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Endoscopic diagnosis and 
treatment planning for colorectal 
polyps using a deep-learning model
Eun Mi Song1,4, Beomhee Park2,4, Chun-Ae Ha1, Sung Wook Hwang1, Sang Hyoung Park1, 
Dong-Hoon Yang1, Byong Duk Ye   1, Seung-Jae Myung1, Suk-Kyun Yang1, Namkug Kim   3* & 
Jeong-Sik Byeon1*

We aimed to develop a computer-aided diagnostic system (CAD) for predicting colorectal polyp 
histology using deep-learning technology and to validate its performance. Near-focus narrow-band 
imaging (NBI) pictures of colorectal polyps were retrieved from the database of our institution. Of 
these, 12480 image patches of 624 polyps were used as a training set to develop the CAD. The CAD 
performance was validated with two test datasets of 545 polyps. Polyps were classified into three 
histological groups: serrated polyp (SP), benign adenoma (BA)/mucosal or superficial submucosal 
cancer (MSMC), and deep submucosal cancer (DSMC). The overall kappa value measuring the 
agreement between the true polyp histology and the expected histology by the CAD was 0.614–0.642, 
which was higher than that of trainees (n = 6, endoscopists with experience of 100 NBI colonoscopies 
in <6 months; 0.368–0.401) and almost comparable with that of the experts (n = 3, endoscopists 
with experience of 2,500 NBI colonoscopies in ≥5 years) (0.649–0.735). The areas under the receiver 
operating curves for CAD were 0.93–0.95, 0.86–0.89, and 0.89–0.91 for SP, BA/MSMC, and DSMC, 
respectively. The overall diagnostic accuracy of the CAD was 81.3–82.4%, which was significantly higher 
than that of the trainees (63.8–71.8%, P < 0.01) and comparable with that of experts (82.4–87.3%). The 
kappa value and diagnostic accuracies of the trainees improved with CAD assistance: that is, the kappa 
value increased from 0.368 to 0.655, and the overall diagnostic accuracy increased from 63.8–71.8% to 
82.7–84.2%. CAD using a deep-learning model can accurately assess polyp histology and may facilitate 
the diagnosis of colorectal polyps by endoscopists.

Colonoscopy can effectively detect colorectal polyps of various histological subtypes, including hyperplastic, ade-
nomatous, and malignant polyps. Premalignant polyps, such as adenoma, should be resected endoscopically 
to prevent their development to colorectal cancer (CRC)1. Early CRCs with favorable histological features and 
cancer invasion up to mucosa or superficial submucosa less than 1,000 μm from the muscularis mucosa can be 
also managed by endoscopic resection2. However, endoscopic resection is not recommended for early CRCs with 
unfavorable histological features, such as massive submucosal invasion deeper than 1,000 μm, and surgery should 
be performed for these tumors3,4. Diminutive hyperplastic polyps can be left in situ without resection because 
they have no malignant potential, which is called a diagnose-and-leave strategy5. Owing to the wide variety of 
management strategies, the accurate assessment of colorectal polyp histopathology is of crucial importance.

Image-enhanced endoscopy using narrow-band imaging (NBI), blue light imaging, and i-Scan enabled the 
clear visualization of the microvascular architectures and surface structures of colorectal polyps6–8. Systematic 
classification systems have been developed to predict the histopathology of colorectal polyps based on NBI find-
ings, which include the NBI International Colorectal Endoscopic classification and Japan NBI Expert Team clas-
sification9,10. Although these classification systems showed good accuracy in the prediction of colorectal polyp 
histopathology9, their performance is greatly endoscopist-dependent and the performance of optical diagnosis in 
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nonacademic centers was disappointing11. Therefore, significant learning curves with repetitive training for NBI 
images are needed to achieve a diagnostic performance with high confidence12,13.

Recently, artificial intelligence (AI) has been introduced in an attempt to revolutionize the field of endoscopy. 
Multi-layered rapid image analysis and feature extraction performed by machine learning, a subset of AI, have 
been applied in the endoscopic recognition and assessment of colorectal polyps14–16. Initial experiences have 
enabled endoscopists to expect more detailed applications of AI and the innovative shifts in endoscopy prac-
tices by overcoming several limitations, including the inter-observer and intra-observer variability of completely 
endoscopist-dependent practices.

