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Summary

To understand how the brain processes sensory information to guide behavior, we must know how 

stimulus representations are transformed throughout the visual cortex. Here we report an open, 

large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain 

Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from 

nearly 60,000 neurons from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 243 adult 

mice, in response to a systematic set of visual stimuli. We classify neurons based on joint 

reliabilities to multiple stimuli and validate this functional classification with models of visual 

responses. While most classes are characterized by responses to specific subsets of the stimuli, the 

largest class is not reliably responsive to any of the stimuli and becomes progressively larger in 

higher visual areas. These classes reveal a functional organization wherein putative dorsal areas 

show specialization for visual motion signals.

Introduction

Traditional understanding, based on decades of research, is that visual cortical activity can 

be largely characterized by responses to a specific set of local features (modeled with linear 

filters followed by nonlinearities) and that these features become more selective and 

specialized in higher cortical areas1–4. However, it remains unclear to what extent this 

understanding can account for the whole of V15–7, let alone the rest of visual cortex. A key 
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challenge results from the fact that this understanding is based on many small studies, 

recording responses from different stages in the circuit, using different stimuli and analyses5. 

The inherent experimental selection biases and lack of standardization of this approach 

introduce additional obstacles to creating a cohesive understanding of cortical function. On 

the basis of these issues, influential reviews have questioned the validity of this standard 

model5–7, and have argued that “What would be most helpful is to accumulate a database of 

single unit or multi-unit data that would allow modelers to test their best theory under 

ecological conditions.”5 To address these issues, we conducted a survey of visual responses 

across multiple layers and areas in the awake mouse visual cortex, using a diverse set of 

visual stimuli. This survey was executed in pipeline fashion, with standardized equipment 

and protocols and with strict quality control measures not dependent upon stimulus-driven 

activity (Methods).

Previous work in mouse has revealed functional differences among cortical areas in layer 2/3 

in terms of the spatial and temporal frequency tuning of neurons in each area8,9. However, it 

is not clear how these differences extend across layers and across diverse neuron 

populations. Here we expand such functional studies to include 12 transgenically defined 

neuron populations, including Cre driver lines for excitatory populations across 4 cortical 

layers (from layer 2/3 to layer 6), and for two inhibitory populations (Vip and Sst). Further, 

it is known that stimulus statistics affect visual responses, such that responses to natural 

scenes cannot be well predicted by responses to noise or grating stimuli10–15. To examine 

the extent of this discrepancy and its variation across areas and layers, we designed a 

stimulus set that included both artificial (gratings and noise) and natural (scenes and movies) 

stimuli. While artificial stimuli can be easily parameterized and interpreted, natural stimuli 

are closer to what is ethologically relevant. Finally, as recording modalities have enabled 

recordings from larger populations of neurons, it has become clear that populations might 

code visual and behavioral activity in a way that is not apparent by considering single 

neurons alone16. Here we imaged populations of neurons (mean 173 ± 115, st. dev, 

excitatory populations, 19 ± 11, inhibitory populations) to explore both single neuron and 

population coding properties.

We find that 77% of neurons in the mouse visual cortex respond to at least one of these 

visual stimuli, many showing classical tuning properties, such as orientation and direction 

selective responses to gratings. These tuning properties exhibit differences across cortical 

areas and Cre lines. While subtle differences do exist between the excitatory Cre lines, these 

populations are largely similar; the more marked differences are among the inhibitory 

interneurons. The responses to all stimuli are highly sparse and variable. We find that the 

variability of responses is not strongly correlated across stimuli, in general, but it does reveal 

evidence of functional response classes. We validate these functional response classes with a 

model of neural activity that contains most of the basic features found in visual 

neurophysiological modeling (e.g. “simple” and “complex” components) as well as the 

running speed of the mouse. For one class of neurons, these models perform quite well, 

predicting responses to both artificial and natural stimuli equally well. However, for many 

neurons, the models provide a poor description, particularly those in our largest single class 

of neurons, those that respond reliably to none of our visual stimuli. The representation of 

these response classes across areas reveals a separation of motion processing from spatial 
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computations. These results demonstrate the importance of a large, unbiased survey for 

understanding neural computation.

Results

Using adult C57BL/6 mice (mean age 108 ± 16 days st. dev) that expressed a genetically 

encoded calcium sensor (GCaMP6f) under the control of specific Cre-drivers lines (10 

excitatory lines, 2 inhibitory lines), we imaged the activity of neurons in response to a 

battery of diverse visual stimuli. Data was collected from 6 different cortical visual areas 

(V1, LM, AL, PM, AM, and RL) and 4 different cortical layers. Visual responses of neurons 

at the retinotopic center of gaze were recorded in response to drifting gratings, flashed static 

gratings, locally sparse noise, natural scenes, and natural movies (Figure 1f), while the 

mouse was awake and free to run on a rotating disc. In total, 59,610 neurons were imaged 

from 432 experiments (Table 1). Each experiment consisted of three one-hour imaging 

sessions, with 33.6% of neurons matched across all three sessions; the rest were present in 

either one or two sessions (Methods).

In order to systematically collect physiological data on this scale, we built data collection 

and processing pipelines (Figure 1). The data collection workflow progressed from surgical 

headpost implantation and craniotomy to retinotopic mapping of cortical areas using 

intrinsic signal imaging, in vivo two-photon calcium imaging of neuronal activity, brain 

fixation, and histology using serial two-photon tomography (Figure 1a,b,c). To maximize 

data standardization across experiments, we developed multiple hardware and software tools 

(Figure 1d). One of the key components was the development of a registered coordinate 

system that allowed an animal to move from one data collection step to the next, on different 

experimental platforms, and maintain the same experimental and brain coordinate geometry 

(Methods). In addition to such hardware instrumentation, formalized standard operating 

procedures and quality control metrics were crucial for the collection of these data over 

several years (Figure 1e).

Following data collection, fluorescence movies were processed using automated algorithms 

to identify somatic regions of interest (ROIs) (Methods). Segmented ROIs were matched 

across imaging sessions. For each ROI, events were detected from ΔF/F using an L0-

regularized algorithm17 (Methods). The median average event magnitude during 

spontaneous activity was 0.0004 (a.u., event magnitude shares the same units as ΔF/F), and 

showed some dependence on depth and on transgenic Cre lines (Extended Data 1).

For each neuron, we computed the mean response to each stimulus condition using the 

detected events, and parameterized its tuning properties. Many neurons showed robust 

responses, exhibiting orientation-selective responses to gratings, localized spatial receptive 

fields, and reliable responses to natural scenes and movies (Figure 2a–f, Extended Data 2). 

For each neuron and each categorical stimulus (i.e. drifting gratings, static gratings, and 

natural scenes), the preferred stimulus condition was identified as the one which evoked the 

largest mean response for that stimulus (e.g. the orientation and temporal frequency with the 

largest mean response for drifting gratings). For each trial, the activity of the neuron was 

compared to a distribution of activity for that neuron taken during the epoch of spontaneous 
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activity, and a p-value was computed. If at least 25% of the trials of the neuron’s preferred 

condition had a significant difference from the distribution of spontaneous activities 

(p<0.05), the neuron was labelled responsive to that stimulus (Methods has responsiveness 

criteria for locally sparse noise and natural movies). Neurons meeting this criterion showed a 

change in activity with some degree of reproducibility across trials. The maximum evoked 

responses were an order magnitude larger than the spontaneous activity (Extended Data 1, 

median 0.006 (a.u.) for neurons responsive to drifting gratings).

In total, 77% of neurons were responsive to at least one of the visual stimuli presented 

(Figure 2g). The percent of responsive neurons depended on area and stimulus, such that V1 

and LM showed the highest number of visually responsive neurons. This dropped in other 

higher visual areas and was lowest in RL where only 33% of neurons responded to any of 

the stimuli. Natural movies elicited responses from the most neurons, while static gratings 

elicited responses from the fewest (Figure 2h). In addition to varying by area, the percent of 

responsive neurons also varied by Cre lines and layers, suggesting functional differences 

across these dimensions (Extended Data 3–7).

For responsive neurons, visual responses were parameterized by computing several metrics, 

including preferred spatial frequency, preferred temporal frequency, direction selectivity, 

receptive field size, and lifetime sparseness (Methods). We mapped these properties across 

cortical areas, layers, and Cre lines to examine the functional differences across these 

dimensions (Figure 3, Supplementary Figure 1, 2).

Comparisons across areas and layers revealed that direction selectivity is highest in layer 4 

of V1 (Figure 3b). While previous literature has found higher direction selectivity in layer 4 

within V118, we find here that this result is significant across all layer-4 specific Cre lines, 

and extends to the higher visual areas as well. Comparisons across the higher visual areas 

reveals that in superficial layers, the lateral higher visual areas (LM and AL) show 

significantly higher direction selectivity than the medial ones (PM and AM), but this 

difference is not significant in the deeper layers. This erosion of the differences between 

higher visual areas in deeper layers is found for all metrics reported here, wherein the 

population differences are less pronounced, and often not significant, in layers 5 and 6 

(Figure 3c,d,e, Supplementary Figure 2).

Across all areas, layers, and stimuli, visual responses in mouse cortex were highly sparse 

(Figure 3f). Considering the responses to natural scenes, we found that most neurons 

responded to very few scenes (examples in Figure 2d). The sparseness of individual neurons 

was measured using lifetime sparseness, which captures the selectivity of a neuron’s mean 

response to different stimulus conditions19,20 (Methods). A neuron that responds strongly to 

only a few scenes will have a lifetime sparseness close to 1 (Supplementary Figure 3), 

whereas a neuron that responds broadly to many scenes will have a lower lifetime 

sparseness. Excitatory neurons had a median lifetime sparseness of 0.77 in response to 

natural scenes. While Sst neurons were comparable to excitatory neurons (median 0.77), Vip 

neurons exhibited low lifetime sparseness (median 0.36). Outside of layer 2/3, there was 

lower lifetime sparseness in areas RL, AM, and PM than in area V1, LM, and AL. Lifetime 
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sparseness did not increase outside of V1; Responses did not become more selective in the 

higher visual areas. (Figure 3f, Supplementary Figures 3).

The pattern in single neuron direction selectivity was reflected in our ability to decode the 

visual stimulus from single-trial population vector responses, using all neurons, responsive 

and unresponsive (Figure 4a, Supplementary Figure 4). We used a K-nearest-neighbors 

classifier to predict the grating direction. Matching the tuning properties, areas V1, AL, and 

LM showed higher decoding performance than areas AM, PM, and RL, and these 

differences were more pronounced in superficial layers than in deeper layers. Similarly, the 

population sparseness (Supplementary Figure 3), a measure of the selectivity of each scene 

(i.e. how many neurons respond on a given trial), largely mirrors the high average lifetime 

sparseness of the underlying populations (Figure 4b). Such high sparseness suggests that 

neurons are active at different times and thus their activities are weakly correlated. The noise 

correlations of the populations reflect this results on population sparsity where excitatory 

populations show weak correlations (median 0.02) while the inhibitory populations show 

somewhat higher correlations (Sst median 0.06, Vip median 0.15) (Figure 4c). The structure 

of the correlations in each population may serve to either help or hinder information 

processing16,21. To test this, we measured the decoding performance when stimulus trials 

were shuffled to break trial-wise correlations. This had variable effects on decoding 

performance with little pattern across areas or Cre lines (Figure 4d). While the decoding 

performances for excitatory populations in V1 were aided by removing correlations, 

consistent with previous literature22, this effect was not consistent across other areas. The 

decoding performances for Sst populations, on the other hand, were more consistently hurt 

by removing correlations, suggesting that the high correlations among Sst neurons were 

informative about the drifting grating stimulus.

