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ABSTRACT
The CRISPR-Cas9 system has become the most promising and versatile tool for genetic manipulation
applications. Albeit the technology has been broadly adopted by both academic and pharmaceutic
societies, the activity (on-target) and specificity (off-target) of CRISPR-Cas9 are decisive factors for any
application of the technology. Several in silico gRNA activity and specificity predicting models and web
tools have been developed, making it much more convenient and precise for conducting CRISPR gene
editing studies. In this review, we present an overview and comparative analysis of machine and deep
learning (MDL)-based algorithms, which are believed to be the most effective and reliable methods for
the prediction of CRISPR gRNA on- and off-target activities. As an increasing number of sequence
features and characteristics are discovered and are incorporated into the MDL models, the prediction
outcome is getting closer to experimental observations. We also introduced the basic principle of CRISPR
activity and specificity and summarized the challenges they faced, aiming to facilitate the CRISPR
communities to develop more accurate models for applying.
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1. Introduction

The clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated protein 9 (Cas9) is an adaptive
immune system found in bacteria and archaea, which was har-
nessed for programmable and precise gene editing in 2012 [1,2]. It
mediates cleavage the invading DNA by the RNA-guided DNA
endonuclease Cas9 [3,4]. There are two key components in the
CRISPR-Cas9 gene editing system: a small guide RNA (gRNA)
and a Cas9 endonucleases [5, Martin 4]. The gRNA is a chimeric
RNA consisting of a tracrRNA and a crRNA, of which the crRNA
contains a guide (spacer) sequence [6] that precisely directs the
Cas9 protein to the corresponding target site in the genome.
Another important feature of the CRISPR-Cas9 system is the
protospacer adjacent motif (PAM), which is a CRISPR-
dependent and conserved DNA sequence motif adjacent to the
target site (protospacer), and are used by the endogenous CRISPR
in bacteria to distinguish self and invading DNAs [7–12].

The Cas9 protein has two nuclease domains: RUVC and
HNH, which cleaves the non-complementary and complemen-
tary strand respectively upon CRISPR gene editing [14–16]. The
resulting consequence is a double-stranded DNA break (DSB)
that will be generated at the target site. DSBs are detrimental for
cells if leaving unrepaired as this will lead to chromosomal
abnormality. Mammalian cells have thus developed several
DNA repair pathways: with nonhomologous-mediated end join-
ing (NHEJ) and homology-directed repair (HDR) as the two

major pathways for DSBs repair [17] (Figure 1). Although
CRISPR-Cas9 gene editing is becoming one of the routinely
used methods for genetic perturbation applications, one general
question that almost all applications will encounter is that how to
select the optimal gRNAwith high activity and specificity. Briefly
speaking, an effective CRISPR gene editing application depends
on the choice of the best gRNA target site (or guide sequence),
the best delivery method, and introducing the right genetic
modification after DSB repair [18].

Over the past several years, several CRISPR activity (on-target)
and specificity (off-target) scoring algorithms and in silico gRNA
designing web tools have been developed to facilitate the design of
CRISPR gRNAs and experiments [19]. All these in silico gRNA
design and off-target prediction tools have dramatically facilitated
the broad applications and success of CRISPR gene editing tech-
nologies. For a noncomprehensive overview of all these CRISPR
designing tools, please refer to a recent review by Guo-hui Chuai
et al [20]. In this review, we concentrate on algorithms which use
machine and deep learning (MDL) methods for streamlining
CRISPR design. We compared and evaluated the processing of
data, algorithm characteristics, selection of features of all the
MDL-based CRISPR designing tools. And finally, by analysing
all the pros and cons of currently available MDL algorisms for
CRISPR activity and specificity design, we suggested future
improvements that should be taken into consideration to develop
the next generation of MDL-based CRISPR designing tools.
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2. The basic principle of CRISPR activity and
specificity