We herein present the development and validation of a computer-aided diagnostic system (CAD) for predict-
ing colorectal polyp histology using AI-based deep learning. We aimed to investigate the possibility of a CAD 
application in the formation of treatment plans for colorectal polyps.

Results
Baseline characteristics of colorectal polyps.  The baseline characteristics of 1169 colorectal polyps are 
presented in Table 1. The median size was 10 mm (range, 2–100 mm). Gross morphology of the Is type was the 
most common. BA was the most common histological diagnosis (705/1169, 60.3%), while DSMC was the least 
common (91/1169, 7.8%).

Diagnostic performance of the CAD and comparison with endoscopists.  The schematic view of 
the training strategy for the CAD is presented in Fig. 1 and detailed in the Methods section. Among the 182 NBI 
images of colorectal polyps in test dataset I, the CAD correctly classified 148 images (81.3%). The CAD correctly 
classified 32 (82.1%) of 39 serrated polyps (SPs), 106 (84.1%) of 126 benign conventional adenoma (BA)/mucosal 
or superficial submucosal cancer (MSMC) polyps, and 10 (58.8%) of 17 deep submucosal cancer (DSMC) polyps. 
The overall Cohen’s kappa value for the CAD was 0.614 (95% CI, 0.488–0.730), implying substantial agreement 
between the actual and predicted histological diagnoses. The Cohen’s kappa value for the trainee endoscopists was 
0.368 (95% CI, 0.281–0.459) and that of expert endoscopists was 0.649 (95% CI, 0.564–0.725). Thus, the CAD 
diagnostic performance was better overall than that of the trainees and comparable to that of expert endoscopists. 
Detailed kappa values according to polyp size, location, and morphology are presented in Table 2 and show a 
similar tendency.

In test dataset II analyzing the diagnostic performance of the CAD in prospectively acquired real-time NBI 
images of 363 colorectal polyps, the Cohen’s kappa value for the CAD was also significantly higher than that of 
trainee endoscopists (0.642 vs. 0.401), while it was comparable or slightly inferior to that of expert endoscopists 
(0.642 vs. 0.735). Detailed findings are presented in Table 2.

Diagnostic performance of the CAD in each histological group.  The diagnostic performances of 
the CAD and endoscopists according to the three histological groups are presented in Table 3. In test dataset 
I, the overall diagnostic accuracy of the CAD was 81.3% compared to that of expert endoscopists being 82.4%, 
indicating no statistically significant difference. However, the CAD showed significantly better overall diagnostic 
accuracy compared to the trainee endoscopists (81.3% vs. 71.8%, P = 0.005) (Table 3). Other performance indica-
tors, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were 
similar between the CAD and the experts in the three histological groups, whereas the performance parameters 
of the CAD were superior to those of trainees (Table 3).

Variables Overall Training set Test set I Test set II P*
Number 1169 624 182 363

Median size, mm (range) 10 (2–100) 8 (2–100) 10 (4–50) 12 (3–90) 0.332

Localization (n, %) 0.407

  Right colon 656 (56.1) 334 (53.5) 103 (56.6) 219 (60.3)

  Left colon 513 (43.9) 290 (45.5) 79 (43.4) 144 (39.7)

Macroscopic type (n, %) 0.825

  Ip 42 (3.6) 18 (2.9) 8 (4.4) 16 (4.4)

  Is 820 (70.1) 464 (74.4) 122 (67.0) 234 (64.5)

  LST 307 (26.3) 142 (22.8) 52 (28.6) 113 (31.1)

     LST-NG 140 (12.0) 53 (8.5) 26 (14.3) 61 (16.8)

     LST-G 167 (14.3) 89 (14.3) 26 (14.3) 52 (14.3)

Pathology (n, %) 0.294

  Hyperplastic polyp 93 (8.0) 48 (7.7) 15 (8.2) 30 (8.3)

  Sessile serrated polyp 170 (14.5) 76 (12.2) 24 (13.2) 70 (19.3)

  BA 705 (60.3) 393 (63.0) 106 (58.2) 206 (56.7)

  MSMC 110 (9.4) 62 (9.9) 20 (11.0) 28 (7.7)

  DSMC 91 (7.8) 45 (7.2) 17 (9.3) 29 (8.0)

Table 1.  Baseline characteristics of the included colorectal polyps. LST, laterally spreading tumor; NG, non-
granular; G, granular; BA, benign conventional adenoma; MSMC, mucosal or superficial submucosal tumor; 
DSMC, deep submucosal cancer. *P values in comparison between the test sets I and II.
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In test dataset II, the overall diagnostic accuracy of the CAD was significantly higher than that of trainee 
endoscopists (82.4% vs. 63.8%, P < 0.001). The CAD showed inferior overall diagnostic accuracy to that of expert 
endoscopists (82.4% vs. 87.3%, P = 0.005). The analytical results of other performance indicators in test dataset 
II are presented in Table 3.

