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Abstract

To decipher cell state transitions from single-cell transcriptomes it is crucial to quantify weak 

expression of lineage determining factors, requiring computational methods sensitive to variability 

of lowly expressed genes. We here introduce VarID, a computational method that identifies locally 

homogenous neighborhoods in cell state space, permitting the quantification of local gene 

expression variability. VarID delineates neighborhoods with differential gene expression 

variability and reveals pseudo-temporal dynamics of variability during differentiation.

With the advent of a growing number of single-cell sequencing technologies our ability to 

decipher the cell type composition of complex tissues is rapidly improving. Single-cell 

transcriptomes can reveal manifolds in cell state space representing trajectories of cell state 

transitions1. It is of core interest to understand the molecular control of these transitions, but 

the investigation of transcription factor and signaling networks underpinning cell state 

transitions is frequently hindered by the low and highly variable expression of these classes 

of genes. Since differences of lowly expressed genes are difficult to detect due to technical 

and biological noise2, we here introduce a method for the inference of local variability; 

increased local variability could indicate the onset of expression in local neighborhoods, or 

the response to fluctuating signaling inputs from the microenvironment. Available methods 

for the inference of noise parameters2–4 were not designed for complex mixtures of cell 

types and do not permit the local estimation of variability.
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A fundamental challenge is the definition of local neighborhoods in cell state space, since 

admixtures of distinct cell types or states could inflate the variability estimates. Since k-

nearest neighbor (knn) networks have successfully been used for the inference of cell 

types5,6 and differentiation trajectories7 we reasoned that the k-nearest neighborhood would 

be a useful starting point. We devised a statistical test to determine if the expression levels of 

all genes for each neighbor are in accordance with the expected distribution of the “central” 

cell. We have previously demonstrated that unique molecular identifier (UMI)-derived 

transcript counts are well described by a negative binomial distrubtion2, which is uniquely 

determined by mean and variance. We thus learn a local mean by averaging expression 

across the central cell and its knns with weights determined by their similarity to the central 

cell (Methods). An additional parameter α can be varied to adjust the degree of locality. We 

next determine the variance associated with the local mean estimate from a global 

background distribution. As we showed previously8,9, the mean-variance relation in 

logarithmic space is well described by a second order polynomial, robustly averaging across 

genes of similar mean expression (Supplementary Fig. 1a). Hence, a local mean allows us to 

define local background distributions for all genes, and links to any of the knns with 

expression levels not explained by this distribution are discarded (Fig. 1a). The resulting 

pruned knn-network thus only connects locally homogenous neighborhoods.

To identify distinct cell states and types we applied Louvain density clustering to the pruned 

network. To demonstrate increased sensitivity of cell type detection when using the pruned 

network, we analyzed murine hematopoietic progenitor single-cell transcriptomes10 (Fig. 

1b,c). We recovered all lineages described in the original study, and resolved additional sub-

populations such as Mplhigh versus Pf4high megakaryocyte states, Ebf1high pro-B cells and 

Dntthigh progenitors, and eosinophils (Fig. 1b,c). These sub-populations remain unresolved 

when clustering is performed on the full network (Supplementary Fig. 1b-c) or when 

Seurat5,6 analysis is performed (Fig. 1d and Supplementary Fig. 1d-f). As the clustering 

depends on the choice of the parameters α and knn, we evaluated the resolution of rare 

populations within this dataset, i.e. lymphoid progenitors, B cells, basophils, eosinophils, 

dendritic cells, and megakaryocytes, based on the resolution of the expression domains of 

corresponding marker genes (Supplementary Fig. 1g). This analysis supports α=10 and 

knn=10 as an optimal parameter choice. We observed similar clustering performance when 

determining knns with a supplied Pearson’s correlation-based distance matrix and when 

using the default method, i.e. based on Euclidean distances in principle component analysis 

(PCA) space (Supplementary Fig. 1h, Methods).

We next predicted transition probabilities between the inferred clusters on the pruned knn-

network. Assuming a random starting cell within a given cluster, one can readily compute 

the probability to transition into another cluster within a single step on the network 

(Methods). These probabilities were in very good agreement with known differentiation 

pathways (Fig. 1e): multipotent progenitors (cluster 16) were directly linked to 

megakaryocytes, dendritic cells, basophils, monocytes, and the major branches of 

erythrocytes and neutrophils, respectively.