To carry out a successful CRISPR gene editing study, optimal
gRNAs should be firstly selected, which means choosing gRNAs
with both high on-target efficiency and low (no) off-target activity
[21]. The CRISPR/Cas9 system functions with a principle that
once the gRNA forms a complementary base pairing (R loop)
with the target site, the Cas9 endonuclease activity is activated and
introduces a DSB to the target site [22–24]. The DSB is subse-
quently repaired by endogenous DNA repair mechanisms and the
introduction of changes (or indels) at the DSB site can be captured
by various methods, such as surrogate reporter vectors, T7E1
assay, TIDE, ICE, and deep sequencing [25,26]. Statistical quanti-
fication of the percentage of indels is the most broadly used
measurement for the activity and specificity of CRISPR.
Multiple studies have found that the CRISPR-Cas9 activity varies
significantly among different gRNAs [4,27].Previously, we discov-
ered that the gene editing activity was affected by several factors,
such as the guide sequences secondly structure and chromatin
accessibility [28]. Using a dual-fluorescence surrogate reporter
system [29], we also discovered that through fine-tuning the
DSB repair pathway, several variants of recombinant Cas9 pro-
teins are generated to enhance DSB repair by MMEJ [30] or by

HDR (SpCas9-KRAB, submitted for publication). The develop-
ment of in silico gRNA designing web tools, such as CRISPOR
[31], ChopChop [32], and Cas-Designer [33,34], as well as algor-
isms for prediction of gRNA activity, have greatly facilitated the
application and improvement of CRISPR-Cas9 gene editing
technologies.

Compared to CRISPR activity prediction, confidentially
and precisely predicting the CRISPR gRNA off-target effect
is more challenging. The potential and un-invertible off-target
effect caused by CRISPR is the most frequently raised concern
and impedes clinical applications of CRISPR [35]. Since it is
the first invention of RNA-guide CRISPR gene editing tech-
nology, great efforts have been made to understand the
mechanisms causing CRISPR off-targets and significant
improvements have been achieved. One major cause of the
CRISPR off-target is that the minimum mismatches (up to
3nt) between the gRNA spacer and the off-target site are
tolerated [36]. Forming the R loop among the gRNA, Cas9
and the target site is essential for activating the nuclease
activity [37]. From a molecular and physical energy point of
view, the R loop requires to reach a minimum energy level
(Nmin) to accomplish the activation of Cas9 nuclease activity
and gene editing. The Nmin comes from the DNA:RNA

Figure 1. The mechanism of CRISPR-Cas9 genome editing system. Briefly, RNA-guide nuclease (RNG) is introduced into the organism, and the gRNAs are targeted to
the target sequences after recognition by the PAM sequence. Two main repair methods are HDR and NHEJ, the application of which is depended on whether there is
a donor sequence. After that, indels are induced for maintaining the liveness of cells. The regions complementary to the gRNA variable region are coloured in red in
the bottom box. The insertion regions and PAM sequences are marked in green and blue, respectively. Short dash line represents the deletion region.
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Watson-Crick base-pairing between the target DNA and the
gRNA spacer, binding of the Cas9 to DNA, binding of the
Cas9 to the PAM, interaction between Cas9 and the gRNA
scaffold, local chromatin status of the target site, and many
unrevealed factors. Based on the Nmin theory, many improve-
ments have been made to increase CRISPR specificity, such
truncated gRNAs with shorter spacer sequences [38–41], Cas9
variants (eSpCas9, SpCas9-HF, SpCas9-HF1) with neutral
amino acids to the DNA binding domain, modified gRNA
scaffolds. Additionally, titrating the amount of Cas9 and
gRNA delivered [6,42], combining catalytically inactive Cas9
with Fokl nuclease domain (fCas9) [43,44] together with
combining a Cas9 nickase mutant with pair gRNAs [103]
can also increase the CRISPR specificity but via other
mechanisms than Nmin.

Although the PAM is highly conserved for each Cas9
ortholog, which means specific Cas9 protein will specifi-
cally targets to according sites, considerable but lower
cleavage activity was observed for alternative PAMs
though. For example, the sole PAM of SpCas9 protein is
a 3ʹPAM (protospacer preceding NGG). However, the
SpCas9 also shows significant but lower activity for
NAG and NGA PAM in comparison to the NGG PAM
[45]. The underlying mechanism is that the Cas9 protein
contains a PAM interaction domain (PID) that is specifi-
cally selected to recognize one PAM sequence. However,
to keep the possibility of adaptation to newly evolved
phases (bacterial viruses), the PID still retains its evolu-
tion feature and amino acid changes to the PID for
recognizing different PAMs. Taking advantages of this
mechanism, several Cas9 variants, i.e., xCas9, Cas9-VQR
/EQR, and Cas9-VRER, have been generated to broaden
the PAM specificities [46,47].