Area under the receiver operating characteristic (ROC) curves (AUC) for the CAD showed good-to-excellent 
diagnostic performances at 0.93, 0.86, and 0.91 for the SP, BA/MSMC, and DSMC groups, respectively, in test 
dataset I. ROC curves of the CAD in test dataset II showed similar findings (AUCs: 0.95, 0.89, and 0.89 in the SP, 
BA/MSMC, and DSMC groups, respectively) (Fig. 2). The diagnostic performance of the CAD as demonstrated 
by the ROC curves was comparable or slightly inferior to that of experts and clearly superior to that of trainees in 
both test datasets I and II (Fig. 2).

The visualized class activation map images demonstrated that the CAD was able to correctly predict the his-
tological diagnosis of colorectal polyps by perceiving the characteristic surface area of the appropriate, relevant 
histological group (Fig. 3)17.

Diagnostic performance of trainees assisted by the CAD.  In test dataset I, the overall Cohen’s kappa 
value of the CAD+trainees was 0.665 (95% CI, 0.560–0.758), which was higher than that of the trainees (0.368, 
95% CI 0.281–0.459) (Table 2). Moreover, the overall diagnostic accuracy of the CAD+trainees was significantly 
higher than that of the trainee endoscopists (84.2% vs. 71.8%, respectively; P < 0.001) (Table 3). The ROC curves 
also showed improvements in the diagnostic performance of the trainees with CAD assistance (Fig. 4).

Analysis of the diagnostic performance of the trainees assisted by the CAD in test dataset II showed similar 
findings as those in test dataset I (Table 2,3, Fig. 4).

Diagnostic performance of the CAD according to the size, location, and morphology of colorec-
tal polyps.  The diagnostic performance of the CAD in test dataset I was generally good, with no definite, con-
sistent differences according to polyp size (>10 mm vs. ≤10 mm), location (right vs. left colon), or morphology 
(laterally spreading tumor [LST] vs. Is; Table 4). The diagnostic performance of the CAD according to polyp size, 
location, and morphology in test dataset II showed tendencies similar to those in test dataset I (Supplementary 
Table 2).

Inference time of CAD.  The average inference time for histological assessment by the CAD was 0.02 seconds 
with ResNet-50 and 0.04 seconds with DenseNet-201.

Figure 1.  A schematic of the training strategy of the computer-aided diagnostic system (CAD) using a 
50-layered convolutional neural network and image patches. SP, serrated polyp; BA, benign conventional 
adenoma; MSMC, mucosal or superficial submucosal cancer; DSMC, deep submucosal cancer.
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Discussion
In this study, the CAD based on NBI near-focus images showed a good diagnostic accuracy of >80%–90% irre-
spective of polyp size, location, and morphology. The area under the ROC curves for the CAD was 0.86–0.95, 
implying good-to-excellent predictability. The CAD showed a better performance compared to trainees and a 
slightly inferior or comparable performance to that of experts. In addition, CAD assistance significantly improved 
the diagnostic performance of trainees. These findings suggest that the AI CAD system helps inexperienced 
endoscopists to correctly predict the histopathology of colorectal polyps and gives expert endoscopists increased 
confidence in their histological assessments. Therefore, we believe that CAD assistance will help endoscopists 
more reliably determine the appropriate treatment plan for colorectal polyps.