In order to explore differences in lowly expressed genes between cell states, we derived 

estimates of gene expression variability in local neighborhoods on the pruned knn-graph. To 
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account for the convex variance-mean dependence in logarithmic space as a consequence of 

biological and technical noise2–4,11 (Fig. 2a), we fitted a second order polynomial to the 

baseline level of the combined technical and biological variability (Methods). This allowed 

us to regress out the systematic baseline mean-dependence and directly compare corrected 

variability estimates between neighborhoods (Fig. 2b). As an alternative approach, we 

followed a recently published method based on a negative binomial generalized linear model 

with the total transcript count of each cell as independent variable12. After averaging 

regression parameters across genes of similar mean expression (Methods, Supplementary 

Fig. 2), the variance of the Pearson residuals should in theory be independent of the mean 

expression. In order to test the sensitivity and specificity of VarID for the detection of genes 

with enhanced variability, we performed a simulation experiment, which revealed that 

significantly variable fold changes >1.25 can be detected at a false positive rate ~5% and a 

true positive rate >50% depending on the average expression (Supplementary Fig. 3).

To explore differences in gene expression variability across cell states, we inferred local 

estimates of the corrected variability for the murine hematopoietic progenitors using the first 

approach, i.e. corrected variance (Fig. 2a,b), since a residual mean-variance dependence 

remained for the second approach (Supplementary Fig. 2a,b). We noticed that increased 

local variability is frequently associated with the onset of lineage markers in multipotent 

progenitors (cluster 16), e.g., the early erythrocyte lineage transcription factor Gata1 or the 

neutrophil marker Mpo (Fig. 2c). However, while the corrected variability remains high in 

case of Gata1 throughout erythrocyte differentiation, it becomes strongly suppressed for 

Mpo with increasing expression during neutrophil differentiation (Fig. 2c), indicating gene-

specific dynamics of expression variability.

We next extracted all genes with increased local variability within the multipotent progenitor 

population (cluster 16) in comparison to the remaining populations (one-sided Wilcoxon 

rank sum-test P<0.001, Benjamini Hochberg corrected, foldchange >1.25). Differentially 

variable genes exhibited only limited overlap with differentially expressed genes (P<0.001, 

Benjamini Hochberg corrected, see Methods, foldchange >1.25 between the populations, 

Fig. 2d). Comparing corrected variability of the top 50 variable genes with their expression 

across cell clusters revealed groups of genes with stochastic expression in cluster 16 and 

markedly increasing expression, e.g., on the neutrophil branch, such as Mpo, Prtn3, or 

Elane, and classes of genes which are also most highly expressed in cluster 16, such as Flt3, 

Cd27, Cd34, and Il12a. To investigate stochasticity of transcriptional regulators relevant for 

lineage decisions, we selected all transcriptional regulators13 from the list of significantly 

variable genes in cluster 16 and predicted a regulatory network by running GENIE314 

(Methods, Fig. 2f and Supplementary Fig. 2c). This network recovered modules associated 

with hematopoietic stem cells (HSCs) comprising Runx215 and Hlf16, the megakaryocyte 

lineage (Pbx1, Fli1, Mef2c)17, the lymphoid lineage (Satb118, Etv619), and monocyte 

differentiation (Spi1, Irf8)17, indicating variable activity of lineage-associated transcription 

factors in multipotent progenitors.

To investigate dynamics of variability during differentiation, we focused on the neutrophil 

branch and inferred a pseudo-temporal ordering of single-cell transcriptomes with StemID28 

(Fig. 3a). We then ordered the pseudo-temporal profiles of gene expression (Supplementary 
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Fig. 4a) and of the corrected variability (Fig. 3b) into co-expressed and co-variable modules, 

respectively, using self-organizing maps as implemented in FateID8. We observed modules 

with distinct variability profiles, such as genes with increased variability at naïve and mature 

states (e.g. module 1 and 8), or during intermediate stages (e.g. module 11). Modules with 

similar dynamics of variability did not necessarily exhibit comparable gene expression 

dynamics (Fig. 3c and Supplementary Fig. 4a). Of note, particular modules were enriched in 

specific functions (Methods, Supplementary Fig. 4b,c).