3. An overview of CRISPR gRNA design tools

Currently, three types of CRISPR designing tools have
been developed based on experimental and simulated

data: (i) Alignment-based, of which the CRISPR guide
sequences (spacers) are simply retreated based on map-
ping PAM sequences in the genome; (ii) Hypothesis-
driven, of which the gRNA activity is predicted based
on the specific features such as GC content; and (iii)
Machine and Deep Learning (MDL)-based, of which the
gRNA activity score is predicted with algorisms trained
with big datasets of CRISPR KO experiments conducted
in different cell types [20]. As increasing CRISPR gene
editing datasets are generated by the global CRISPR com-
munity, data-driven MDL-based methods have become
the key choice for predicting CRISPR gRNA activity and
specificity. For instance, comparing to the experimentally
off-target detect methods of GUIDE-seq [48], HTGTS
[49], BLESS [50] or IDLV [51], the MDL-based prediction
methods built on experimental datasets are more efficient
and cost-effective.

However, all current prediction models have four
major problems: (1) Data insufficiency. Machine learning
models outperform other methods owing to the data-
driven mechanism, but they cannot predict the unseen
data efficiently unless there are enough data for extracting
features thoroughly. (2) Unclear mechanism. The
mechanism of the CRISPR-Cas9 gene system has not
been comprehensively explored and restrict the features
used in the current state-of-the-art algorithms. With fea-
tures not well representing the mechanism of the
CRISPR-Cas9 systems, MDL-based methods can hardly
achieve ground-breaking improvements with sufficient
data. Some crucial features are even lacking, such as the
local chromatin state that affects Nmin in specific cell
types. Although the deep neural network (DNN) may
automatically extract features, it is still required to func-
tionally validate these DNN-predicted features and their
importance for CRISPR functions. (3) Data heterogeneity.
Datasets generated from different platforms and cell types
need to be integrated for data augment. (4) Last but not
least, data imbalance. Most frequently, the number of off-

Table 1. Publicly available tools for gRNA on-target prediction.

On-target software Model Ref PAM URL

DeepCRISPR CNN1 [59] NGG http://www.deepcrispr.net/
DeepCpf1 CNN [61] TTTN http://deepcrispr.info/
DeepCas9 CNN [58] NGG https://github.com/lje00006/DeepCas9
CRISPRater L1-reg2 [56] NGG https://crispr.cos.uni-heidelberg.de/
WU-CRISPR SVM3 [96] NGG http://crispr.wustl.edu/
SgRNAScorer SVM (C)6 [68] NGG, NAG,

NNAGAAW,
NNNNGMTT

https://crispr.med.harvard.edu/sgRNAScorerV2/

TUSCAN RF4 [98] NGG https://github.com/BauerLab/TUSCAN
SSC Elastic Net [55] NGG http://crispr.dfci.harvard.edu/SSC/
CRISPRScan Linear reg [54] NGG http://www.crisprscan.org/?page=welcome
TSAM GBRT5+ SVM [75] NGG http://www.aai-bioinfo.com/CRISPR
Azimuth1.0 Logistic reg [89] NGG no available
Azimuth2.0 GBRT [52] NGG https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design
CRISPRpred SVM [69] NGG https://github.com/khaled-buet/CRISPRpred
ge-CRISPR SVM [70] NGG http://bioinfo.imtech.res.in/manojk/gecrispr/

1. CNN: Convolution Neural Network.
2. L1-Reg: L1-Regression.
3. SVM: Support Vector Machine.
4. RF: Random Forest.
5. GBRT: Gradient Boost Regression Tree.
6. SVM (C): using SVM to classify (+1 represent high activity, −1 represent low-activity).
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target sites detected by whole-genome high throughput
sequencing is significantly less than that identified by
prediction software (like Cas-OFFinder).