Several recent studies have investigated the use of the CAD to differentiate between neoplastic and 
non-neoplastic lesions, which are summarized in Supplementary Table 3. Our study is distinctive in several 
aspects. First, the majority of previous studies developed a CAD based on magnifying images or endocytoscopy 
images; these are not widely available in current clinical practice, particularly in nonacademic hospitals15,18–22. In 
contrast, we developed a CAD using NBI near-focus images that can be easily obtained in many centers, includ-
ing primary care units. Second, previous CAD studies focused on discriminating only diminutive polyps14,15,19. 
However, appropriate treatment plans for both large and small colorectal polyps are essential to achieve success-
ful screening and surveillance colonoscopy. Therefore, we enrolled all colorectal polyps regardless of their size 
and trained the CAD to classify the polyps into three histological groups with varying treatment plans. The BA/
MSMC group is endoscopically resectable, while the DSMC group is endoscopically unresectable group and 
requires surgery. Since differentiating between hyperplastic and sessile serrated polyps is difficult even through 
histological evaluation by pathologists23,24, the treatment plan for SP is currently determined clinically based on 
the size and location of the SP; endoscopic resection is recommended for SP > 5 mm at any location and SP of 
any size at a location proximal to the sigmoid colon. Accordingly, real-time differentiation between the two types 
is not mandatory in current practice. Therefore, we suggest that our three histological groups adequately repre-
sented the treatment planning of most colorectal polyps, and our study showed that the CAD is a potentially good 
modality to aid in the differentiation of these three histological groups.

Interestingly, the diagnostic performance of trainees improved significantly with CAD assistance through 
our heuristic algorithm. We suggest that this type of assessment considering both the endoscopist’s confidence 
level and the CAD probability may be a good way to implement AI CAD into real clinical practices. If an AI 
device shows a clearly superior performance, it could entirely replace human clinicians. However, consensus 
on the definition of “clear superiority” is difficult to achieve. Therefore, approaches combining both human and 
AI-suggested decisions can be a practical solution, and we believe our algorithm shows such an example of colo-
noscopy practices using a CAD.

Colorectal 
tumor Number

Experts CAD Trainees CAD+trainees

Kappa 95% CI Kappa 95% CI Kappa 95% CI Kappa 95% CI

Test set I

Overall 182 0.649 0.564–0.725 0.614 0.488–0.730 0.368 0.281–0.459 0.665 0.560–0.758

Tumor size

  >10mm 78 0.550 0.381–0.685 0.585 0.388–0.749 0.280 0.117–0.430 0.594 0.405–0.744

  ≤10mm 104 0.700 0.583–0.800 0.609 0.442–0.757 0.410 0.300–0.499 0.697 0.547–0.825

Tumor location

  Right colon 103 0.677 0.556–0.775 0.694 0.551–0.822 0.386 0.286–0.490 0.743 0.614–0.856

  Left colon 79 0.602 0.457–0.729 0.499 0.289–0.691 0.321 0.173–0.455 0.555 0.375–0.716

Tumor morphology

  LST type 52 0.583 0.382–0.752 0.552 0.315–0.769 0.225 0.038–0.380 0.508 0.262–0.728

  Is type 122 0.671 0.564–0.762 0.645 0.490–0.768 0.436 0.536–0.740 0.740 0.616–0.846

Test set II

Overall 363 0.735 0.690–0.780 0.642 0.552–0.722 0.401 0.348–0.450 0.658 0.585–0.729

Tumor size

  >10mm 189 0.724 0.650–0.784 0.623 0.494–0.736 0.416 0.338–0.487 0.674 0.568–0.773

  ≤10mm 174 0.714 0.637–0.781 0.620 0.495–0.727 0.300 0.226–0.370 0.599 0.481–0.693

Tumor location

  Right colon 219 0.748 0.687–0.805 0.596 0.485–0.695 0.355 0.289–0.418 0.623 0.523–0.715

  Left colon 144 0.696 0.604–0.776 0.688 0.559–0.800 0.420 0.326–0.509 0.687 0.575–0.781

Tumor morphology

  LST type 113 0.744 0.654–0.820 0.633 0.474–0.786 0.385 0.276–0.481 0.684 0.538–0.805

  Is type 234 0.712 0.650–0.767 0.626 0.525–0.721 0.394 0.324–0.455 0.635 0.525–0.710

Table 2.  Cohen’s kappa value measuring the agreement between true and predicted histopathological diagnoses 
in test sets I and II. CAD, computer-aided diagnostic system; CI, confidence interval; LST, laterally spreading 
tumor.
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The class activation map images showed the correct perception of the representative surface area of colorectal 
polyps by the CAD (Fig. 3). In general, the deep-learning model is regarded as a black box function because it is 
a data-driven method without inference by well-defined scientific laws. However, if the inference by the model 
cannot be interpreted, it would not be useful in clinical practice. As part of the solution to this problem, the class 
activation map can be extracted for the inference reason of the model. As shown in Fig. 3, the class activation map 
indicated that the model inferred histopathological diagnoses by correct perception of the characteristic polyp 
surface similarly to the endoscopists.