For all stimuli, the visually-evoked responses throughout cortex showed large trial-to-trial 

variability. Even when removing the neurons deemed unresponsive, the percent of 

responsive trials for most responsive neurons at their preferred conditions was low - the 

median is less than 50% (Figure 5a, Supplementary Figure 5). This means that the majority 

of neurons in the mouse visual cortex do not usually respond to individual trials, even when 

presented with the stimulus condition that elicits their largest average response. This is true 

throughout the visual cortex, though V1 showed slightly more reliable responses than higher 

visual areas and Sst interneurons, in particular, showed very reliable responses. The 

variability of responses is reflected in the high coefficient of variation, with median values 

for excitatory neurons above 2, indicating that these neurons are super-Poisson (Figure 5b). 

We sought to capture this variability with a simple categorical model for drifting grating 

responses that attempts to predict the trial response (the integrated event magnitude during 

each trial) from the stimulus condition (the direction and temporal frequency of the grating, 

or whether the trial was a blank sweep). This regression quantifies how well the average 

tuning curve predicts the response for each trial. Comparing the trial responses to the mean 

tuning curve shows a degree of variability even when the model is fairly successful (Figure 

5c). Consistent with this variability in visual responses, this model does a poor job of 

predicting responses to drifting gratings for most neurons (Figure 5d). Few neurons are well 

predicted by their average tuning curve alone (21% of responsive neurons have r>0.5, this 

becomes 11% when considering all neurons, where r is the cross-validated correlation 
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between model prediction and actual response). As expected, the ability to predict the 

responses is correlated with the measured variability (r=0.8, Pearson correlation).

One possible source of trial-to-trial variability is the locomotor activity of the mouse. 

Previous studies have shown that not only is some neural activity in the mouse visual cortex 

associated with running, but that visual responses are also modulated by running22–26. The 

mice in our experiments were free to run on a disc and animals showed a range of running 

behaviors (Supplementary Figure 6). Ignoring the stimulus, we found that some neurons’ 

activities were correlated with the running speed (Figure 5e). While layer 5 showed strong 

correlations in all visual areas, in the other layers V1 had stronger correlations than the 

higher visual areas, with some visual areas showing median negative correlations. Within 

V1, the inhibitory interneurons showed the strongest correlation with running, most notably 

Vip neurons in layer 2/3 (median 0.25), while the excitatory neurons showed weaker 

correlations (median 0.03).

For experiments with sufficient stimulus trials for a neuron’s preferred condition when the 

mouse was both stationary and running (>10% for each), we compared the responses in 

these two states. Consistent with other reports, many neurons show modulated responses, but 

the effect was modest (Figure 5f). The majority of neurons showed enhanced responses. 

Considering the entire population, there was a 1.9 fold increase in the median evoked 

response. The effect on individual neurons, however, was varied such that only 13% of 

neurons showed significant modulation in these conditions (p<0.05, KS test).

To test whether running accounted for the variability in trial-wise responses to visual stimuli, 

we included a binary running state as a condition dependent gain into the categorical 

regression (i.e. computing separate tuning curves for the running and stationary conditions, 

Figure 5g). This did not consistently and significantly improve the response prediction. 

Comparing the model performance when the running state is included to the stimulus-only 

model, we found that the distribution is largely centered along the diagonal, with a slight 

asymmetry in favor of the running dependent model for the better performing models 

(Figure 5h, 28% of responsive neurons have r>0.5 for stimulus x running state; 21% when 

considering all neurons). This was further corroborated by a simpler model that predicts 

neural response based on the running speed (rather than a binary condition, and without 

stimulus information) (Supplementary Figure 7). However, considering only the 13% of 

neurons that showed significant modulation of evoked responses (Figure 5f), the inclusion of 

running in the categorical model provides a clear predictive advantage (Figure 5i, mean r for 

stimulus only is 0.35, for stimulus x running is 0.44 whereas for non-modulated neurons 

mean r for stimulus only is 0.21, for stimulus x running is 0.20).

One of the unique aspects of this dataset is the broad range of stimuli, allowing for a 

comparison of response characteristics and model predictions across stimuli. Surprisingly, 

knowing whether a neuron responded to one stimulus type (e.g. natural scenes, drifting 

gratings, etc.) was largely uninformative of whether it responded to another stimulus type. 

Unlike the examples shown in Figure 2, which were chosen to highlight responses to all 

stimuli, most neurons were responsive to only a subset of the stimuli (Figure 6a). To explore 

the relationships between neural responses to different types of stimuli, we computed the 
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correlation between the percent of responsive trials for each stimulus. This comparison 

removes the threshold of “responsiveness” and examines underlying patterns of activity. We 

found that most stimulus combinations were weakly correlated (Figure 6b), demonstrating 

that knowing that a neuron responds reliability to drifting gratings, for example, carries little 

to no information about how reliably that neuron responds to one of the natural movies. 

There is a higher correlation between the reliability of the responses to the natural movie 

that is repeated across all three sessions (natural movies 1A, 1B, 1C), providing an estimate 

of the variability introduced by imaging across days and thus a ceiling for the overall 

correlations across stimuli. Very few of the cross-stimulus correlations approach this ceiling, 

with the exception of the correlation between static gratings and natural scenes.

We characterize the variability by clustering the reliability, defined by the percentage of 

significant responses to repeated stimuli. We used a Gaussian mixture model to cluster the 

25,958 neurons that were imaged in both Sessions A and B (Figure 1f) and excluded the 

Locally Sparse Noise stimulus due to the lack of a comparable definition of reliability. Using 

neurons imaged in all three sessions did not qualitatively change the results (see 

Supplementary Figure 8). The clusters are described by the mean percent responsive trials 

for each stimulus for each cluster (Figure 6c). Note that there is only a weak relationship 

between the percent responsive trials to one stimulus and any other. We grouped the clusters 

into “classes” by first defining a threshold for responsiveness by identifying the cluster with 

the lowest mean percent responsive trials across stimuli, then setting the threshold equal to 

the maximum value across stimuli plus one standard deviation for that cluster. This allowed 

us to identify each cluster as responsive (or not) to each of the stimuli. Clusters with the 

same profile (e.g. responsive to drifting gratings and natural movies, but not static gratings 

or natural scenes), were grouped into one of sixteen possible classes.

The clustering was performed 100 times with different initial conditions to evaluate 

robustness. The optimal number of clusters, evaluated with model comparison, as well as the 

class definition threshold were consistent across runs (Supplementary Figure 8). By far the 

largest single class revealed by this analysis is that of neurons that are largely unresponsive 

to all stimuli, termed “none,” which contains 34±2% of the neurons (Figure 6d). Other large 

classes include neurons that respond to drifting gratings and natural movies (“DG-NM”, 

14±3%), to natural scenes and natural movies (“NS-NM”, 14±2%), and to all stimuli (“DG-

SG-NS-NM”, 10±1%).

Importantly, we do not observe all 16 possible stimulus response combinations. For instance, 

very few neurons are classified as responding to one stimulus alone, the most prominent 

exception being neurons that respond uniquely to natural movies. Thus, while the pairwise 

correlations between most stimuli are relatively weak, there is meaningful structure in the 

patterns of responses. Nevertheless, within each class there remains a great deal of 

heterogeneity. For example, within the class that responds to all stimuli, there is a cluster in 

which the neurons respond with roughly equal reliability to all four stimuli (cluster 27 in 

Figure 6c) as well as clusters in which the neurons respond reliably to drifting and static 

gratings and only weakly to natural scenes and natural movies (clusters 25 and 28). This 

heterogeneity underlies the inability to predict whether a neuron responds to one stimulus 

given that it responds to another.
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Classes are not equally represented in all visual areas (Figure 6e). The “unresponsive” class 

is larger in the higher visual areas than in V1, and is largest in RL (see also Figure 2g). 

Classes related to moving stimuli, including “NM”, “DG-NM”, and “DG”, have relatively 

flat distributions across the visual areas, excluding RL. The natural classes, including “NS-

NM”, “DG-NS-NM”, “SG-NS-NM”, and “DG-SG-NS-NM”, are most numerous in V1 and 

LM, with lower representation in the other visual areas. This divergence in representation of 

the motion classes from the natural classes in areas AL, PM, and AM is consistent with the 

putative dorsal and ventral stream segregation in the visual cortex32.

In addition to differential representation across cortical areas, the response classes are also 

differentially represented among the Cre lines (Figure 6f). Notably, Sst interneurons in V1 

have the fewest “none” neurons and the most “DG-SG-NS-NM” neurons. Meanwhile, the 

plurality of Vip interneurons are in the classes responsive to natural stimuli, specifically 

natural movies.

Having characterized neurons by their joint reliability to multiple stimuli, we next ask to 

what extent we can predict neural responses, not on a trial-by-trial basis but including the 

temporal response dynamics, given the stimulus and knowledge of the animal’s running 

condition. We use a model class that remains in widespread use for predicting visual 

physiological responses and that captures both “simple” and “complex” cell behaviors. The 

model structure uses a dense wavelet basis (sufficiently dense to capture spatial and 

temporal features at the level of the mouse visual acuity and temporal response) and 

computes from this both linear and quadratic features, each of which are summed, along 

with the binary running trace convolved with a learned temporal filter, and sent through a 

soft rectification (Figure 7a). We train these models on either the collective natural stimuli or 

the artificial stimuli to predict the extracted event trace. Whereas we find example neurons 

for which this model works extremely well (Figure 7b, Supplementary Figure 9, 10, 11), 

across the population only 2% of neurons are well fit by this model (r>0.5; 2% natural 

stimuli; 1% artificial stimuli, Figure 7c), with the median r values being ~0.2 (natural 

stimuli). Model performance was slightly higher in V1 than in the higher visual areas and 

showed little difference across Cre lines. It is also worth noting that there is a great deal of 

visually responsive activity that is not being captured by these models (Supplementary 

Figure 5). Comparing the models’ performances across stimulus categories, we found that 

the overall distribution of performance for models trained and tested with natural stimuli was 

higher than the corresponding models for artificial stimuli (Figure 7d), consistent with 

previous reports10–15. The running speed of the mouse did not add significant predictive 

power to the model, as most regression weights were near zero, with the exception of Vip 

neurons in V1 (Supplementary Figure 10). Similarly, incorporating pupil area and position 

had little effect as did, at the population level, removing the quadratic weights 

(Supplementary Figure 10). Well fit models tended to have sparser weights (Supplementary 

Figure 11).