4. On-target activity prediction

Anumber ofMDL-basedmethods have been developed to predict
CRISPR on-target activity (Table 1), which can be roughly classi-
fied into two categories, (1) Machine learning based, including
sgRNA Designer [52], sgRNA Scorer [53], CRISPR-Scan [54],
SSC [55], and CRISPRater [56]. However, most of these models
cannot be intuitively explained. Theoretically, the computational
processes an interpretable model could be repeated by other
groups (‘simulatability’) with a full understanding of the algorithm
(‘algorithmic transparency’). Furthermore, every part of the
model should have an intuitive explanation (‘decomposability’)
[57]. For instance, CRISPRater, CRISPRScan, SSC are trained by
a simple linear model (Table1), Azimuth1.0 was trained by gen-
eralized linear models Logistic Regression. These models are the
most easily interpretable models. These linear models can easily to
be trained, and users can run the trained models rapidly, also, it is
suitable to be applied to a large scale of sgRNA predictions, but it
has limitations to process the non-linear relation of features.
TUSCAN, an user-friendly model trained by random forest, is
explainable and it does not need the normalization or parameter
tuning steps, but it performs poorly when the features grow
rapidly. Other models trained by SVM (Support Vector
Machine), which works slow for data with large volume, and the
GBRT (Gradient Boost Regression Tree), which can process dif-
ferent features naturally, cannot be interpreted as we do not know
the training processes precisely. However, almost all these models
are benefited from the large-scale library generation but modest
performance for individual gRNA/target design [56]. Also, the
process of feature selection is labour-intensive and acquires spe-
cialized validation for model developers. For instance, some fea-
tures influent the sgRNA efficiency have been reported by other
groups, including second structure, epigenetics, and physico-
chemical property of sequences, which could be regarded as an
important feature added to the featurematrix. In fact, almost all of
these features were manually curated rather than extracted auto-
matically by machines. More importantly, generalization is

a common drawback of these models, namely a model only per-
forms well in a specific dataset (always the training dataset), but
not in a new testing dataset [31]. (2) Deep learning based. Over the
last several years, researchers have successfully applied deep learn-
ing techniques in the CRISPR design. DeepCas9 [58],
DeepCRISPR [59], DeepCpf1 [60], and CRISPRCpf1 [61] using
the CNN (convolution neural network) to predict the sRNA
activity based on the automatic recognition of sequence features.
The greatest strength of deep learning is that its complex structure
of neural network allows identifying important features automa-
tically. But the feature extraction step resembles a black box
making it difficult to functionally validate the features [62]. In
addition, current public datasets have only tens of thousands of
human cells. Although we can adopt data amplification methods
to artificially expand the data, the real information of the datamay
be masked as the granularity of the data is refined, and it is
difficult to achieve millions of data as Google and other group
did [63–67]. Hence, publicly available on-target data are still
insufficient for building up a powerful deep learning model.
Current on-target datasets can be accessed on their website,
https://github.com/maximilianh/crisporPaper/tree/master/
effData [31].

The accuracy of these gRNA activity prediction tools
implemented in different cell types and different species is
still not clear [20]. Because of the high variabilities among
species, species-specific software has been developed, such as
fryCRISPR for Drosophila [71], CRISPR-P for plant [72,73],
CRISPRscan for zebrafish [54], and EuPaGDT for pathogens
[74]. Among them, only CRISPRscan was developed based on
machine learning, whereas the others are hypothetically dri-
ven software. Notably, most of these algorithms were designed
with the rule sets derived from human and mouse datasets,
which would result in severe overfitting problem [56].

5 Off-target prediction

Previous studies have found that the off-target sites of the
CRISPR-Cas system are not random [52,13]. In this review,
we used five sets of benchmarks to calculate the mutation
frequency and their bases preference in each position among
the spacer sequence of gRNAs. Similarly, we found that the

Figure 2. Heatmap of the percent activity value in each position. Darker grid indicates more frequent mismatch. The x-axis indicates nucleotide position while the
y-axis shows all paired gRNA-DNA interactions with one nucleotide was removed from gRNA, producing a bulged DNA base.
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mutation at the 5ʹ end was more likely to be active, while in
the active off-target, the A to C mutation at the 8th position
was more likely to occur (Figure 2). This observation partially
explains that the off-target activity would be decreased when
the 5ʹ-end of gRNA was truncated [76–78]. In other words, if
we truncate the length of the gRNA, especially the 5ʹ-end, the
off-target activity will be reduced.