One disappointing aspect of our study was the relatively unsatisfactory performance of the CAD in the DSMC 
group. The CAD correctly classified only 10 (58.8%) of 17 DSMC polyps in test set I and 18 (62.1%) of 29 DSMC 
polyps in test set II. This may be partly related to the small number of DSMC cases. Another possibility is that 
only a single NBI near-focus image in test set I and 1–5 NBI near-focus images in test set II may not represent all 
the features of the entire tumor, particularly for DSMC. A larger DSMC dataset and diagnosis based on multiple 
images for each DSMC may be warranted in future studies.

This study has several limitations. First, our CAD predicted colorectal polyp histology based on still images, 
and investigation of an AI CAD system assessing motion images should be developed and validated. Nonetheless, 
because the images used for the CAD training in this study were unmodified from the original images, we are 
optimistic about the application of motion images to the CAD. In addition, we assessed the performance of the 
CAD in two separate test datasets. Of those, in test dataset II, real-time assessment of histological diagnoses was 
performed after the instant transmission of still images to the CAD. We believe this experiment showed the fea-
sibility of real-time assessment even with still images in clinical practice. Second, all NBI near-focus pictures in 
this study were taken by expert endoscopists. Inexperienced endoscopists may not pinpoint the representative 
region of a given colorectal polyp, thereby decreasing the performance of the CAD. Despite these limitations, our 
study is significant in that we demonstrated the possibility of using an AI CAD as a real-time histological diag-
nostic tool for not only small but also large colorectal polyps, including early cancers. A short inference time of 

All polyps

Test set I Test set II

Experts CAD Trainees CAD+trainees P* P† P‡ Experts CAD Trainees CAD+trainees P* P† P‡

Overall 
accuracy

82.4 
(450/546)

81.3 
(148/182)

71.8 
(392/546) 84.2 (460/546) 0.724 0.005 <0.001 87.3 

(951/1089)
82.4 
(299/363)

63.8 
(695/1089) 82.7 (901/1089) 0.005 <0.001 <0.001

Serrated 
polyp Experts CAD Trainees CAD+trainees P* P† P‡ Experts CAD Trainees CAD+trainees P* P† P‡

Sensitivity, % 
(fraction)

88.9 
(104/117)

82.1 
(32/39)

55.6 
(65/117) 82.1 (96/117) 0.179 <0.001 <0.001 81.7 

(245/300)
74.0 
(74/100)

92.0 
(276/300) 81.3 (244/300) 0.059 <0.001 0.0003

Specificity, % 
(fraction)

92.1 
(395/429)

93.7 
(134/143)

90.4 
(388/429) 94.9 (407/429) 0.498 0.210 0.057 94.6 

(746/789)
93.5 
(246/263)

61.0 
(481/789) 89.2 (704/789) 0.452 <0.001 <0.001

PPV, % 
(fraction)

75.4 
(104/138)

78.0 
(32/41)

61.3 
(65/106) 81.4 (96/118) 0.666 0.018 0.003 85.1 

(245/288)
81.3 
(74/91)

47.3 
(276/584) 74.2 (244/329) 0.250 <0.001 <0.001

NPV, % 
(fraction)

96.8 
(395/408)

95.0 
(134/141)

88.2 
(388/440) 95.1 (407/428) 0.193 0.001 0.001 93.1 

(746/801)
90.4 
(246/272)

95.2 
(481/505) 92.6 (704/760) 0.046 0.003 0.050

BA/MSMC Experts CAD Trainees CAD+trainees P* P† P‡ Experts CAD Trainees CAD+trainees P* P† P‡

Sensitivity, % 
(fraction)

83.1 
(314/378)

84.1 
(106/126)

81.7 
(309/378) 88.1 (333/378) 0.775 0.508 0.040 92.2 

(647/702)
88.5 
(207/234)

53.0 
(372/702) 85.8 (602/702) 0.041 <0.001 <0.001

Specificity, % 
(fraction)

81.0 
(136/168)

75.0 
(42/56)

51.8 
(87/168) 75.6 (127/168) 0.304 0.001 <0.001 78.6 

(304/387)
72.1 
(93/129)

84.5 
(327/387) 77.8 (301/387) 0.083 <0.001 0.0167

PPV, % 
(fraction)

90.8 
(314/346)

88.3 
(106/120)

79.2 
(309/390) 89.0 (333/374) 0.330 0.002 <0.001 88.6 

(647/730)
85.2 
(207/243)