When comparing the model performance for the neurons in each of the classes defined 

through the clustering analysis, we found that these classes occupy spaces of model 

performance consistent with their definitions (Figures 7e–h). The “none” neurons formed a 

relatively tight cluster and constituted the bulk of the density close to the origin (Figure 7e). 
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By definition, these neurons had the least response reliability for all stimuli (Figure 6c) and 

were likewise the least predictable. Neurons in the “NS-NM” class showed high model 

performance for natural stimuli and low performance for artificial stimuli (Figure 7f). And 

finally, neurons that reliably respond to all stimuli (“DG-SG-NS-NM”), showed a broad 

distribution of model performance, with the highest median performance, equally predicted 

by both artificial and natural stimuli (Figure 7g). As running has been shown to influence 

neural activity in these data independent of visual stimuli (Figure 5e), one might expect that 

the “none” class is composed largely of neurons that are strongly driven by running activity 

rather than visual stimuli. Instead, we found that the “none” class has one of the smallest 

median correlations, overall, with the running speed of the mouse, while the “DG-SG-NS-

NM” class had the largest (Figure 7i).

Discussion

Historically, visual physiology has been dominated by single-neuron electrophysiological 

recordings in which neurons were identified by responding to a test stimulus. The stimulus 

was then hand-tuned to elicit the strongest reliable response from that neuron, and the 

experiment proceeded using manipulations around this condition. Such studies discovered 

many characteristic response properties, namely that visual responses can be characterized 

by combinations of linear filters with nonlinearities such as half-wave rectification, squaring, 

and response normalization7, or that neurons (in V1 at least) largely cluster into “simple” 

and “complex” cells. But these studies may have failed to capture the variability of 

responses, the breadth of features that will elicit a neural response, and the breadth of 

features that do not elicit a response. This results in systematic bias in the measurement of 

neurons and a confirmation bias regarding model assumptions. Recently, calcium imaging 

and denser electrophysiological recordings27 have enabled large populations of neurons to 

be recorded simultaneously. Here we scaled calcium imaging, combining standard operating 

procedures with integrated engineering tools to address some of the challenges of this 

difficult technique, to create an unprecedented survey of 59,610 neurons in mouse visual 

cortex, across 243 mice, using a standard and well-studied but diverse set of visual stimuli. 

This pipeline reduced critical experimental biases by separating quality control of data 

collection from response characterization. Such a survey is crucial for assessing the 

successes and shortcomings of contemporary models of visual cortex.

Using standard noise and grating stimuli we find many of the standard visual response 

features, including orientation selectivity, direction selectivity, and spatial receptive fields 

with opponent on and off subfields (Figures 2, 3). Based on responses to these stimuli, we 

observed functional differences in visual responses across cortical areas, layers, and 

transgenic Cre lines. In a novel analysis of overall reliabilities to both artificial and 

naturalistic stimuli, we found classes of neurons responsive to different constellations of 

stimuli (Figure 6). The different classes are largely intermingled, and found in all of the 

cortical areas recorded here, suggesting a largely parallel organization28. At the same time, 

the overrepresentation of classes responsive to natural movies and motion stimuli in areas 

AL, PM, and AM relative to the other classes (which are more responsive to spatial stimuli) 

is consistent with the assignment of these areas to the putative “dorsal” or “motion” 

stream29. The lack of an inverse relationship, wherein spatial information is overrepresented 
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relative to motion in a putative “ventral” stream, likely reflects the fact that we were unable 

to image the putative ventral areas LI, POR, or P within our cranial window. Area LM has 

previous been loosely associated with the ventral stream, but with evidence that it is more 

similar to V1 than other higher order ventral areas9,29, and our results appear consistent with 

the latter. Area RL has the largest proportion of neurons in the “none” class, over 85%, 

consistent with the very low percent of responsive neurons (Figure 2). It is possible that 

neurons in this area are specialized for visual features not probed here, or that they show a 

greater degree of multi-modality than in the other visual areas, integrating somatosensory 

and visual features30.

One of the unique features of this dataset is that it includes a large number of different 

transgenic Cre lines for characterization that label specific populations of excitatory and 

inhibitory neurons. On a coarse scale, excitatory populations behave similarly; however, 

closer examination reveals distinct functional properties across Cre lines. For instance, Rorb, 

Scnn1a-Tg3, and Nr5a1, which label distinct layer 4 populations in V1, exhibit distinct 

spatial and temporal tuning properties (Figure 3, Supplementary Figure 1, 2), different 

degrees of running correlation (Figure 5), and subtle differences in their class distribution 

(Figure 6). These differences suggest that there are separate channels of feedforward 

information. Similar differences between Fezf2 and Ntsr1 in V1, which label two distinct 

populations of corticofugal neurons found in layers 5 and 6 respectively, indicate distinct 

feedback channels from V1.

The Brain Observatory data also provide the first broad survey of visually evoked responses 

of both Vip and Sst inhibitory Cre lines. Sst neurons are strongly driven by all visual stimuli 

used here, with the plurality belonging to the “DG-SG-NS-NM” class (Figure 5f). Their 

responses to drifting gratings are particularly robust in that 94% of Sst neurons in V1 are 

responsive to drifting gratings, and respond quite reliably across trials, far more than the 

other Cre lines (Extended Data 3, Supplementary Figure 5). Vip neurons, on the other hand, 

are largely unresponsive, even suppressed, by drifting gratings, with only 9% of Vip neurons 

in V1 labelled responsive. This extreme difference between these two populations is 

consistent with previous literature examining the size tuning of these interneurons, and 

supports the disinhibitory circuit between them23,31,32. Vip neurons, however, are very 

responsive to both natural scenes and natural movies, the majority falling in the “NS-NM” 

class (Figure 6f, Extended Data 6, 7, Supplementary Figure 8), but show little selectivity to 

these stimuli, as their median lifetime sparseness is lower than both the Sst and the 

excitatory neurons (Figure 3f). Interestingly, receptive field mapping using locally sparse 

noise revealed that Vip neurons in V1 have remarkably large receptive field areas, larger 

than both Sst and excitatory neurons (Figure 3f), in contrast to the smaller summation area 

for Vip neurons, previously measured using windowed drifting gratings23,33. This suggests 

that Vip neurons respond to small features over a large region of space. Further, both 

populations show strong running modulation: they both correlate stronger with the mouse’s 

running speed than the excitatory populations (Figure 5e), and a model based solely on the 

mouse’s running speed does a better job at predicting their activity than for the excitatory 

populations (Supplementary Figure 7).
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The true test of a model is its ability to predict arbitrary novel responses, in addition to 

responses from stimuli used for characterization. Even with the inclusion of running, our 

models predict responses in a minority of neurons (Figure 7).

Neurons in the “DG-SG-NS-NM” class were well predicted, with values comparable to 

those found in primates7,11,34,35, for both natural and artificial stimuli (Figure 7g). Based on 

the way we chose our stimulus parameters, we expect that neurons with a strong “classical 

receptive field” would be most likely to appear in this class. However, this class constitutes 

only 10% of the mouse visual cortex (Figure 6d). Neurons in the “NS-NM” class show 

equally high prediction for natural stimuli, but poor prediction for artificial stimuli (Figure 

7f). It is possible these neurons could be “classical” neurons as well but are tuned for spatial 

or temporal frequencies that were not included in our stimulus set. As our stimulus 

parameters were chosen to match previous measurements of mouse acuity, this could 

suggest that the acuity of mouse has been underestimated36.

Remarkably, the largest class of neurons was the “none” class, constituting those neurons 

that did not respond reliably to any of the stimuli (34% of neurons). These neurons are the 

least likely to be described by “classical receptive fields,” as evidenced by their poor model 

performance for all stimuli (Figure 7f). What, then, do these neurons do? It is possible these 

neurons are visually driven, but are responsive to highly sparse and specific natural features 

that may arise through hierarchical processing37. Indeed, the field has a growing body of 

evidence that the rodent visual system exhibits sophisticated computations. For instance, 

neurons as early as V1 show visual responses to complex stimulus patterns38. Alternatively, 

these neurons could be involved in non-visual computation, including behavioral responses 

such as reward timing and sequence learning39, as well as modulation by multimodal 

sensory stimuli39,40 and motor signals24,26,41–43. While we found little evidence that these 

neurons were correlated with the mouse’s running recent work has found running to be 

among the least predictive such motor signals43.

We believe that the openly available Allen Brain Observatory provides an important 

foundational resource for the community. In addition to providing an experimental 

benchmark, these data serve as a testbed for theories and models. Already, these data have 

been used by other researchers to develop image processing methods44,45, to examine 

stimulus encoding and decoding46–49, and to test models of cortical computations50. 

Ultimately, we expect these data will seed as many questions as they answer, fueling others 

to pursue both new analyses and further experiments to unravel how cortical circuits 

represent and transform sensory information

Online Methods

Transgenic mice

All animal procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the Allen Institute for Brain Science in compliance with NIH guidelines. 

Transgenic mouse lines were generated using conventional and BAC transgenic, or knock-in 

strategies as previously described51,52. External sources included Cre lines generated as part 

of the NIH Neuroscience Blueprint Cre Driver Network (http://www.credrivermice.org) and 
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the GENSAT project (http://gensat.org/), as well as individual labs. In transgenic lines with 

regulatable versions of Cre young adult tamoxifen-inducible mice (CreERT2) were treated 

with ~200 μl of tamoxifen solution (0.2 mg/g body weight) via oral gavage once per day for 

5 consecutive days to activate Cre recombinase.

We used the transgenic mouse line Ai93, in which GCaMP6f expression is dependent on the 

activity of both Cre recombinase and the tetracycline controlled transactivator protein 

(tTA)51. Ai93 mice were first crossed with Camk2a-tTA mice, and the double transgenic 

mice were then crossed with a Cre driver line. For some Cre divers we alternatively 

leveraged the TIGRE2.0 transgenic platform that combines the expression of tTA and 

Gcamp6f in a single reporter line (Ai148(TIT2L-GC6f-ICL-tTA2)53.

Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-GCaMP6f) expression is regulated by the 

tamoxifen-inducible Cux2 promoter, induction of which results in Cre-mediated expression 

of GCaMP6f predominantly in superficial cortical layers 2, 3 and 454 (see Supplementary 

Figure 12, Supplementary Table 1). Both Emx1-IRES-Cre;Camk2a-tTA;Ai93 and Slc17a7-

IRES2-Cre;Camk2a-tTA;Ai93 are pan-excitatory lines and show expression throughout all 

cortical layers55,56. Sst-IRES-Cre;Ai148 exhibit GCaMP6f in somatostatin-expressing 

neurons57. Vip-IRES-Cre; Ai148 exhibit GCaMP6f in Vip-expressing cells by the 

endogenous promoter/enhancer elements of the vasoactive intestinal polypeptide locus57. 

Rorb-IRES2-Cre;Cam2a-tTA;Ai93 exhibit GCaMP6f in excitatory neurons in cortical layer 

4 (dense patches) and layers 5,6 (sparse)55. Scnn1a-Tg3-Cre;Camk2a-tTA;Ai93 exhibit 

GCaMP6f in excitatory neurons in cortical layer 4 and in restricted areas within the cortex, 

in particular primary sensory cortices. Nr5a1-Cre;Camk2a-tTA;Ai93 exhibit GCaMP6f in 

excitatory neurons in cortical layer 458. Rbp4-Cre;Camk2a-tTA;Ai93 exhibit GCaMP6f in 

excitatory neurons in cortical layer 559. Fezf2-CreER;Ai148 exhibits GCaMP6f in 

subcerebral projection neurons in the layer 5 and 660. Tlx3-Cre_PL56;Ai148 exhibits 

GCaMP6f primarily restricted to IT corticostriatal in the layer 559. Ntsr1-Cre_GN220;Ai148 

exhibit GCaMP6f in excitatory corticothalamic neurons in cortical layer 661.