To investigate the impact of a perturbation on gene expression variability, we co-analyzed 

hematopoietic cells sequenced from bone marrow after 48h of EPO stimulation10 together 

with the cells sequenced from the normal bone marrow. EPO stimulation leads to an 

expansion of the erythroid lineage at the expense of the other lineages10. Our analysis 

confirmed that transcriptome changes upon EPO-stimulation only affect the erythroid 

lineage (Supplementary Fig. 5a-c), and revealed an enrichment of innate immunity pathways 

among genes with increased variability in EPO-stimulated versus normal erythrocyte 

progenitors (Supplementary Fig. 5d) (ReactomePA P<0.002, Methods). This finding 

suggests that progenitors of other lineages could indeed be diverted towards the erythrocyte 

fate upon EPO-stimulation. Importantly, there is only marginal overlap with differentially 

expressed genes, and those do not exhibit a significant functional enrichment other than for 

rRNA processing (Supplementary Fig. 5e).

Finally, application of VarID to murine intestinal epithelial cells20 revealed stochastic 

activity of secretory lineage transcription factors in Lgr5+ intestinal stem cells, suggesting 

the existence of secretory fate-biased stem cells (Supplementary Results and Supplementary 

Fig. 6-8).

In conclusion, by quantifying dynamics of gene expression variability, VarID reveals 

stochastic activity of lineage regulators involved in cell state transition and facilitates the 

investigation of the molecular control of fate decision by single-cell RNA-sequencing.

Online Methods

The VarID Method

Inference of a pruned k-nearest neighbor network—The first step of VarID is the 

inference of a k-nearest neighbor (knn) network. This network can be constructed based on 

different metrics. As one alternative, a user-defined distance matrix can be provided, or 

directly computed by VarID, e.g., by using the Euclidean metric, Spearman’s or Pearson’s 

correlation. Since for datasets with tens of thousands of cells, computation and storage of a 

distance matrix is prohibitive due to massive memory requirements, VarID provides an 

alternative approach. After an initial principal component analysis to achieve dimensionality 

reduction, a fast knn search is performed based on the Euclidean metric in PCA space. The 

number of principal components used can be specified and is set to 100 by default to ensure 

that the major variability is captured. We recommend keeping this default setting. Since the 

memory requirement for distance matrices of n cells scales with O(n*n) and the fast knn 

search (using the FNN R-package v1.1.3) scales with O(n), the difference in memory 

requirement will be substantial for large datasets.
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To eliminate the effect of cell-to-cell variability in total transcript counts, or sequencing 

depth, on the dimensional reduction and the downstream analysis, an optional regression 

with a negative binomial error model by a generalized linear model is computed, with the 

total transcript count of a cell as independent variable, following a recently proposed 

method12. If xij is the transcript count of gene i (i=1, …, G) in cell j (j=1, …, N), we 

compute a negative binomial generalized linear model

log E xi j = β0
i j + β1

i j ⋅ log10n j n j = ∑i = 1
G xi j i = 1, …, G j = 1, …, N (1)

with a log link function. The negative binomial distribution is over-dispersed and has been 

shown to be suitable for modeling technical and biological noise in single-cell RNA-seq 

data2. The dispersion parameter θij is estimated during the regression in addition to the 

intercept βij
0 and the coefficient βij

1. θij determines the deviation of mean and variance σi j
2 :

σi j
2 = μi j +

μi j
2

θi j
(2)

Following a similar procedure as Hafemeister and Satija12, information is shared between 

genes by a locally weighted scatter plot smoothing (loess),

β0
i j β0

j m β1
i j β1

j m θi j θ j m (3)

resulting in the dependence of the parameters solely on the expression level m.