86.1 
(372/432) 87.5 (602/688) 0.043 0.655 0.429

NPV, % 
(fraction)

68.0 
(136/200)

67.7 
(42/62)

55.8 
(87/156) 73.8 (123/172) 0.961 0.028 <0.001 84.7 

(304/359)
77.5 
(93/120)

49.8 
(327/657) 75.1 (301/401) 0.016 <0.001 <0.001

DSMC Experts CAD Trainees CAD+trainees P* P† P‡ Experts CAD Trainees CAD+trainees P* P† P‡

Sensitivity, % 
(fraction)

62.7 
(32/51)

58.8 
(10/17)

35.3 
(18/51) 58.8 (30/51) 0.839 0.043 0.013 67.8 

(59/87)
62.1 
(18/29)

54.0 
(47/87) 63.2 (55/87) 0.532 0.268 0.161

Specificity, % 
(fraction)

93.9 
(465/495)

93.3 
(154/165)

93.5 
(463/495) 92.9 (472/495) 0.771 >0.999 0.678 98.8 

(990/1002)
96.7 
(323/334)

97.4 
(976/1002) 98.3 (985/1002) 0.004 0.436 0.201

PPV, % 
(fraction)

51.6 
(32/62)

47.6 
(10/21)

36.0 
(18/50) 46.2 (31/54) 0.655 0.215 0.274 83.1 

(59/71)
62.1 
(18/29)

64.4 
(47/74) 76.4 (55/72) 0.004 0.760 0.094

NPV, % 
(fraction)

96.1 
(465/484)

95.7 
(154/161)

93.3 
(463/496) 95.6 (472/492) 0.742 0.114 0.117 97.2 

(990/1018)
96.7 
(323/334)

96.1 
(976/1016) 96.9 (985/1017) 0.471 0.324 0.186

Table 3.  Diagnostic performance of the CAD in each histological group in comparison with the diagnostic 
performance of endoscopists. CAD, computer-aided diagnostic system; PPV, positive predictive value; NPV, 
negative predictive value; BA, benign conventional adenoma; MSMC, mucosal or superficial submucosal 
tumor; DSMC, deep submucosal cancer. The diagnostic performance of the three experts and trainees was 
evaluated by combining the results of all the endoscopists. Therefore, the total number of examined polyps was 
546 (3 times 182) in test set I and 1089 (3 times 363) in test set II. *P value in the comparison between CAD vs. 
experts. †P value in the comparison between CAD vs. trainees. ‡P value in the comparison between trainees vs. 
CAD+trainees.
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only 0.02–0.04 seconds by our CAD is another important factor in the clinical utility of this system, because rapid 
diagnosis is mandatory in daily practice.

In conclusion, a CAD developed using a deep-learning model accurately predicted colorectal polyp histology 
based on NBI images with high accuracy. The diagnostic performance of the CAD was comparable to that of 
expert endoscopists and better than that of trainees. Real-time histological assessment of colorectal polyps by the 
CAD may enhance endoscopists’ decision-making and confidence in the selection of appropriate treatment plans.

Methods
Patients and data collection.  We collected NBI near-focus images of endoscopically resected colorec-
tal polyps at Asan Medical Center between 2014 and 2018. All endoscopic images, including both white light 
and NBI, were taken using CF-H290 colonoscopes (Olympus Co, Tokyo, Japan). The exclusion criteria were as 
follows: (1) colorectal polyps without NBI near-focus images, (2) those with dirty mucus and/or feces on their 
surface, (3) out-of-focus images, and (4) images with evident motion blurring. First, we retrospectively collected 
806 NBI near-focus images of 806 polyps, with one image per polyp, in 646 patients. Among these, 624 images 
were used as the training dataset and 182 were used as the test dataset I. Second, we prospectively collected NBI 
near-focus images of colorectal polyps as the test dataset II for another separate real-time performance test of 
the developed CAD system. The same exclusion criteria as those described above for the training dataset and 
test dataset I were applied. The test dataset II included 546 near-focus images of 363 colorectal polyps, with 1–5 
images per each polyp, in 305 patients. Finally, a total of 1352 NBI near-focus images of 1169 colorectal polyps in 
951 patients were collected.