We maintained all mice on a reverse 12-hour light cycle following surgery and throughout 

the duration of the experiment and performed all experiments during the dark cycle.

Cross platform registration

In order to register data acquired between instruments and repeatedly target and record 

neurons in brain areas identified with intrinsic imaging, we developed a system for cross 

platform registration (Supplementary Figure 13).

Surgery

Transgenic mice expressing GCaMP6f were weaned and genotyped at ~p21, and surgery 

was performed between p37 and p63. Surgical eligibility criteria included: 1) weight ≥19.5g 

(males) or ≥16.7g (females); 2) normal behavior and activity; and 3) healthy appearance and 

posture. A pre-operative injection of dexamethasone (3.2 mg/kg, S.C.) was administered 3h 

before surgery. Mice were initially anesthetized with 5% isoflurane (1–3 min) and placed in 

a stereotaxic frame (Model# 1900, Kopf, Tujunga, CA), and isoflurane levels were 

maintained at 1.5–2.5% for the duration of the surgery. An injection of carprofen (5–10 
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mg/kg, S.C.) was administered and an incision was made to remove skin, and the exposed 

skull was levelled with respect to pitch (bregma-lamda level), roll and yaw. (Supplementary 

Figure 14).

Intrinsic Imaging

A retinotopic map was created using intrinsic signal imaging (ISI) in order to define visual 

area boundaries and target in vivo two-photon calcium imaging experiments to consistent 

retinotopic locations62. Mice were lightly anesthetized with 1–1.4% isoflurane administered 

with a somnosuite (model #715; Kent Scientific, CON). Vital signs were monitored with a 

Physiosuite (model # PS-MSTAT-RT; Kent Scientific). Eye drops (Lacri-Lube Lubricant Eye 

Ointment; Refresh) were applied to maintain hydration and clarity of eye during anesthesia. 

Mice were headfixed for imaging normal to the cranial window

The brain surface was illuminated with two independent LED lights: green (peak λ=527nm; 

FWHM=50nm; Cree Inc., C503B-GCN-CY0C0791) and red (peak λ=635nm and FWHM 

of 20nm; Avago Technologies, HLMP-EG08-Y2000) mounted on the optical lens. A pair of 

Nikon lenses (Nikon Nikkor 105mm f/2.8, Nikon Nikkor 35mm f/1.4), provided 3.0x 

magnification (M=105/35) onto an Andor Zyla 5.5 10tap sCMOS camera. A bandpass filter 

(Semrock; FF01–630/92nm) was used to only record reflected red light onto the brain.

A 24” monitor was positioned 10 cm from the right eye. The monitor was rotated 30° 

relative to the animal’s dorsoventral axis and tilted 70° off the horizon to ensure that the 

stimulus was perpendicular to the optic axis of the eye. The visual stimulus displayed was 

comprised of a 20° × 155° drifting bar containing a checkerboard pattern, with individual 

square sizes measuring 25º, that alternated black and white as it moved across a mean-

luminance gray background. The bar moved in each of the four cardinal directions 10 times. 

The stimulus was warped spatially so that a spherical representation could be displayed on a 

flat monitor9.

After defocusing from the surface vasculature (between 500 μm and 1500 μm along the 

optical axis), up to 10 independent ISI timeseries were acquired and used to measure the 

hemodynamic response to the visual stimulus. Averaged sign maps were produced from a 

minimum of 3 timeseries images for a combined minimum average of 30 stimulus sweeps in 

each direction63.

The resulting ISI maps were automatically segmented by comparing the sign, location, size, 

and spatial relationships of the segmented areas against those compiled in an ISI-derived 

atlas of visual areas. Manual correction and editing of the segmentation were applied to 

correct errors. Finally, target maps were created to guide in vivo two-photon imaging 

location using the retinotopic map for each visual area, restricted to within 10° of the center 

of gaze. (Supplementary Figure 15).

Habituation

Following successful ISI mapping, mice spent two weeks being habituated to head fixation 

and visual stimulation. During the first week mice were handled and head fixed for 

progressively longer durations, ranging from 5 to 10 minutes. During the second week, mice 
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were head fixed and presented with visual stimuli, starting for 10 minutes and progressing to 

50 minutes of visual stimuli by the end of the week, including all of the stimuli used during 

data collection. Mice received a single 60 min habituation session on the two-photon 

microscope with visual stimuli.

Two photon in vivo calcium imaging

Calcium imaging was performed using a two-photon-imaging instrument (either a 

Scientifica Vivoscope or a Nikon A1R MP+; the Nikon system was adapted to provide space 

to accommodate the running disk). Laser excitation was provided by a Ti:Sapphire laser 

(Chameleon Vision – Coherent) at 910 nm. Pre-compensation was set at ~10,000 fs2. 

Movies were recorded at 30Hz using resonant scanners over a 400 μm field of view (FOV). 

Temporal synchronization of all data-streams (calcium imaging, visual stimulation, body 

and eye tracking cameras) was achieved by recording all experimental clocks on a single NI 

PCI-6612 digital IO board at 100 kHz.

Mice were head-fixed on top of a rotating disk and free to walk at will. The disk was 

covered with a layer of removable foam (Super-Resilient Foam, 86375K242, McMaster).. 

Data was initially obtained with the mouse eye centered both laterally and vertically on the 

stimulation screen and positioned 15 cm from the screen, with the screen parallel to the 

mouse’s body. Later, the screen was moved to better fill the visual field. The normal distance 

of the screen from the eye remained at 15 cm, but the screen center moved to a position 

118.6 mm lateral, 86.2 mm anterior and 31.6 mm dorsal to the right eye.

An experiment container consisted of three 1-hour imaging sessions at a given FOV during 

which mice passively observed three different stimuli. One imaging session was performed 

per mouse per day, for a maximum of 16 sessions per mouse.

On the first day of imaging at a new field of view, the ISI targeting map was used to select 

spatial coordinates. A comparison of superficial vessel patterns was used to verify the 

appropriate location by imaging over a FOV of ~800 μm using epi-fluorescence and blue 

light illumination. Once a region was selected, the objective was shielded from stray light 

coming from the stimulation screen using opaque black tape. In two-photon imaging mode, 

the desired depth of imaging was set to record from a specific cortical depth. On subsequent 

imaging days, we returned to the same location by matching (1) the pattern of vessels in epi-

fluorescence with (2) the pattern of vessels in two photon imaging and (3) the pattern of 

cellular labelling in two photon imaging at the previously recorded location.

Once a depth location was stabilized, a combination of PMT gain and laser power was 

selected to maximize laser power (based on a look-up table against depth) and dynamic 

range while avoiding pixel saturation. The stimulation screen was clamped in position, and 

the experiment began. Two-photon movies (512×512 pixels, 30Hz), eye tracking (30Hz), 

and a side-view full body camera (30Hz) were recorded. Recording sessions were 

interrupted and/or failed if any of the following was observed: 1) mouse stress as shown by 

excessive secretion around the eye, nose bulge, and/or abnormal posture; 2) excessive pixel 

saturation (>1000 pixels) as reported in a continuously updated histogram; 3) loss of 

baseline intensity in excess of 20% caused by bleaching and/or loss of immersion water; 4) 
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hardware failures causing a loss of data integrity. Immersion water was occasionally 

supplemented while imaging using a micropipette taped to the objective (Microfil 

MF28G67–5 WPI) and connected to a 5 ml syringe via extension tubing. At the end of each 

session, a z-stack of images (+/− 30 μm around imaging site, 0.1 μm step) was collected to 

evaluate cortical anatomy and evaluate z-drift during the course of experiment. Experiments 

with z-drift above 10μm over the course of the entire session were excluded. In addition, for 

each FOV, a full-depth cortical z stack (~700 μm total depth, 5 μm step) was collected to 

document the imaging site location. (Supplementary Figure 16, 17)

Detection of epileptic mice for exclusion

Prior to two-photon imaging, each mouse was screened for the presence of interictal events 

in two ways. First, on the habituation day on the two photon rig, we collected a 5 min long 

video on the surface of S1 using the epifluorescence light path of the two photon rig. For 

each of these videos, we detected all calcium events present across the entire FOV and 

counted the number of events with a prominence superior to 10% ΔF/F and a width between 

100 and 300 ms64. Second, a similar analysis was performed for all two photon calcium 

videos collected. Except for inhibitory lines, any mouse that showed the presence of these 

large and fast events was reviewed and excluded from the pipeline. Inhibitory lines were 

excluded from this analysis as the neuronal labelling was too sparse to reliably assess these 

events from normal spontaneous activity.

Visual Stimulation

Visual stimuli were generated using custom scripts written in PsychoPy65,66 (Peirce, 2007, 

2008) and were displayed using an ASUS PA248Q LCD monitor, with 1920 × 1200 pixels. 

Stimuli were presented monocularly, and the monitor was positioned 15 cm from the eye, 

and spanned 120° × 95° of visual space. Each monitor was gamma corrected and had a mean 

luminance of 50 cd/m2. To account for the close viewing angle, a spherical warping was 

applied to all stimuli to ensure that the apparent size, speed, and spatial frequency were 

constant across the monitor as seen from the mouse’s perspective.

Visual stimuli included drifting gratings, static gratings, locally sparse noise, natural scenes 

and natural movies. These stimuli were distributed across three ~60 minute imaging sessions 

(Figure 1f). Session A included drifting gratings, natural movies one and three. Session B 

included static gratings, natural scenes, and natural movie one. Session C included locally 

sparse noise, natural movies one and two. The different stimuli were presented in segments 

of 5–13 minutes and interleaved. At least 5 minutes of spontaneous activity were recorded in 

each session.

The drifting gratings stimulus consisted of a full field drifting sinusoidal grating at a single 

spatial frequency (0.04 cycles/degree) and contrast (80%). The grating was presented at 8 

different directions (separated by 45°) and at 5 temporal frequencies (1, 2, 4, 8, 15 Hz). Each 

grating was presented for 2 seconds, followed by 1 second of mean luminance gray. Each 

grating condition was presented 15 times. Trials were randomized, with blank sweeps (i.e. 

mean luminance gray instead of grating) presented approximately once every 20 trials.
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The static gratings stimulus consisted of a full field static sinusoidal grating at a single 

contrast (80%). The grating was presented at 6 different orientations (separated by 30°), 5 

spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and 4 phases (0, 0.25, 0.5, 

0.75). The grating was presented for 0.25 seconds, with no inter-grating gray period. Each 

grating condition was presented ~50 times. Trials were randomized, with blank sweeps 

presented approximately once every 25 trials.

The natural scenes stimulus consisted of 118 natural images. Images were taken from the 

Berkeley Segmentation Dataset67, the van Hateren Natural Image Dataset68, and the McGill 

Calibrated Colour Image Database69. The images were presented in grayscale and were 

contrast normalized and resized to 1174 × 918 pixels. The images were presented for 0.25 

seconds each, with no inter-image gray period. Each image was presented ~50 times. Trials 

were randomized, with blank sweeps approximately once every 100 images.