The resulting knn network is subject to pruning in the next step. For this purpose, a 

background model of the combined technical and biological variability is defined, using raw 

transcript counts as input. The variance vi and the mean mi across the entire dataset are 

computed for each gene i, and the variance-mean dependence across all genes is fitted by a 

second order polynomial after log-transformation, in order to obtain a function va capturing 

the average dependence of the expression variability on the mean expression m,

va m ∼ 2
α0 + α1 ⋅ log2 m + α2 ⋅ log2 m 2

(4)

following a similar approach as previously implemented in RaceID9, to share information 

across genes with similar expression levels. The variance derived from this function fit for a 

fixed mean uniquely defines a negative binomial distribution, which serves as a background 

model.

f xi j, μi j = NB xi j; μi j, θ =
μi j

2

va μi j − μi j
(5)

For every cell j a background model is inferred based on the local mean μij for each gene i. 
To account for the impact of sampling noise and to avoid skewing of the mean estimate by 

neighbors sampled from a distinct distribution representing a different cell state, a local 
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expression mean for cell j is computed as a weighted mean across the cell j and its k-nearest 

neighbors. The cell j receives a user defined weight α and the weights wl of its k-nearest 

neighbors are determined by their relative similarities. This is achieved by representing the 

size-normalized transcript count vector zj of a cell j as a weighted sum of the size-

normalized transcript count vectors zl of its k-nearest neighbors (l = j1,…,jk).

z j ≅ ∑l ∈ j1, …, jk
wl ⋅ zl z j =

x j

∑i = 1
G xi j

0 < w1 < 1

∑l ∈ j1, …, jk
wl = 1

(6)

μ j = α
W ⋅ x j + ∑l ∈ j1, …, jk

wl
W ⋅ xl W = α +∑l ∈ j1, …, jk

wl (7)

Here, xj denotes the vector of transcript counts xij for all genes i in cell j. The inference of 

the weights wl is an optimization problem, which is solved by quadratic programming. α 
determines the weight of the central cell j in comparison to its neighbor and thus controls the 

degree of locality for the mean expression estimate.

The local mean μj denotes the vector of mean expression values μij for all genes i in cell j 
and uniquely defines a local transcript count distribution based on the inferred variance-

mean relation (eq. (5)). For each of the knns, the probability of the observed transcript count 

is computed for every gene from this local distribution. More precisely, for every gene the 

hypothesis is tested that the observed expression is explained by the respective distribution, 

and the p-value for rejecting this hypothesis is computed as the probability of residing in one 

of the two tails of the distribution, i.e. a two-sided test is performed. The total number of 

null hypotheses thus corresponds to the number of tested genes. In order to control for the 

family-wise error rate at a given p-value threshold, a Bonferroni correction is performed, 

resulting in link probabilities pi
jl for gene i between cell j and its k-nearest neighbors (l = j1,

…,jk). The minimum of these link probabilities, pjl =mini(pi
jl) is compared to a probability 

threshold (Ptr = 0.01 by default) and all neighbors with pjl < Ptr are pruned. This minimum is 

also assigned as link probability for further analysis.

The resulting pruned knn network connects only cells sampled from overlapping transcript 

count distributions across all genes. To accelerate the computation, the pruning procedure 

can be performed on a subset of selected genes, e.g. based on expression or enhanced 

variability. The latter is implemented in VarID using the RaceID3 criterion for the selection 

of highly variable genes, i.e. genes with expression variance exceeding the background level 

(eq. (5)).

Inferring cell type clusters and transition probabilities—The pruned knn network 

can be used to derive cell types by Louvain clustering. These clusters enable an improved 

separation of cell types and states compared to Louvain clustering on the unpruned network. 

Transition probabilities reflecting the inter-cluster connectivity can be derived based on the 
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probability pjl of links connecting cells in different clusters. The underlying idea is to model 

the probability of transitioning into a different cluster within one step on the knn network.

First, a cell j is selected randomly, i.e. with probability pc=1/nc if nc is the number of cells in 

cluster c. Next, the link probabilities pjl are multiplied by the probability pl=1/nl of randomly 

selecting a link, if nl is the number of remaining links after pruning, giving the probability of 

transitioning across a particular link in a cluster:

p jl
t = 1

nc ⋅ nl
⋅ p jl (8)

The transition probability between two clusters c1 and c2 is now be computed by summing 

up the probabilities of all links connecting these clusters:

Pr c1 c2 = ∑ j ∈ c1, l ∈ c2
p jl

t
(9)

Estimating local variability—The main goal of VarID is the quantification of local 

properties relying on the availability of local neighborhoods with homogenous cell state 

composition. We focus on the quantification of local gene expression variability. In the 

following sections, we describe two alternative approaches for the elimination of the 

variance-mean dependence implemented in VarID.