This study was approved by the institutional review board (IRB) of Asan Medical Center (2017–1357). Due 
to the retrospective study design, written informed consent was not obtained from participants. The IRB of our 
institution waived the need for informed consent based on the non-invasive and anonymized nature of this study. 
This study was conducted in accordance with institutional ethical guidelines and the Declaration of Helsinki.

Histopathological classification of colorectal polyps.  The histopathology of all colorectal polyps 
was evaluated by board-certified gastrointestinal pathologists. The polyps were classified into three histological 
groups: (1) SP, (2) BA/ MSMC, and (3) DSMC. The SP group encompassed hyperplastic and sessile serrated pol-
yps. Superficial submucosal cancer was defined as cancer with an invasion depth <1000 µm from the muscularis 
mucosa. DSMC was defined as cancer with an invasion depth ≥1000 µm from the muscularis mucosa.

Figure 2.  The receiver operating characteristic (ROC) curves evaluating the diagnostic performance of the 
computer-aided diagnostic system (CAD). The performance of the CAD was evaluated and compared with 
the performances of three expert endoscopists and three trainees using ROC curves. (A–C) The ROC curves 
for the CAD in the SP, BA/MSMC, and DSMC groups of test dataset I; (D–F) The ROC curves for the CAD in 
the SP, BA/MSMC, and DSMC groups of test dataset II. AUC, area under the ROC curve; SP, serrated polyp; 
BA, benign conventional adenoma; MSMC, mucosal or superficial submucosal cancer (cancer with invasion 
depth <1000 µm from the muscularis mucosa); DSMC, deep submucosal cancer (cancer with invasion depth 
≥1000 µm from the muscularis mucosa).
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Development of the CAD.  A deep-learning model was used to develop a CAD. ResNet-5025 and 
DenseNet-20126 models with proven performance in the ImageNet Large-Scale Visual Recognition Competition 
(ILSVRC)27 were used as a deep-learning architecture to train the weak supervisions of histological diagnoses of 
NBI near-focus images. ResNet-50 was initially adopted, and then the recently introduced DenseNet-201 was 
used to improve the performance of the CAD.

Among the retrospectively collected NBI near-focus images of 806 polyps, 624 were used as the training 
dataset and 182 were used as the test dataset I. Since the prediction of a single NBI near-focus image of a tumor 
could be easily overfitted in small data-intensive situations, we employed a simple curriculum learning strategy. 
The tumor area of the collected NBI near-focus images was denoted with a rectangle. Then, 20 half-size image 
patches containing the center point of these evidences were extracted from each entire image. Through this pro-
cess, 12480 image patches measuring 224 × 224 were extracted from 624 entire images of 448 × 448 size in the 
training set. In order to pre-train image patches and fine-tune the model using entire images, two steps of training 
were performed as shown in Fig. 1. First, the model that was pre-trained on the ILSVRC dataset was trained using 
an augmented dataset of 12480 image patches as the training data. Thereafter, it was fine-tuned using 624 entire 
images. This curriculum learning strategy was intended to lead the model to a better local minimum.

There was an imbalance in the number of datasets among the SP, BA/MSMC, and DSMC groups. Since this 
imbalance could have led to paradoxical outcome, an oversampling strategy was employed to extract the same 
number of samples per training epoch. Each sample was standardized and trained using common data augmen-
tation techniques, such as adding Gaussian noise, rotating, zooming, and shifting.

All experiments were implemented in Keras with a Tensorflow backbone; a stochastic gradient descent opti-
mizer28 was used with 5e−5 learning and 5e−5 decay rates.

Since the model was validated using the test set without a separate validation set, the reliability of the mod-
el’s performance was assessed by 5-fold cross-validation. Supplementary Table 1 shows the cross-validation 
results for ResNet-50 and DenseNet-201. The mean values of the accuracies were 77.4 for ResNet-50 and 81.4 
for DenseNet-201 (P = 0.08). Although there was no statistically significant difference, DenseNet-201 showed a 
numerically higher accuracy. Therefore, the final CAD system was developed using DenseNet-201.