Three natural movie clips were used from the opening scene of the movie Touch of Evil (dir. 
O. Welles, Universal – International, 1958). Natural Movie One and Natural Movie Two 

were both 30 second clips while Natural Movie Three was a 120 second clip. All clips had 

been contrast normalized and were presented in grayscale at 30 fps. Each movie was 

presented 10 times with no inter-trial gray period. Natural Movie One was presented in each 

imaging session.

The locally sparse noise stimulus consisted of white and dark spots on a mean luminance 

gray background. Each spot was square, 4.65° on a side. Each frame had ~11 spots on the 

monitor, with no two spots within 23° of each other, and was presented for 0.25 seconds. 

Each of the 16 × 28 spot locations was occupied by white and black spots a variable number 

of times (mean=115). For most of the collected data, this stimulus was adapted such that half 

of it used 4.65° spots while the other half used 9.3° spots, with an exclusion zone of 46.5°.

Serial Two-Photon Tomography

Serial two-photon tomography was used to obtain a 3D image volume of coronal brain 

images for each specimen. This 3D volume enables spatial registration of each specimen’s 

associated ISI and optical physiology data to the Allen Mouse Common Coordinate 

Framework (CCF). Methods for this procedure have been described in detail in whitepapers 

associated with the Allen Mouse Brain Connectivity Atlas and in Oh et al.70.

Post-mortem assessment of brain structure

Morphological and structural analysis of each brain was performed following collection of 

the 2P serial imaging (TissueCyte) dataset (Supplementary Figure 18).

The following characteristics warranted an automatic failure of all associated data: (1) 

Abnormal GCaMP6 expression pattern; (2) Necrotic brain tissue; (3) Compression of the 

contralateral cortex that resulted in disruption to the cortical laminar structure; (4) 

Compression of the ipsilateral cortex or adjacent to the cranial window.

The following characteristics were further reviewed and may have resulted in failure of the 

associated data: (1) Compression of the contralateral cortex due to a skull growth; (2) 
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Excessive compression of the cortex underneath the cranial window; (3) Abnormal or 

enlarged ventricles.

Image processing

For each two-photon imaging session, the image processing pipeline performed:1) spatial or 

temporal calibration specific to a particular microscope, 2) motion correction, 3) image 

normalization to minimize confounding random variations between sessions, 4) 

segmentation of connected shapes, and 5) classification of soma-like shapes from remaining 

clutter (Supplementary Figure 19, 20).

The motion correction algorithm relied on phase correlation and only corrected for rigid 

translational errors. It performed the following steps. Each movie was partitioned into 400 

consecutive frame blocks, representing 13.3 seconds of video. Each block was registered 

iteratively to its own average 3 times (Supplementary Figure 20a–b). A second stage of 

registration integrated the periodic average frames themselves into a single global average 

frame through 6 additional iterations (Supplementary Figure 20c). The global average frame 

served as the reference image for the final resampling of every raw frame in the video 

(Supplementary Figure 20d).

Each 13.3 second block was used to generate normalized periodic averages using the 

following steps. First, we subtracted the mean from the maximum projection to retain pixels 

from active cells (Supplementary Figure 20e–f–g). To select objects of the right size during 

segmentation, we convolved all periodic normalized averages with a 3×3 median filter and a 

47×47 high-pass mean filter. We then normalized the histogram of all resulting frames 

(Supplementary Figure 20g–h).

All normalized periodic averages were then segmented using an adaptive threshold filter to 

create an initial estimate of binarized ROI masks of unconnected components 

(Supplementary Figure 20i). Given GCaMP6 lower expression in cell nuclei, good 

detections from somata tended to show bright outlines and dark interiors. We then performed 

a succession of morphological operations to fill closed holes and concave shapes 

(Supplementary Figure 20j,k).

These initial ROI masks included shapes from multiple periods that were actually from a 

single cell. To further reduce the number of masks to putative individual cell somas, we 

computed a feature vector from each masks that included morphological attributes such as 

location, area, perimeter, and compactness, among others (Supplementary Figure 20l). A 

battery of heuristic decisions applied on these attributes allowed to combine, eliminate or 

maintain ROI (Supplementary Figure 20l,m). A final discrimination step, using a binary 

relevance classifier fed by experimental metadata (e.g. Cre line, imaging depth) along with 

the previous morphological features, further filtered the global masks into the final ROIs 

used for trace extraction.

Targeting refinement for putative RL neurons

In all experiments, the center of the two-photon (2P) FOV was aimed close to the retinotopic 

center of the targeted visual region, as mapped by ISI. Retinotopic mapping of RL 
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commonly yielded retinotopic centers close to the boundary between RL and somatosensory 

cortex. Consequently, for some RL experiments the FOV spanned across the boundary 

between visual and somatosensory cortex. All RL experiments were reviewed using a semi-

automated process (Supplementary Figure 21), and ROIs that were deemed to lie outside 

putative visual cortex boundaries (approx. 25%) were excluded from further analysis.

Neuropil Subtraction

To correct for contamination of the ROI calcium traces by surrounding neuropil, we 

modeled the measured fluorescence trace of each cell as FM = FC + rFN, where FM is the 

measured fluorescence trace, FC is the unknown true ROI fluorescence trace, FN is the 

fluorescence of the surrounding neuropil, and r is the contamination ratio. To estimate the 

contamination ratio for each ROI, we selected the value of r that minimized the cross-

validated error, E = ∑t FC − F
M

+ rFN
2
, over four folds. We computed the error over each 

fold with a fixed value of r, for a range of r values. For each fold, FC was computed by 

minimizing C = ∑t FC − F
M

+ rFN
2 + λ LFC

2, where L is the discrete first derivative (to 

enforce smoothness of FC) and λ is a parameter set to 0.05. After determining r, we 

computed the true trace as FC = FM − rFN, which is used in all subsequent analysis. 

(Supplementary Figure 22)

Demixing traces from overlapping ROIs

We demixed the activity of all recorded ROIs, using a model where every ROI had a trace 

distributed in some spatially heterogeneous, time-dependent fashion:

Fit = ∑
k

WkitTkt

where W is a tensor containing time-dependent weighted masks: Wkit measures how much 

of neuron k’s fluorescence is contained in pixel i at time t. Tkt is the fluorescence trace of 

neuron k at time t - this is what we want to estimate. Fit is the recorded fluorescence in pixel 

i at time t.

This model applied to all ROIs before filtering for somas. We filtered out duplicates (defined 

as two ROIs with >70% overlap) and ROIs that were the union of others (any ROI where the 

union of any other two ROIs accounted for 70% of its area) before demixing and applied the 

remaining filtering criteria afterwards. Projecting the movie F onto the binary masks, A, 

reduced the dimensionality of the problem from 512×512 pixels to the number of ROIs:

∑
i

AkiFit = ∑
k, i

AkiWkitTkt

where Aki is one if pixel i is in ROI k and zero otherwise–these are the masks from 

segmentation, after filtering. At time point t, this yields the linear regression:

de Vries et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AF(t) = (AWT(t))T(t)

where we estimated the weighted masks W by the projection of the recorded fluorescence F 
onto the binary masks A. On every frame t, we computed the linear least squares solution T
to extract each ROI’s trace value.

It was possible for ROIs to have negative or zero demixed traces T. This occurred if there 

were unions (one ROI composed of two neurons) or duplicates (two ROIs in the same 

location with approximately the same shape) that our initial detection missed. If this 

occurred, those ROIs and any that overlapped with them were removed from the experiment. 

This led to the loss of ~1% of ROIs. (Supplementary Figure 22).

ROI Matching

The FOV for each session, and the segmented ROI masks, were registered to each other 

using an affine transformation. To map cells, a bipartite graph matching algorithm was used 

to find correspondence of cells between sessions A and B, A and C, and B and C. The 

algorithm took cells in the pair-wise experiments as nodes, and the degree of spatial 

overlapping and closeness between cells as edge weight. Maximizing the summed weights 

of edges, the bipartite matching algorithm found the best matching between cells. Finally, a 

label combination process was applied to the matching results of A and B, A and C, and B 

and C, producing a unified label for all three experiments.

ΔF/F

To calculate the ΔF/F for each fluorescence trace, we first calculate baseline fluorescence 

using a median filter of width 5401 samples (180 seconds). We then calculate the change in 

fluorescence relative to baseline fluorescence (ΔF), divided by baseline fluorescence (F). To 

prevent very small or negative baseline fluorescence, we set the baseline as the maximum of 

the median filter estimated baseline and the standard deviation of the estimated noise of the 

fluorescence trace.

L0 penalized event detection

We used the L0-penalized method of Jewell, et al for event detection17,71. We refer to this as 

“event” detection because low firing rate activity is difficult to detect. For each ΔF/F trace 

we remove slow timescale shifts in the fluorescence using a median filter of width 101 

samples (3.3 seconds). We then apply the L0-penalized algorithm to the corrected ΔF/F 
trace. The L0 algorithm has two hyperparameters: gamma and lambda. Gamma corresponds 

to the decay constant of the calcium indicator. We set gamma to be the decay constant 

obtained from jointly recorded optical and electrophysiology with the same genetic 

background and calcium indicator. Time constants can be found at https://github.com/

AllenInstitute/visual_coding_2p_analysis/blob/master/visual_coding_2p_analysis/

l0_analysis.py. Supplementary Figure 23 shows the extracted linear kernels for Emx1-Ai93 

and Cux2-Ai93 from which gamma has been extracted by fitting the fluorescence decay 

with a single exponential. The rise time, amplitude, and shape of the extracted linear kernels 
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are mainly a function of the genetically encoded calcium indicator (GCaMP6f) and appear to 

be largely independent of the specific promoter driving expression.

To estimate lambda, which controls the strength of the L0 penalty, we estimate the standard 

deviation of the trace. We set lambda using bisection to minimize the number of events 

smaller than two standard deviations of the noise, while retaining at least one recovered 

event. We chose two standard deviations by maximizing the hit-miss rate on eight hand-

annotated traces during 8 degree locally sparse noise stimulation. Those traces were 

uniformly sampled from distribution of signal-to-noise ratio for ΔF/F traces. The noise level 

was computed as the robust standard deviation (1.4826 times the median absolute deviation) 

and the signal level was the median ΔF/F after thresholding at the robust standard deviation.

To assess how the events detected using the above procedure relate to actual spikes, we 

performed event detection on the fluorescence of cells that were imaged simultaneously with 

loose patch recordings. Since the true spike train is known for these data, we computed the 

expected probability of detecting an event, as well as the expected event magnitude, as a 

function of the number of spikes observed in a set of detection windows relevant to the 

pipeline data analyses (e.g. static gratings, natural scenes, and locally sparse noise templates 

are presented for 0.25 s each) (Supplementary Figure 23).

Analysis

All analysis was performed using custom Python scripts using NumPy72, SciPy73, Pandas74 

and Matplotlib75.

Direction selectivity was computed from mean responses to drifting gratings, at the cell’s 

preferred temporal frequency, as

DSI =
Rpre f − Rnull
Rpre f + Rnull

where Rpref is a cell’s mean response in its preferred direction and Rnull is its mean response 

to the opposite direction.