Option 1: Direct regression of the variance-mean dependence

A major problem is the dependence of the transcript count variance on the average transcript 

count. We observed that the baseline level of the variance as a function of the mean exhibits 

a convex behavior after log-transformation. This is mainly due to the presence of two 

sources of technical noise, i.e. sampling noise and global cell-to-cell variability in 

sequencing efficiency on top of biological variability2. To capture the baseline level of the 

noise, we split the gene variances into 100 equally populated bins after ordering by 

increasing mean expression. For each bin, we retain only the data points with variances 

below the 5%-quantile of the variance distribution within this bin. We then performed a least 

square regression of a second order polynomial to the remaining data points across all bins 

(cf. eq. (4)) to obtain a function vb capturing the baseline variability as a function of mean 

expression m.

vb m ∼ 2
β0 + β1 ⋅ log2 m + β2 ⋅ log2 m 2

(10)

The local variability vl
ij of gene i in the neighborhood of cell j, given by cell j and its nearest 

neighbors (l = j1,…,jp) that remained after pruning, is now estimated as the variance of the 

transcript counts xil across the neighborhood of cell j, divided by vb(mij), where mij is the 

mean of the transcript counts xil of gene i across the pruned neighborhood of cell j:
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vi j
l =

∑
l ∈ j1, …, jp

xil − mil
2

p ⋅ vb mi j
mi j = 1

p ⋅ ∑
l ∈ j1, ..., jp

xil
(11)

Option 2: Eliminating the variance-mean dependence regressing out total transcript 
counts from the expression data

As an alternative approach, the local variability vlpij of gene i in the neighbourhood of cell j 
is computed as the variance of the Pearson residuals computed from a negative binomial 

generalized linear model with log link function (eq. (1)):

vi j
lp = ∑

l ∈ j1, …, jp
zil − mil

p 2 mil
p = 1

p ⋅ ∑
l ∈ j1, …, jp

zil (12)

Zil =
xil − μil

σil
μil = e

β0 mi + β1 mi ⋅ log10nl σil = μil +
μil

2

θ mi
(13)

with

mi = 1
N ∑ j = 1

N xi j n j = 1
N ∑i = 1

G xi j (14)

Pathway Enrichment Analysis

Symbol gene IDs were first converted to Entrez gene IDs. Pathway enrichment analysis was 

implemented using the ReactomePA22 package (v1.22.0). Pathway enrichment analysis was 

done on genes taken from the different modules in the SOMs. All expressed genes remaining 

after expression filtering were taken as universe.

VarID parameters

For the analysis of the murine hematopoietic progenitors10, we downloaded the dataset 

GSE89754 from GEO and extracted the raw unique molecular identifier (UMI) counts for 

the basal bone marrow data and for the EPO-treated condition. VarID is integrated in the 

RaceID analysis pipeline and part of RaceID v0.1.4 available on CRAN. We removed the 

following genes and correlating gene groups in the filtering step (CGenes parameter): 

mitochondrial genes (mt*), ribosomal genes (Rpl*, Rps*), and predicted genes with Gm-

identifiers (Gm*). Only cells with at least 1,000 transcripts were retained. We ran VarID 

with no_cores=5 and default parameters otherwise. For the analysis of murine intestinal 

epithelial cells20, we downloaded dataset GSE92332 from GEO and extract the atlas UMI 

counts. We noticed that libraries from male and female mice were combined in this dataset. 

Libraries B1 and B2 upregulated Xist expression and clustered separately from the 

remaining libraries in an initial analysis. To avoid a strong gender-related batch effect, we 

discarded these libraries. We removed the following genes and correlating gene groups in the 

filtering step (CGenes parameter): the proliferation marker Mki67, ribosomal genes (Rpl*, 
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Rps*), and predicted genes with Gm-identifiers (Gm*). Only cells with at least 1,000 

transcripts were retained. We ran VarID with regNB=FALSE for the pruning step, 

no_cores=5, and default parameters otherwise.

Seurat analysis

Seurat (v3.0.0) was run on the raw counts but retaining only genes and cells that remained 

after the VarID filtering step in order to ensure comparability. We chose default parameters 

and resolution=1. We tested increasing the resolution parameter, but this led to more 

unstable clusters and did not improve the detection of rare populations.