Two major steps are generally adapted to further understand
and most importantly quantify the CRISPR off-target effect: (1)
Bioinformatically searching the off-target sites. There are a great
number of tools for off-target sites searching, such as conventional
alignment algorithms: bowtie [79], bowtie2 [80], bwa [81],
TagScan [82], GPGPU-enabled CUSHAW [83]. All software
above still have two limitations: a restricted number of mis-
matches and fixed PAM. Hence, new algorithms customized for
CRISPR-Cas systems to predict off-target sites are developed such
as CasOFFinder [84], FlashFry [85], dsNickFury [86], and
CRISPOR [31]. (2) Scoring based on ranking and selection. In
addition to alignment-basedmethods, it was initially incorporated
with hypothesis-driven methods (evaluating off-target activity
base on formula) and then developed to learning-based methods
(see Table 2). For instance, the MIT server [42] evaluates the off-
target score by hand craft, a formula based on the number of
mismatch nucleotides and the distance between them. This was
then used to classify whether the gRNA off-target score reaches
the cut-off value of 66 [87]. Subsequently, a method called CFD
[52] (cutting frequency determination) is used to predict off-target
score by multiplying the frequency of bases in each position of the
gRNA spacer sequence. Haeussler et al. [31] evaluated most of the
current machine learning methods and integrated them into
a gRNA designing tool CRISPOR [31]. The MIT score was
recommended by CRISPOR as an off-target reference because it
can get the aggregation score of a single gRNAwhich summarizes
all influence the off-target sequences and high accuracy. It was not
until 2018 that deep learning-based methods have been applied
for CRISPR off-target scoring. Two models named CNN_std [88]
and DeepCRISPR [59] used the CNN model to predict gRNA
specificity score for CRISPR-Cas9 system. A group of scientists
from the Microsoft and the Broad Institution developed a model
named elevation [86], and integrated it with Azimuth [86] (an
activity model that they developed previously) into a website,

which provides great a convenient platform for further application
and development. All the data used in these MDL-based models
were shown in Supplementary Table 3.

In this review, we did not evaluate DeepCRISPR because it is
not user-friendly, no encode source code provided, and running
too slow on website. So, only one deep-learning based software,
CNN_std, was included here. SynergizingCRISPR, which inte-
grated the prediction result of five other models (CFD, MIT
Website, MIT, Cropit, and CCTop) as input features, is running
extremely slow and it was filtered out, too. As a consequence, we
comprehensively compared six methods in this review, i.e., CFD,
CCtop, preCRISPR, CNN_std, CRISTA, and elevation, using five
benchmarks (Figure 3). We used the weighted Spearman correla-
tion to minimized the false negative of gRNAs. The two methods
built based on hypothesis and statistic (CFD and CCTOP) always
obtain poor performance among all evaluated benchmarks
(Figure 3). CNNstd and CRISPRpred are comparable in overall
rankings across all the benchmark. It is noted that no significant
advantage was found between deep learning and machine learn-
ing software. elevation, constructed as multi-level model, per-
forms the best across all the weights. CRISTA produces random
results that may not predict precisely. It performs the worst for all
the datasets and therefore this software is not recommended
(Figure 3). On the contrary, our reanalysis results show that the
elevation model consistently outperforms the others in all evalua-
tion dataset. The comparison detail was attached in the supple-
mentary text, and corresponding test data are available in
supplementary Table 4. This result can facilitate the CRISPR
community to use at least by far the most powerful and accurate
tool to select gRNAs with low off-target effects.

6 Challenges in CRISPR activity and specificity
prediction

6.1 Data heterogeneity

CRISPR datasets from different cell types, gRNA libraries, and
organisms are heterogeneous and could not be simply com-
bined. Current gRNA design rules are likely incomplete and
biased due to the small number of gRNAs studied [20]. For
instance, the SSC model used a mixed dataset from mouse

Table 2. Publicly available tools for gRNA off-target prediction based on machine learning.

