar Rissen ST469 in pig pro-
duction has previously been associated with the presence of
pco and sil cassettes [54, 57], as also observed in the present
study. Here, 88.3% of the isolates were resistant to more than
one antimicrobial and 83.3% were MDR (Supplemental
Table 1 and Figure 2(d)). A high level of resistance to
several antibiotics was observed, although resistance to
carbapenems, cephalosporins, and colistin was not detected.
Moreover, 50% of the isolates, mainly isolates from Cluster
A, were resistant to azithromycin, which is widely used for
the treatment of invasive Salmonella infections. According
to the genomic analysis of these isolates, azithromycin
resistance is likely mediated by the macrolide inactivation
gene mphA, while blaTEM-1B_1 seems to be responsible
for ampicillin resistance. Also, fet(A) appears in all the
tetracycline-resistant isolates of this serovar, confirming
that tet(A) is most likely the gene responsible for
tetracycline resistance in S. enterica serovar Rissen [17].

5. Conclusions

In summary, we identified at least two MDR S. enterica sero-
var Rissen clones in the Azores archipelago, which are
already circulating in Portugal mainland. The presence of
MDR isolates with zoonotic potential in food-producing ani-
mals is a growing public health concern, having not only a
severe burden to human health but also great economic
impact. Patients infected by MDR bacteria have an increased
risk of developing severe infections with high mortality and
morbidity rates, and represent an increased healthcare cost
[58]. International trade of food-producing animals and their
products contributes greatly to the global spread of MDR
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Salmonella clones, which calls for continuous monitoring,
especially in pig production. Although WGS has great poten-
tial in supporting epidemiological investigations, the avail-
ability of epidemiological data is critical for timely and
efficient source detection and outbreak control. This WGS-
based S. enterica serovar Rissen surveillance study in Portu-
gal results from the collaboration between the Portuguese
Salmonella NRLs of human and animal health. Hopefully,
this stands as the starting point for the implementation of
the “One Health” approach for Salmonella surveillance in
Portugal.
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