The temporal frequency tuning, at the preferred direction, was fit using either an exponential 

curve (for highest and lowest peak temporal frequency) or a Gaussian curve (other values). 

The reported preferred temporal frequency was taken from these fits. The same was done for 

spatial frequency tuning, fit at the cell’s preferred orientation and phase in response to the 

static gratings. In both cases, if a fit could not converge, a preferred frequency was not 

reported.

Spatial receptive fields were computed from locally sparse noise, in two stages. First, we 

determine whether a cell has a receptive field by a statistical test, described Statistics. 

Second, we compute the receptive field itself. A second statistical test was used to determine 

inclusion of each spot in the receptive field, also described in Statistics. Determining 

statistical significance is a less common but important step necessary because of the size of 

the dataset.
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If a neuron was found to have a receptive field, the spots that were identified for receptive 

field membership were fit with a two-dimensional Gaussian distribution, with orientation, 

azimuth/elevation, and x/y standard deviation serving as degrees of freedom for the 

optimization. On and Off subregions (eg. white and black spots) were fit separately. 

Subregion area was defined as the 1.5 standard deviation ellipse under this fit gaussian, 

measured in units of squared visual degrees. Up to two On and Off subregions were fit. The 

total areas of the receptive field was computed as the sum of all subregion areas, correcting 

for overlap.

Lifetime sparseness was computed using the definition in Vinje and Gallant20.

SL =

1 − 1
N

∑i ri
2

∑i ri
2

1 − 1
N

where N is the number of stimulus conditions and ri is the response of the neuron to stimulus 

condition i averaged across trials. Population sparseness was computed with the same 

metric, but where N is the number of neurons and ri is average response vector of neuron i to 

all stimulus conditions.

For each stimulus we computed CCmax, the expected correlation between the sample trial 

averaged response and the true (unmeasured) mean response. It provides an upper bound on 

the expected performance of any model that predicts the response from the given stimulus 

trial structure. We follow the computation from Schoppe, et al.76:

1
CCmax

= 1 − 1
N

1 − 1
N × ∑n = 1

N Var Rn

Var ∑n = 1
N Rn − ∑n = 1

N Var Rn

where N is the number of trials and Rn is the time series of the response on the nth trial. For 

Rn we use the trace of extracted event magnitudes at 30Hz, smoothed with a Gaussian 

window of width 0.25s.

We computed “noise” and “signal” correlations in the population responses. Signal 

correlations were computed as the Pearson correlation between the trial-averaged stimulus 

responses of pairs of neurons. To prevent trial-by-trial fluctuations from contaminating our 

signal correlation estimates, we separated each stimulus’ trials into two subsets and 

calculated the correlation between the trial-averaged responses with each subset of trials. We 

averaged the signal correlations over 100 random splits of the trials. Noise correlations were 

computed as the Pearson correlation of the single-trial stimulus responses for a pair of 

neurons and a given stimulus, and then averaged over stimuli. For natural movies, we 

computed the noise and signal correlations of the binned event counts in non-overlapping 10 

frame windows. We computed “spontaneous correlations” as the Pearson correlation of the 

detected event trains during the periods of spontaneous activity recording.
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Decoding—We used K Nearest-Neighbors classifiers to decode the visual stimulus identity 

(e.g. the natural scene number, within the natural scene responses) from the population 

vector of single-trial responses, using the correlation distance between response vectors. We 

report the performance on the held-out data from five-fold cross-validation. On each cross-

validation fold, we performed an inner-round of 2-fold cross-validation to choose the 

number of neighbors from eight logarithmically spaced options (1, 2, 4, 7, 14 and 27).

Categorical Regression Model for Trial Responses to Drifting Gratings—We fit 

linear ridge regression models for the trial-averaged responses (events summed during each 

stimulus presentation). The response for trial t, Rt is governed by the following equation:

Rt = ∑
s

wsIs
t

where Is
t  is the characteristic function for stimulus condition s during trial t. Is

t  is equal to 1 

when the stimulus condition is equal to s during trial t and 0 otherwise, and ws is the weight 

for stimulus condition s (it gives the response of the neuron to stimulus s).

We fit two separate models, one for which the stimulus conditions enumerate the different 

values of the drifting grating (i.e. orientations and temporal frequencies, including the blank 

sweep, 41 total conditions) and another for which each stimulus condition occurred in pairs, 

one during running and one when the animal was stationary. On each stimulus trial we 

classified the locomotion as running or stationary using a gaussian mixture model with a 

Dirichlet process prior for the number of components. Stationary trials were identified by the 

component with the smallest variance among those with mean speed < 1 cm/s (if any 

existed). We used stimulus conditions with at least 5 repetitions in each behavioral state, and 

used the same number of trials for each stimulus condition in each behavioral state.

We regressed the summed trial against the combination of stimulus condition and behavioral 

state (e.g., 180 degrees, 4 Hz and running). The regularization weight was chosen by leave-

one-out cross-validation on the training data. We also regressed against just the locomotion 

state, binning the activity and running speed into pseudo-trials of the same length as the 

drifting grating trials. We measured model performance by the correlation of the predictions 

and data on held-out trials (5-fold cross-validation).

Regression models for mouse running speed—We performed a polynomial 

regression of each neuron’s activity against running speed. To do this we rank-sorted the 

running speed and binned it into 900-point bins. All speeds between −1 cm/s and 1 cm/s 

were labelled stationary. We summed each neuron’s events in the same speed bins to 

compute the speed tuning. We then fit a polynomial regression for the speed tuning with 5-

fold cross-validation. On each training fold we performed an inner 2-fold cross-validation to 

select the polynomial degree between 1 and 4. We used ridge regression with leave-one-out 

cross-validation to choose the regularization parameter between .5 and 100.
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3D Gabor Wavelet Model for Temporal Responses—Each neuron is modeled as a 

sparse linear combination of linear and quadratic basis functions, similar to other 

approaches77–79. We use a pyramid of 3D Gabor wavelet filters that tile the stimulus at 

multiple scales, directions, and temporal frequencies (Figure 6a). The filters are defined by:

f (x, y, t:λ, θ, ψ , σ, γ) = exp − x′2 + y′2 + γt2

2σ2 exp i 2π x′
λ + ψt

Where:

x′ = x cosθ + y sinθ

y′ = − x sinθ + y cosθ

λ controls spatial frequency, θ orientation, ψ temporal frequency, σ the Gaussian envelope, 

and γ the Gaussian envelope in time. This linear basis forms a reasonably tight frame. The 

parameters that generate the set of filters were adapted and scaled to the tuning properties of 

mouse visual cortex. We estimate weights for 10 time-lags for each basis function to enable 

fitting of the temporal kernel. The weighted sum of the basis functions is passed to a 

parameterized soft-plus nonlinearity. The filters are temporally convolved with the stimulus. 

The output of each filter is Z-scored before fitting with threshold gradient descent.

Hi(t) = ∑
x, y

∑
τ

f i(x, y, τ)S(x, y, t − τ)

The model is a technically a generalized linear model (where the linear model is built by 

considering linear combinations of the features Hi(τ) and Hi
2 τ , along with a temporal filter 

for the running signal of the animal, r(t)) with a parameterized soft-plus output. The weights 

wi are fit to the data using threshold gradient descent and the Poisson negative log-likelihood 

cost function, using the rate

R(t) = log 1 + exp k∑
i

∑
τ

Hi t − τ wi
l τ + Hi

2 t − τ wi
q τ + r t − τ wr τ /k

This model, with a quadratic dependence on the stimulus Hi
2 τ , is akin to a regularized 

STA/STC analysis, adapted to fit the full spatio-temporal receptive field using stimuli from 

the data set.

We estimated a sparse combination of basis functions for each neuron using a variant of 

threshold gradient descent80. In threshold gradient descent, only basis functions whose 

gradients have magnitudes larger than some threshold, t, of the largest gradient magnitude 

have their weights updated. All weights start at 0 and the descent is terminated using early 
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stopping. The threshold parameter, which can range from 0 to 1, controls the sparsity of the 

solution. We used a threshold value of 0.8.

We modified the threshold gradient descent algorithm in three ways. First, we updated the 

weights at all time lags for any basis function over threshold, allowing the temporal kernel to 

be smooth. Second, at each iteration, any basis function whose gradient exceeded the 

threshold had its weight added to the “active set”, which was maintained over the 

optimization, and then all weights in the active set were updated, preventing oscillations. 

Third, we used an adaptive step size. The step size increased by a factor of 1.2 at each 

iteration if generalization to the stopping set improved, and decreased by a factor of 0.5 if 

generalization worsened81.

We used a nested six-fold cross-validation framework. We split the data into six sets each 

containing many 50 sample long continuous blocks from throughout the dataset. A model 

was trained by starting with five separate models, each trained on a different combination of 

four of the five training sets, with the remaining set functioning as the stopping set. The five 

models were averaged together for making predictions on the test set. Reported model 

performance is the average on the test set across the six folds. Separate models were fit for 

the natural stimuli and artificial stimuli. The weights for these models were sparse and for all 

models fewer than 20% of the basis functions had non-zero weight values (see 

Supplementary Figure 11). The number of parameters for the model is 517451.

Pupil position and area were measured (Supplementary Figure 24), and for some of the 

models these were incorporated into the models. These corrections had little effect on model 

performance (Supplementary Figure 10).

We show examples of this model on four neurons in Supplementary Figure 9.

Clustering of reliabilities—We performed a clustering analysis using the reliabilities by 

stimulus for each cell (defined as the percent of responsive trials to the cell’s preferred 

stimulus condition). We did not include Locally Sparse Noise in this analysis. We combined 

the reliabilities for Natural Movies by taking the maximum reliability over the different 

Natural Movie stimuli. We performed this analysis with two different inclusion criteria. For 

criteria 1 we included all cells that appeared in both Sessions A and B. For criteria 2 we 

included all cells that appeared in all three Sessions, A, B, & C. This resulted in a set of four 

reliabilities for each cell (for the drifting gratings, static gratings, natural movies, and natural 

scenes). We performed a Gaussian Mixture Model clustering on these reliabilities for cluster 

numbers from 1 to 50, using the average Bayesian Information Criterion on held out data 

with 4 fold cross validation to select the optimal number of clusters. Once the optimal model 

was selected, we defined a threshold for responsiveness by selecting the cluster with the 

lowest mean reliability over all stimuli. We set the threshold to be the maximum reliability 

plus one standard deviation over the reliabilities for this cluster. Using this threshold, we 

identified each cluster according to its profile of responsiveness (i.e. whether it responded to 

drifting gratings, etc.), defining these profiles as “classes”. For each cell, we predicted the 

cluster membership using the optimal model, and then the class membership using the 
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threshold. We repeated this process 100 times to estimate the robustness of the clustering 

and derive uncertainties for the number of cells belonging to each class.

Statistics

No statistical methods were used to pre-determine sample sizes per location but our sample 

sizes are similar to those reported in previous publications.8,9 Data collection and analyses 

were not performed blind to the conditions of the experiments as there was a single 

experimental condition for all acquired data. Within each transgenic Cre line, mice were 

randomly assigned to data collection in order to sample different areas and imaging depths. 