Off-target software Model Ref PAM URL

CNN_std CNN2 [88] NGT,NAG,NGC,NTG,
NGG,NGA,NCG,NAA

https://github.com/MichaelLinn/off_target_prediction

DeepCRISPR DCDNN1 [59] NGT,NAG,NGC,NTG,
NGG,NGA,NCG,NAA

http://www.deepcrispr.net/

Elevation BRT4+ L1-reg+GBRT3+ LR5 [86] NAG, NCG, NGA,
NGC, NGG, NGT,
NTG

https://crispr.ml/

CRISPOR hand craft [31] Nearly all http://crispor.tefor.net/
SynergizingCRISPR AdaBoost [102] NGG https://github.com/Alexzsx/CRISPR
CRISTA RF6 [103] NGG http://crista.tau.ac.il/pair_score.html
Predict CRISPR ensemble SVM

classifier
[13] NGG https://github.com/penn-hui/OfftargetPredict

1. DCDNN: Deep Convolutional Denoising Neural Network
2. CNN: Convolution Neural Network.
3. GBRT: Gradient Boost Regression Tree.
4. BRT: Boost Regression Tree
5. LR: Logistic Regression
6. RF: Random Forest.

RNA BIOLOGY 17

https://github.com/MichaelLinn/off_target_prediction
http://www.deepcrispr.net/
https://crispr.ml/
http://crispor.tefor.net/
https://github.com/Alexzsx/CRISPR
http://crista.tau.ac.il/pair_score.html
https://github.com/pennhui/OfftargetPredict


mESC and human HL60 for model training [55], which may
cause bias in this combination since the sequence features and
the epigenetic states were from distinct cell types and species.
Moreover, different methods used in quantifying CRISPR activ-
ity may cause batch-effect and heterogeneity among different
experiments. Currently, nearly ten methods have been designed
for gRNA on-target activity detection [26]. Two of them were
wildly used as training data of gRNA efficiency predicting
model. Firstly, measure gRNA-mediated CRISPR-Cas9 activity
by capturing the phenotypic outcome. The gene functional
knockout (KO) is used to quantify the gRNA activity by mea-
suring the intensity of a green fluorescent protein (GFP) [89].
As the GFP-based method depends on intensive fluorescence-
activated cell sorting (FACS) analysis, Doench et al. also used
a drug-resistant assay to measure the gRNA efficiency [52].
However, these methods usually underestimate the actual
CRISPR gRNA activity and cause false-negatives as frameshift
deletion/insertion could potentially not cause a change in GFP
intensity. Secondly, the most broadly used method of CRISPR
gRNA activity measurement is based on deep sequencing of
indels introduced at the target site [61], which directly measure
the presence of indels introduced by CRISPR-Cas function. The
endogenous DNA repair machinery might affect the readout of
these CRISPR activity detection methods. Thus, instead of mer-
ging CRISPR activity datasets measured by different methods,

large-scale CRISPR activity measurement experiments should
be carried out on identical detection method to reduce the data
heterogeneity as much as possible.

6.2 Data imbalance

Data imbalance is a common issue in the off-target prediction.
A majority of the available gRNA off-target data are measured
based on high-throughput sequencing, like Guide_seq by Tsai
et al. [48] and Kleinstiver et al. [76], Listgarten et al. [86],
HTGTS [49], Digenome_seq [90], CIRCLE_Seq [91], and low-
throughput techniques like target PCR and flanking PCR
[38,42,50,51,90,92]. For each target site, the homologous off-
target sequences with cleavage activity can be genome-wide
detected. These homologous gRNAs detected by different
methods are defined as positive sets, however, more negative
sets are arranged among the genome. The homologous gRNA
target sites with undetected cleavage are much more than that
of the detective ones. This issue will cause the data deviated to
the negative group, as the true positive sRNA off-target sites
account for an extremely low proportion. To date, the evalu-
ating method (PRC curve) and bootstrapping sampling could
solve this problem. The latter can sample the positive and
negative samples into the same size. It should be noted that
nearly all the exiting tools tend to avoid missing any true off-

Figure 3. The comparison of different off-target prediction algorithms. Y-axis represents the weighted Spearman correlation determined by the weight of the X-axis
counterpart. The weight ranges from 10−2 to 106. High weight indicates high normalized activity value of the positive off-target gRNA. The five independent datasets
were tested separately.
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target cleavage site by weighting more on the true positive
inputs. As for the CRISPR gene therapy purpose, the cost of
false negative was much higher than that of false positive.
Therefore, Listgarten et al. [86] proposed a weight Spearman
correlation to address this problem, where the weight was
added to the activity score of the sgRNAs ranged from 10−2

and 106 to reduce the false discoveries (Supplementary Text).
Furthermore, Lin et at [88] used the stratify cross-validation
model, which samples the positive class to be the same scale as
a negative class. When the data augmentation is a concern,
bootstrapping has been applied in DeepCRISRP [59] and
Predict CRISPR [13] 75.