Prediction of Gene Regulatory Network

To infer gene regulatory networks GENIE314 was run using the R Bioconductor package 

GENIE323 (v1.0.0) with default parameters on the full dataset. For the hematopoietic 

progenitor dataset, links with importance >0.095 where retained. For the intestinal dataset, 

links with importance >0.08 were retained.

Differential gene expression analysis

Differential gene expression analysis was performed using the diffexpnb function of the 

RaceID3 (v0.1.4) algorithm. Differentially expressed genes between two subgroups of cells 

were identified similar to a previously published method24. First, negative binomial 

distributions reflecting the gene expression variability within each subgroup were inferred 

based on the background model for the expected transcript count variability computed by 

RaceID3. Based on these distributions, a p-value for the observed difference in transcript 

counts between the two subgroups was calculated and multiple testing corrected by the 

Benjamini-Hochberg method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by the Max Planck Society, the German Research Foundation (DFG) (SPP1937 
GR4980/1-1, GR4980/3-1, and GRK2344 MeInBio), by the DFG under Germany’s Excellence Strategy (CIBSS – 
EXC-2189 – Project ID 390939984), by the ERC (818846 — ImmuNiche — ERC-2018-COG), and by the 
Behrens-Weise-Foundation.

References

1. Grün D. Revealing routes of cellular differentiation by single-cell RNA-seq. Curr Opin Syst Biol. 
2018; 11:9–17.

2. Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. 
Nat Methods. 2014; 11:637–40. [PubMed: 24747814] 

3. Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian Analysis of Single-Cell Sequencing 
Data. PLoS Comput Biol. 2015; 11:e1004333. [PubMed: 26107944] 

4. Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. Correcting the Mean-Variance 
Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data. Cell Syst. 
2018; 7:284–294.e12. [PubMed: 30172840] 

Grün Page 9

Nat Methods. Author manuscript; available in PMC 2020 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



5. Macosko EZ, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using 
Nanoliter Droplets. Cell. 2015; 161:1202–1214. [PubMed: 26000488] 

6. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene 
expression data. Nat Biotechnol. 2015; 33:495–502. [PubMed: 25867923] 

7. Setty M, et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat 
Biotechnol. 2016; 34:637–645. [PubMed: 27136076] 

8. Herman JS, Sagar, Grün D. FateID infers cell fate bias in multipotent progenitors from single-cell 
RNA-seq data. Nat Methods. 2018; 15:379–386. [PubMed: 29630061] 

9. Grün D, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 
2015; 525:251–5. [PubMed: 26287467] 

10. Tusi BK, et al. Population snapshots predict early haematopoietic and erythroid hierarchies. 
Nature. 2018; 555:54–60. [PubMed: 29466336] 

11. Brennecke P, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat 
Methods. 2013; 10:1093–5. [PubMed: 24056876] 

12. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data 
using regularized negative binomial regression. bioRxiv. 2019; doi: 10.1101/576827

13. Hu H, et al. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal 
transcription factors. Nucleic Acids Res. 2019; 47:D33–D38. [PubMed: 30204897] 

14. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from Expression 
Data Using Tree-Based Methods. PLoS One. 2010; 5:e12776. [PubMed: 20927193] 

15. Liting X, Gerstein R, Socolovsky M, Castilla LH. Deletion Of Core Binding Factors Runx1 and 
Runx2 Leads To Perturbed Hematopoiesis In Multiple Lineages. Blood. 2013; 122

16. Komorowska K, et al. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem 
Cells and Protects the Stem Cell Pool during Regeneration. Cell Rep. 2017; 21:3514–3523. 
[PubMed: 29262330] 

17. Paul F, et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell. 
2015; 163:1663–1677. [PubMed: 26627738] 

18. Doi Y, et al. SATB1 Expression Marks Lymphoid-Lineage-Biased Hematopoietic Stem Cells in 
Mouse Bone Marrow. Blood. 2015; 126

19. Jones CL, et al. ETV6 Regulates Pax5 Expression in Early B Cell Development. Blood. 2016; 128

20. Haber AL, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017; 551:333–
339. [PubMed: 29144463] 

21. McInnes, L, Healy, J, Melville, J. UMAP: Uniform Manifold Approximation and Projection for 
Dimension Reduction. 2018. Preprint at arXiv https://arxiv.org/abs/1802.03426v2

22. Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome pathway analysis and 
visualization. Mol Biosyst. 2016; 12:477–9. [PubMed: 26661513] 

23. Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 
2017; 14:1083–1086. [PubMed: 28991892] 

24. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 
11:R106. [PubMed: 20979621] 

Grün Page 10

Nat Methods. Author manuscript; available in PMC 2020 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://arxiv.org/abs/1802.03426v2


Figure 1. Locally homogenous neighborhoods enable sensitive cell type identification.
a, Strategy for inferring locally homogenous neighborhoods by pruning knn-networks. Links 

are removed if the transcript levels in a neighboring cell are not explained by a local 

background model. Thickness of links represents the likelihood of belonging to the same 

cell state. b, Uniform Manifold Approximation and Projection for Dimension Reduction 

(UMAP) representation21 of mouse hematopoietic progenitor single-cell RNA-seq data10 

highlighting clusters inferred by Louvain clustering on the pruned knn-network (k=10 and 

α=10). Cell type labels are based on marker gene expression. c, Dot plot showing the 

expression z-score of lineage-specific marker genes across all clusters from (b). The dot size 

indicates the fraction of cells expressing a gene. d, Dot plot showing expression of lineage-

specific marker genes across all clusters inferred by Seurat5,6. See (c) for details. e, UMAP 

representation with links connecting cluster medoids. The thickness and color of a link 

indicates the transition probability between the connected clusters. (b-d) Data from n=2 

biologically independent experiments.
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Figure 2. Inferring local variability in hematopoietic progenitor cell state space.
a, Scatterplot showing variance and mean of the transcript count of all genes across all cells 

in the mouse hematopoietic dataset in logarithmic space. The red line indicates a second 

order polynomial fit to the baseline level of the variance comprising technical and biological 

variability. b, Scatterplot showing corrected variance of transcript counts as a function of the 

mean in logarithmic space after eliminating the mean-dependence by subtracting the 

baseline fit. The red line indicates the baseline level of the corrected variability. c, UMAP 

representation highlighting normalized gene expression (upper panel) and corrected 

variability (lower panel) for Gata1 (left) and Mpo (right). The black arrow indicates the 

erythrocyte (left) or neutrophil (right) differentiation trajectory. d, Venn diagram showing 

the overlap of genes with enhanced local variability (one-sided Wilcoxon rank sum-test 

P<0.001, Benjamini Hochberg corrected, foldchange >1.25) and differentially expressed 

genes (P<0.001, Benjamini Hochberg corrected, see Methods, foldchange >1.25 between the 

populations) in cluster 16 versus the remaining cells. e, Heatmap of normalized expression 

(left) and corrected variance (right) for the top 50 genes with enhanced variability from (d) 

ordered by decreasing log2-foldchange of variability between cluster 16 and the remaining 

cells. Clusters were manually grouped by lineage. Hierarchical clustering of rows was 

performed based on gene expression. f, Gene regulatory network predicted by GENIE3 run 

on all transcriptional regulators among the genes with enhanced variability, using the full 

dataset as input. (a-e) Data from n=2 biologically independent experiments.
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Figure 3. Exploring dynamics of gene expression variability during neutrophil differentiation.
a, Separate RaceID3/StemID28 analysis all cells from the original clusters 16, 5, 3, and 11. 

The link color indicates the link p-value and the vertex color represents transcriptome 

entropy. The link p-value and transcriptome entropies were derived by StemID28. b, Self-

organizing map (SOM) of pseudo-temporal corrected variability profiles inferred by FateID8 

using the variability matrix as input. The color indicates the z-score of loess-smoothed 

profiles. Cells were ordered along the trajectory connecting clusters 5, 4, 3, 7, 1, and 2 in (a) 

by StemID2. Original clusters (cf. Fig. 1b) are highlighted at the bottom. Modules were 
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obtained by grouping SOM nodes based on correlation of averaged profiles (Pearson 

correlation > 0.85). Only modules with >10 genes are shown in the map. Genes with >2 

transcripts in at least one cell were included. c, Pseudo-temporal variability (left) and 

corresponding gene expression (right) profiles averaged across all genes in a module. 

Pseudo-temporal profiles were normalized to the same scale by dividing transcript counts 

and corrected variabilities by the sum across all cells on the trajectory. (a-c) Data from n=2 

biologically independent experiments.
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