Stimulus conditions for gratings and natural scenes were presented in a randomized order 

within each epoch, as described. No other randomization was used as there were fixed 

experimental condition for all other aspects of the data set. Additional research design 

information can be found in the Nature Research Reporting Summary accompanying this 

study.

Test for significance of a receptive field map—We performed a chi-square test to 

assess whether there was a significant response at each location to the locally sparse noise 

stimulus. For each location, we considered a 7×7 grid of locally sparse noise pixels centered 

on that location. The null model for this test was defined by assuming that a neuron lacking 

a receptive field has equal probability of producing a response regardless of the location and 

luminance (i.e. black or white) of the spots displayed on the screen on any given trial. A 

neuron has a receptive field if there is a deviation beyond chance based on the null 

distribution. Chi-square tests for independence were performed for each neuron and for each 

location using the number of responses to quantify the dependence of responsive trials on 

the stimulus.

An assumption of the chi-square test is that the response of the neuron on a given trial can 

only be attributed to a single spot; i.e., only a single stimulus spot is presented on each trial. 

Although multiple non-gray spots appeared on the screen during each trial, the exclusion 

region of the locally sparse noise stimulus prevented two non-gray pixels within a 23° radius 

(for the 4.65° spot size) or 46° radius (for the 9.3° spot size) of one another from being 

presented on the same trial. Leveraging this structure in the stimulus, chi-square tests were 

performed on patches in visual space small enough to ensure that two or more non-gray 

pixels were rarely presented on the same trial, but large enough to ensure that the patch 

completely contains the receptive field in order for the test to detect the dependence of 

neuron responses on spot locations. We chose 32.2°x32.2° patches for 4.65° spots and 

64.4°x64.4°patches for the 9.3° spot LSN (i.e. 7×7 grid of spot locations in each case). For 

each neuron, multiple chi-square tests were performed on such patches to tile the entire 

stimulus monitor and the p-values from these tests were then corrected using the Šidák 

method to account for multiple comparisons. If the p-value for any patch on the stimulus 

monitor was significant (p<0.05) after multiple comparison correction, the neuron was 

considered to have a receptive field.

Test for inclusion of locally sparse noise spots in a receptive field—The 

receptive field was computed using an event triggered average. Because more than one 
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stimulus spot was present during a given trial, it is not possible to infer the stimulus-

response relationship between spot locations and responses on a per-trial basis. Therefore, a 

statistically significant co-occurrence of spot presentation and responses across trials defined 

the inclusion criteria for membership of a stimulus spot in the receptive field. To begin, the 

stimulus was convolved with a spatial Gaussian (4.65° per sigma), to allow pooling of 

contributions to responses from nearby spots. A p-value was computed for each spot (black 

and white separately) by constructing a null distribution for the number of trials that a spot 

was present during responsive trials. This per-spot null distribution was estimated by 

shuffling the identity of the responsive trials (n=10,000 shuffles). Statistical outliers were 

identified by computing a p-value for each spot relative to its null distribution. These p-

values were corrected for false discoveries using the Šidák multiple comparisons correction, 

and thresholded at p=0.05 to identify receptive field membership.

Comparison of single cell response metric distributions—To compare the 

distributions of single cell response metrics across areas, layers, and Cre lines we used a 

Kolmogorov-Smirnov (KS) test with a Bonferroni correction for the number of comparisons, 

defined as the number of other distributions to which we were comparing, e.g. for area-wise 

comparison of the Cux2 line, there are six areas in total and thus five comparisons for each 

area (first row of Supplementary Figure 2). The KS test was chosen as it does not assume a 

normal distribution nor equal variance.

Data Product

The Allen Brain Observatory Visual Coding dataset is publicly available, accessible via a 

dedicated web portal (http://observatory.brain-map.org/visualcoding/), with a custom 

Python-based Application Programming Interface, the AllenSDK (https://github.com/

AllenInstitute/AllenSDK). Data from each imaging session is contained within a NWB 

(Neurodata Without Borders)82.

Extended Data
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Extended Data Fig. 1. Spontaneous and evoked event magnitude
(a) Pawplot and box plots summarizing the mean event magnitude for neurons during the 5 

minute spontaneous activity (mean luminance gray) stimulus. For a description of the 

visualization see Figure 3. The box shows the quartiles of the data, and the whiskers extend 

to 1.5 times the interquartile range. Points outside this range are shown as outliers. See 

Extended Data Figure 3 for sample sizes. (b) Pawplot and box plots summarizing the 

maximum evoked event magnitude for neurons’ responses to drifting gratings. See Extended 

Data Figure 3 for sample sizes.
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Extended Data Fig. 2. Response visualizations
Conventional tuning curves for drifting grating responses for one neuron. (a) Direction 

tuning plotted at the preferred temporal frequency (4 Hz) (mean ± sem across 15 trials). 

Dotted line represents the mean response to the blank sweep. (b) Temporal frequency tuning 

plotted at the preferred grating direction (270°) (mean ± sem). (c) Heatmap of the direction 

and temporal frequency responses for cell, showing any possible interaction of direction and 

temporal frequency. (d) All 15 trials at the preferred direction and temporal frequency, 2 

second grating presentation is indicated by pink shading. The mean event magnitude is 

represented by intensity of the dot to the right of the trial. (e) All trials are clustered, with the 

strongest response in the center and weaker responses on the outside. (f) Clusters are plotted 

on a “Star plot”. Arms indicated the direction of grating motion, arcs indicate the temporal 

frequency of the grating, with the lowest in the center and the highest at the outside. Clusters 
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of red dots are located at the intersection and arms and arcs, representing the trial responses 

at that condition.

Tuning curves for static gratings for one neuron. (g) Orientation tuning plotted at the 

preferred spatial frequency (0.04 cpd) for each of the four phases. (mean ± sem across 50 

trials) Dotted line represents the mean response to the blank sweep. (h) Spatial frequency 

tuning plotted at the preferred orientation (90°) for each of the four phases (mean ± sem). (i) 

Heatmap of the orientation and spatial frequency at the preferred phase (j) All trials at the 

preferred orientation, spatial frequency and phase, the 250 ms grating presentation is 

indicated by pink shading. The mean event magnitude is represented by the intensity of the 

dot to the right of the trial. (k) All trials are clustered, with the strongest response in the 

center and weaker responses on the outside. (l) Clusters are placed on a “Fan plot”. Arms 

represent the orientation and arcs represent the spatial frequency of the grating. At each 

intersection, there are four lobes of clustered dots, one for each phase at that grating 

condition.

Responses to natural scenes for one neuron. (m) Responses to each image presented (mean ± 

sem across 50 trials). Dotted line represents the mean response to the blank sweep. (n) All 

trials of the image which elicited the largest mean response, the 250ms image presentation is 

indicated by pink shading. The mean event magnitude is represented by the intensity of the 

dot to the right of the trial. Trials are sorted (o) and are plotted on a “Corona plot” (p). Each 

ray represents the response to one image, with the strongest response on the inside and 

weaker responses at the outside.

Responses to natural movies for one neuron. (q) Responses of one neuron’s response to each 

of 10 trials of the natural movie. (r) Responses are plotted on a “Track plot”. Each red ring 

represents the activity of the cell to one trial, proceed clockwise from the top of the track. 

The outer blue track represents the mean response across all ten trials.
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Extended Data Fig. 3. Responsiveness to drifting gratings
(a) Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 

line, layer, area combination in response to drifting grating stimulus and the number, and 

percent, of neurons that were responsive to the drifting grating stimulus. (b) Strip plots of 

the percent of neurons responsive to the drifting grating stimulus for each experiment.
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Extended Data Fig. 4. Responsiveness to static gratings
(a) Table summarizing the numbers of experiments and neurons imaged for each Cre line, 

layer, area combination in response to static grating stimulus and the number, and percent, of 

neurons that were responsive to the static grating stimulus. (b) Strip plots of the percent of 

neurons responsive to the static grating stimulus for each experiment.
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Extended Data Fig. 5. Responsiveness to locally sparse noise
(a) Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 

line, layer, area combination in response to locally sparse noise stimulus and the number, 

and percent, of neurons that were responsive to the locally sparse noise stimulus. (b) Strip 

plots of the percent of neurons responsive to the locally sparse noise stimulus for each 

experiment.
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Extended Data Fig. 6. Responsiveness to natural scenes
(a) Table summarizing the numbers of experiments (expt) and neurons imaged for each Cre 

line, layer, area combination in response to the natural scenes stimulus and the number, and 

percent, of neurons that were responsive to the natural scenes stimulus. (b) Strip plots of the 

percent of neurons responsive to the natural scenes stimulus for each experiment.

de Vries et al. Page 33

Nat Neurosci. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 7. Responsiveness to natural movies
(a) Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 

line, layer, area combination in response to any of the natural movie stimuli and the number, 

and percent, of neurons that were responsive to the natural movie stimuli. (b) Strip plots of 

the percent of neurons responsive to the natural movie stimuli for each experiment.

de Vries et al. Page 34

Nat Neurosci. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8. Populations for running correlation analysis
Table summarizing the number of experiments and neurons, for each Cre line, layer, area 

combination, included in the running correlation analysis. These are from sessions in which 

the mouse was running between 20–80% of the time.
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Extended Data Fig. 9. Populations for wavelet model analysis
Table summarizing the number of experiments and neurons for each Cre line, layer, area 

combination for which wavelet models were fit. The neurons had to be present in all three 

imaging sessions to be included.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A standardized systems neuroscience data pipeline to map visual responses
(a) Schematic describing the workflow followed by each mouse going through our large 

scale data pipeline. (b) Example intrinsic imaging map labelling individual visual brain 

areas. (c) Example averaged two photon imaging field of view (400 μm x 400 μm) 

showcasing neurons labeled with GCaMP6f. (d) Custom design apparatus to standardize the 

handling of mice in two photon imaging. We engineered all steps of the pipeline to co-

register data and tools, enabling reproducible data collection (Supplementary Figures 13–

16). (e) Number of mice passing Quality Control (QC) criteria established by Standardized 

Operating Procedures (SOPs) at each step of the data collection pipeline with their recorded 
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failure reason. The data collection pipeline is closely monitored to maintain consistently 

high data quality. (f) Standardized experimental design of sensory visual stimuli to map 

responses properties of neurons across the visual cortex. 6 blocks of different stimuli were 

presented to mice (left) and were distributed into 3 separate imaging session called session 

A, session B and session C across different days (right).
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Figure 2: Neurons exhibit diverse responses to visual stimuli.
(a) Activity for four example neurons, two excitatory neurons (Rorb, layer 4, Rbp4, layer 5) 

and two inhibitory neurons (Sst layer 4, and Vip layer 2/3). ΔF/F (top, blue) and extracted 

events (bottom, black) for each cell. (b) “Star” plot summarizing orientation and temporal 

frequency tuning for responses to the drifting gratings stimulus. The arms of the star 

represent the different grating directions, the rings represent the different temporal 

frequencies. At each intersection, the color of the circles represent the strength of the 

response during a single trial of that direction and temporal frequency. (For details on 

response visualizations see Extended Data 2). (c) “Fan” plot summarizing orientation and 

spatial frequency tuning for responses to static gratings. The arms of the fan represent the 

different orientations and the arcs the spatial frequencies. At each condition, four phases of 

gratings were presented. (d) “Corona” plot summarizing responses to natural scenes. Each 

arm represents the response to an image, with individual trials being represented by circles 

whose color represents the strength of the response on that trial. (e) “Track” plot 

summarizing responses to natural movies. The response is represented as a raster plot 

moving clockwise around the circle. Ten trials are represented in red, along with the mean 

PSTH in the outer ring, in blue. (f) Receptive field subfields mapped using locally sparse 

noise. (g) Percent of neurons that responded to at least one stimulus across cortical areas. (h) 

Percent of neurons that responded to each stimulus across cortical areas. Colors correspond 

to the labels at the top of the figure. See Extended Data Figure 3–7 for sample sizes.
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Figure 3: Tuning properties reveal functional differences across areas and Cre lines.
(a) “Pawplot” visualization summarizes median value of a tuning metric across visual areas. 