6.3 On-target data featurization

Featurization has been commonly used to improve the
performance of in silico methods for gRNA activity pre-
diction, despite this procedure is labour-intensive and
needs strong knowledge about the CRISPR gene editing
mechanism. Several features have been proven essential
for gRNA on-target activity, including sequence composi-
tions, thermodynamics, secondary structure, and physio-
chemical properties [93]. The conventional features used
in the gRNA Designer (rule set II) [52], which was
regarded as the state-of-the-art tool before 2017, can be
classified into four types: 1) Sequence composition. The
nucleotide composition of the gRNA spacer sequence has
a preference. For instance, cytosine is predominant in the
upstream of the PAM [89]. These features can be encoded
into the single nucleotide and dinucleotide with position-
dependent and position-independent using binary fea-
tures. What is more, the flanking bases of PAM should
also be considered. 2) GC content. Doench et al. found
that gRNAs with low or high GC content tend to be less
active [89]. And the most active gRNAs are those with
approximately 50% GC content. Besides, this feature type
also includes GC count, GC content, the latter means
the percent of GC in spacer sequences. 3)
Physicochemical features. Biochemical and structural stu-
dies have suggested that the thermodynamic of gRNA
may influence the binding of gRNA to the target DNA.
Doench et al. split the thermodynamic of sequences into
melting temperature (Tm) of the spacer, 5mer Tm in the
left side (5ʹ) of the spacer, 8mer Tm in the middle of the
spacer sequence and also 5mer Tm in 3ʹ of the spacer
[52]. 4) Cutting position. In addition to the four types of
features mentioned above, Doench et al. pioneered in
adding the cutting information in features, such as the
amino acid cut position, in which the DSB occurred in
the peptide of target sequences.

Besides, more features have been implemented to facilitate
the model construction. 1) Secondary structure of spacer.
Higher Gibbs free energy decides the higher self-folding abil-
ity of the gRNA spacer sequences. However, this folding
ability should not be too high to achieve gRNAs with high
activity. This will prevent the binding of gRNA to the target
[28]. Moreover, the length of the gRNA scaffold should be
considered, too [42]. Experiments have demonstrated that the
gRNA scaffold with a length of 67nt and 85nt may have

higher efficiency when compared to the original size [42]. 2)
Epigenetic features. Chromosome accessibility influents the
combination of gRNAs and the target sites [28]. For instance,
H3K4me3 and chromosome accessibility, RRBS, CTCF have
been applied in algorithms like DeepCRISPR [59] and
DeepCpf1 [61]. However, Listgarten et al. failed to improve
the model performance after adding the chromosome in the
feature [86]. On the other hand, the epigenetic features are
different cross-species, restricting the application of these
algorithms for cross-species prediction.

It is noted that the number of features in each category
may be insufficient, because the mechanism of CRISPR on-
target has not been fully resolved. Although the gRNA
Designer (rule set II) resulted in an excellent performance,
there is still much room for further improvement. Several
features have been added for possible performance improve-
ment (supplementary Table1). For example, Hui Peng et al.
extended the features from cutting position in spacer
sequences of gRNA to protein, transcriptome, genome.
Extending the thermodynamic to the context sequence in
the flanking of the spacer region also improve prediction
outcome [75]. Besides, previous studies indicated that struc-
ture accessibility also played an essential role in the recog-
nized of miRNA and microRNA [94,95]. Hence, Wong et at
[96] excavated the other types of second structure features,
such as accessibility of individual nucleotide and stability of
gRNA, and apply those in the CRISPR-Cas gRNA efficiency
prediction. Khaledur Rahman et al. [97] first utilized the
feature of the second structure, the specific heat of the corre-
sponding 30-mer (4bp+23bp+3bp) of gRNAs, to train the
SVM model called CRISPRpred (supplementary Table1).
Nevertheless, these features cannot effectively represent and
affect the activity of gRNAs, as the mechanism of the CIRSPR/
Cas system has not been fully figured out.