Top, each visual area is represented as a circle, with V1 in the center and the higher visual 

areas surrounding it according to their location on the surface of the cortex. Bottom, each 

paw-pad (visual area) has two concentric circles. The area of the inner, colored, circle 

relative to the outer circle represents the proportion of responsive cells for that layer and 

area. The color of the inner circle reflects the median value of the metric for the responsive 

cells, indicated by the colorscale at the bottom of the plot. For a metric’s summary plot, four 
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pawplots are shown, one for each layer. Only data from one Cre line is shown for each layer. 

For each panel, a pawplot is paired with a box plot or a strip plot (for single cell and 

population metrics respectively) showing the full distribution for each Cre line and layer in 

V1. Data is assigned to cortical layers based on both the Cre line and the imaging depth. 

Data collected above 250um from the surface is considered to be in layer 2/3. Data collected 

between 250μm and 365μm is considered to be in layer 4. Data collected between 375μm 

and 500μm is considered to be in layer 5. Data collected at 550μm in considered to be in 

layer 6. The box shows the quartiles of the data, and the whiskers extend to 1.5 times the 

interquartile range. Points outside this range are shown as outliers. For other cortical areas, 

see Supplementary Figure 1. (b) Pawplot and box plot summarizing direction selectivity. See 

Extended Data Figure 3 for sample sizes. (c) Pawplot and box plot summarizing receptive 

field area. See Extended Data Figure 5 for sample sizes. (d) Pawplot and box plot 

summarizing preferred temporal frequencies. See Extended Data Figure 3 for sample sizes. 

(e) Pawplot and box plot summarizing preferred spatial frequencies. See Extended Data 

Figure 4 for sample sizes. (f) Pawplot and box plot summarizing lifetime sparseness of 

responses to natural scenes. See Extended Data Figure 6 for sample sizes.

de Vries et al. Page 45

Nat Neurosci. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Population correlations have heterogenous impact on decoding performance
(a) Pawplot and strip plot summarizing decoding performance for drifting grating direction 

using K-nearest neighbors. Each dot represents the mean five-fold cross-validated decoding 

performance of a single experiment, with the median performance for a Cre-line/layer 

represented by bar. See Extended Data Figure 3 for sample sizes (column ‘expts’). For other 

cortical areas, see Supplementary Figure 4. (b) Pawplot and strip plot summarizing the 

population sparseness of responses to natural scenes. See Extended Data Figure 6 for sample 

sizes (column ‘expts’). For other cortical areas, see Supplementary Figure 3. (c) Pawplot and 
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strip plot summarizing noise correlations in the responses to drifting gratings. See Extended 

Data Figure 3 for sample sizes (column ‘expts’). (d) Pawplot and strip plot summarizing the 

impact of shuffling on decoding performance for drifting grating direction. See Extended 

Data Figure 3 for sample sizes (column ‘expts’). Note the diverging colorscale representing 

both negative and positive values.
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Figure 5: Neural activity is extremely variable and is not accounted for by running behavior.
(a) Pawplot and box plot summarizing the percent of responsive trials that have a significant 

response for each neuron’s preferred drifting gratings condition. The responsiveness 

criterion is that a neuron responded to 25% of the trials, hence the values in the box plots are 

bounded at 25%. The box shows the quartiles of the data, and the whiskers extend to 1.5 

times the interquartile range. Points outside this range are shown as outliers. For box plots 

for other cortical areas see Supplementary Figure 5. See Extended Data Figure 3 for sample 

sizes. (b) Pawplot and box plot summarizing the coefficient of variation for each neuron’s 
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response to its preferred drifting grating condition. See Extended Data Figure 3 for sample 

sizes. (c) Two example neurons showing individual trial responses along with mean tuning 

curve where r is the Pearson’s correlation coefficient between the measured and predicted 

values. n=45 trials per stimulus condition. (d) Pawplot and box plot summarizing the 

categorical regression, where r is the cross-validated Pearson’s correlation between model 

prediction and actual response. Only neurons that are responsive to drifting gratings using 

our criterion are included. See Extended Data Figure 3 for sample sizes. (e) Pawplot and box 

plot summarizing the Pearson’s correlation of neural activity with running speed. Only 

neurons in imaging sessions where the running fraction is between 20 and 80% are included 

(Supplementary Figure 6). See Extended Data Figure 8 for sample sizes. For neurons present 

in multiple session that met the running criterion, mean of their running correlation across 

those sessions is used here. Note the diverging colorscale representing both negative and 

positive values. (f) Density plot of the evoked response to a neuron’s preferred drifting 

grating condition when the mouse is running (running speed > 1 cm/s) compared to when it 

is stationary (running speed <1 cm/s). Only neurons that are responsive to drifting gratings, 

and have sufficient number of running and stationary trials for their preferred condition are 

included, n=10,440. (g) Categorical model for two example neurons (same as in c) in which 

the running (blue) and stationary (red) trials have been segregated where r is the Pearson’s 

correlation coefficient between the measured and predicted values. n=14 (left) or 7 (right) 

trials per condition. (h) Density plot of r for the categorical regression for drifting gratings 

using only the stimulus condition (horizontal axis) and stimulus condition × running state 

(vertical axis). Only neurons that are responsive to drifting gratings and have sufficient 

number of running and stationary trials across stimulus conditions, are included. n=11,799. 

(i) Same as h. Only neurons that are significantly modulated by running are shown in the 

density (n=2,791), the other neurons are in gray.
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Figure 6: Correlated response variability reveals functional classes of neurons
(a) Responses of 50 neurons during one imaging session (Cux2, layer 2/3 in V1) with 

stimulus epochs shaded using stimulus colors from Figure 1f. (b) Heatmap of the Pearson’s 

correlation of the percent of responsive trials for neurons’ responses to each pair of stimuli. 

The diagonal is the mean correlation between bootstrapped samples of the percent 

responsive trials for the given stimulus. (c) Mean percent responsive trials for each cluster 

per stimulus for one example clustering from the Gaussian mixture model (n=25,958). On 

the right, classes are identified according to the response profile of each cluster. (d) Strip 

plot representing the percent of neurons belonging to each class predicted by the model over 

100 repeats. The mean across all repeats is indicated by the bar. Clustering was performed 

on 25,958 neurons imaged in sessions A and B. (e) The percent of neurons belonging to 

de Vries et al. Page 50

Nat Neurosci. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each class per cortical area. Colors correspond to panel d. (f) The percent of neurons belong 

to each class for each transgenic Cre line within V1. Colors correspond to panel d. For other 

cortical areas see Supplementary Figure 8.
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Figure 7: Class labels are validated by model performance.
(a) Schematic for the wavelet models. (b) Example model performance for one neuron for 

both natural (top) and artificial (bottom) stimuli where r is the Pearson’s correlation 

coefficient between the measured and predicted values. (c) Pawplot and box plot of model 

performance, r, for wavelet models trained on natural stimuli. The box shows the quartiles of 

the data, and the whiskers extend to 1.5 times the interquartile range. Points outside this 

range are shown as outliers. Only neurons imaged in all three sessions are included 

(n=15,921, See Extended Data 9 for sample sizes). For other cortical areas, see 
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Supplementary Figure 10. (d) Density plot comparing the r values for model trained and 

tested on natural stimuli to the r values for model trained and tested on artificial stimuli, 

n=15,921. R is the Pearson’s correlation coefficient between the measured and predicted 

values. (e) Same as d. Only neurons in the “none” class are shown in the density (n=5,566), 

all other neurons are in gray. The red dot marks the median model performance for neurons 

in this class. (f) Same as e for the “NS-NM” class (n=2,412). (g) Same as e for the “DG-SG-

NS-NM” class (n=1,451). (h) Contours for the density of model performance, as in e-g, for 

all classes (n=15,921). The contours mark the boundaries of each class within which 66% of 

datapoints lie. Linewidths reflect the number of neurons in each class as provided in Figure 

6d. R is the Pearson’s correlation coefficient between the measured and predicted values. (i) 

Box plot of running correlation for each class.
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Table 1:
Visual coding dataset.

The number of cells (and experiments) imaged for each Cre line in each cortical visual area. In total, 59,610 

cells imaged in 432 experiments in 243 mice are included in this dataset.

Cre line Layers E/I n (M/F)
Age 
range 
(days)

V1 LM AL PM AM RL

Emx1-IRES-Cre; Camk2a-
tTA; Ai93 2/3,4,5 E 18 (13/5) 73–156 3073 

(10) 2098 (8) 1787 
(7) 835 (4) 457 

(3)
2152 
(9)

Slc17a7-IRES2-Cre; 
Camk2a-tTA; Ai93 2/3,4,5 E 31 (20/11) 80–149 4840 

(17)
3230 
(16) 374 (2) 1970 

(15)
235 
(2) 137 (2)

Cux2-CreERT2; Camk2-
tTA; Ai93 2/3, 4 E 38 (26/12) 79–155 5081 

(16)
2792 
(11)

3103 
(13)

2361 
(13)

1616 
(11)

1578 
(12)

Rorb-IRES2-Cre; Camk2a-
tTA; Ai93 4 E 24 (14/10) 77–141 2218 (8) 1191 (6) 1242 

(6) 764 (7) 735 
(8)

1126 
(5)

Scnn1a-Tg3-Cre; Camk2a-
tTA; Ai93 4 E 7 (3/4) 75–133 1873 (9)

Nr5a1-Cre; Camk2a-tTA; 
Ai93 4 E 23 (15/8) 78–168 578 (8) 421 (6) 220 (6) 331 (7) 171 

(6)
1354 
(6)

Rbp4-Cre_KL100; 
Camk2a-tTA; Ai93 5 E 23 (11/12) 68–144 458 (7) 485 (7) 441 (6) 509 (6) 355 

(8) 93 (4)

Fezf2-CreER;Ai148 
(corticofugal) 5 E 8 (4/4) 88–134 407 (4) 981 (5)

Tlx3-Cre_PL56;Ai148 
(cortico-cortical) 5 E 7 (5/2) 74–136 1181 (6) 946 (3)

Ntsr1-Cre_GN220;Ai148 6 E 10 (5/5) 79–134 573 (6) 719 (7) 581 (5)

Sst-IRES-Cre;Ai148 4, 5 I 30 (20/10) 67–154 266 (17) 301 (15) 24 (1) 247 
(14) 46 (2)

Vip-IRES-Cre;Ai148 2/3, 4 I 24 (7/17) 81–148 352 (17) 315 (17) 387 
(16)
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