An increasing number of features were developed to assess
gRNA performance, but the importance of these features has
not been fully evaluated, given that feature selection is an
essential step to prioritize the features and eliminate features
of less importance. Previously, Doench et al. [52] did not
include the feature selection step. Increasing studies tend to
discard several unimportant features by various feature selec-
tion methods. For example, Labuhn et al. [56] ranked the
RMSE of the 1024 features using the linear regression.
Similarly, Wilson et al. [98] used a strategy of forward-
selection by incrementally inputting to select important fea-
tures. Nevertheless, none of them evaluated the performance
between feature selection and non-selection. Moreover, the
selected features would just with the best representation in
specific datasets, which is still needed to be evaluated by
independent datasets. Deep learning method based features
extraction such as DeepCpf1 [61], DeepCRISPR [59],
DeepCas9 [58] appears successively. Automatic feature extrac-
tion may be the most advantageous characteristic of deep
learning. These deep learning models do not require intense
attention to the featurization of the gRNA sequences. Based
on account of the auto feature extraction, the algorithms of
deep learning can identify the sequences deeper and deeper.
However, deep learning works slowly and it is difficult to be
interpreted.
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6.4 Off-target data featurization

The major features of off-target prediction are the number, com-
position, and combination of mismatches Initially, only sequence
mismatches were considered. The MIT server considered the
mean distance between two bases of mismatch and the number
of mismatches, together with an experimentally-determined posi-
tion-specific mismatch penalty matrixes to calculate the off-target
efficiency [42]. After that, they also developed a formula for
sequence off-target score calculation, which was applied in the
CRISPRseek program [99] and CRISPOR [31] to facilitate the
design of gRNAs. A similar method of activity evaluation was
implemented by CCTOP [100] and CROPIT [101]. However,
CCTOP and MIT score consider all off-target sites to calculate
an aggregation score for one target site by a hypothetic formula,
whichwas convenient for the gRNA library building and screening
the optimal gRNA for a gene of interest. TheCCTOP focusesmore
on the position ofmismatches in the target site, while the CROPIT
[101] weights more on the number of mismatches of three seg-
ments in the seed region of spacers and uses the whole-genome
chromatin state information (DNase I HS data) as the features.
The CFD [52], a Naive Bayes model [86], calculates the frequency
of each type ofmismatches in each site of the gRNA spacer region.
Hence, the efficiency of gRNA specificity in CFD dependents on
the position, number, and composition of mismatches between
the gRNA and target DNA sequences [52]. In addition to
sequences related features, SynergizingCRISPR [102] used the
prediction score generated by other methods as features.
Although CRISTA [103] uses the most extensive features to train
the Random Forestmodel, only the top 30 most related features
were integrated into the model.

Epigenetic features are highly variable and stochastically
depend on the cell types and cell state. Hence, models developed
by epigenetic features are usually limited by cell types, such as
DeepCRISPR [59]. In contrast, CROPIT summarized the chro-
matin accessibility from 200 cells and took the parameters of the
overlap sites and the number of different types of cells. Therefore,
the CROPIT model can be applied to different cell types in
principle. More information was listed in Supplementary Table2.

7 Conclusion

In conclusion, the CRISPR-Cas9 technology has rapidly emerged
as a facile and efficient platform for gene editing. Because of its
simplicity, efficacy, specificity, and programmability, this technol-
ogy has tremendous advantages compared to other gene-editing
technologies. Machine learning has been integrated into multiple
bioinformatics fields, such as predicting the splicing site in genome
[104,105] and long non-coding RNA region identification
[106,107] . The work of designing gRNA is a typical interdisci-
plinary task. It needs to fully understand the biologicalmechanism
of action of CRISPR and the algorithmic features of machine
learning. The machine learning gRNA design tools serve as an
important platform for the efficient application and development
of the CRISPR system. However, the existing models still have
some flaws, such as unclear mechanism, data imbalance, data
heterogeneity, insufficient training dataset, lacking generalization
ability, and inefficiency of cross-species. In the near future, it is
expected that comprehensive, consistent, and sequencing-based

datasets with high efficiency and specificity will be continuously
generated. Hence, continuous efforts are required to further
improve the accuracy and design gRNAs with high on-target
activity and low (no) off-target effects. With the increase of the
data volume from the application of CRISPR and more deeper
mechanisms of CRISPR to be found, learning-based gRNA design
tools will improve the prediction effect and aid designing gRNAs
with the least off-target effects and high activity to meet the
requirement in clinical applications.
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