Diagnostic performance of the CAD and comparison with endoscopists.  The diagnostic per-
formance of the CAD was tested twice separately. The first test was conducted with NBI near-focus images of 
182 colorectal polyps in test dataset I. Diagnosis by the CAD was made based on the probabilities of the three 

Figure 3.  The visualized class activation map images. The figures in small rectangles in each image show 
the probability of each class being predicted by the computer-aided diagnostic system (CAD). The red 
area represents the region that the CAD considers to be compatible with the particular histology with high 
probability. The blue area represents the region that CAD considers to have a low probability for the particular 
histology. SP, serrated polyp; BA, benign conventional adenoma; MSMC, mucosal or superficial submucosal 
cancer; DSMC, deep submucosal cancer.
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histological groups. For example, if the CAD showed a 5% probability for SP, 10% probability for BA/MSMC, and 
85% probability for DSMC, the diagnosis was finalized as DSMC, as it had the highest probability. Diagnostic 
accuracy, sensitivity, specificity, PPV, and NPV were investigated in the differential diagnosis among SP, BA/
MSMC, and DSMC. Diagnostic performances were further assessed according to polyp size, morphology, and 
location. Polyp morphology was classified into Ip (pedunculated), Is (sessile), and LST. LSTs were further catego-
rized into granular (LST-G) and non-granular (LST-NG) types. Tumors were also categorized based on location 
as follows: tumors in the left or right colon (above the splenic flexure).

To compare the CAD performance with that of endoscopists, six endoscopists blinded to the histological 
diagnoses were asked to classify the same 182 polyps of the test dataset I into three histological groups based on 
NBI near-focus images. Endoscopists provided their diagnosis with a confidence level (high vs. low). Three of the 
six endoscopists were board-certified expert colonoscopists who had experienced approximately 2,500 NBI colo-
noscopies in ≥5 years. The other three were trainees who had experienced approximately 100 NBI colonoscopies 
in < 6 months.

We also evaluated the diagnostic performance of trainees assisted by the CAD (CAD+trainee). The final 
diagnosis by the CAD+trainee was made according to the following algorithm: (1) If the CAD and trainee made 
the same diagnosis, it was considered the final diagnosis of the CAD+trainee; (2) if the CAD and trainee diagno-
ses were different and the diagnostic probability by the CAD was ≥80%, the CAD diagnosis was considered the 
diagnosis of CAD+trainee; (3) if the CAD and trainee diagnoses were different, the diagnostic probability by the 
CAD was <80%, and the confidence level of the trainee diagnosis was high, the trainee’s diagnosis was considered 
the diagnosis of the CAD+trainee; (4) if the CAD and trainee diagnoses were different, the diagnostic probability 
by the CAD was <80%, and the confidence level of trainee diagnosis was low, the CAD diagnosis was considered 
the diagnosis of the CAD+trainee. A diagnostic probability of 80% is a heuristic parameter that can be changed 
depending on the model.

The second test for the diagnostic performance of the CAD was performed with NBI near-focus images of 363 
colorectal polyps in test dataset II. To test the real-time performance, the following steps were performed. First, 
1–5 representative NBI near-focus still images of a colorectal polyp were acquired during colonoscopy. Second, 
the image was transmitted to the CAD on a laptop via the picture archiving and communication system (PACS) 
of our center. Finally, the CAD determined the histological diagnostic group in real-time. The same three expert 
endoscopists and another three trainees assessed the histological diagnoses of the 363 colorectal polyps in test 
dataset II after all the NBI near-focus images were collected.

Figure 4.  Improvement of the diagnostic performance of trainees with the assistance of the computer-
aided diagnostic system (CAD). All empty circles representing trainees’ performance moved to solid circles 
representing the performance of the CAD+trainees at the left upper side or near the yellow curved line; this 
suggests that the performance of the CAD+trainees was superior to that of trainees and comparable to that of 
the CAD (yellow curved line). (A–C) Improved diagnostic performance of the CAD+trainee in the SP, BA/
MSMC, and DSMC groups of test dataset I; (D–F) Improved diagnostic performance of the CAD+trainee in 
the SP, BA/MSMC, and DSMC groups of test dataset II. SP, serrated polyp; BA, benign conventional adenoma; 
MSMC, mucosal or superficial submucosal cancer; DSMC, deep submucosal cancer.
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Statistical analysis.  Continuous variables were expressed as medians with ranges and categorical variables 
as frequencies with percentages. We used the unpaired Student’s t-test or Mann–Whitney U-test to compare 
continuous variables and the chi-square or Fisher’s exact test to compare categorical variables. The agreement 
between the true and predicted histological diagnoses was evaluated using Cohen’s kappa coefficient. The average 
of the kappa values for each endoscopist was calculated, and 95% CI was estimated by the percentile bootstrap 
method based on 1000 resamples. Sensitivity, specificity, accuracy, PPV, and NPV were compared using logistic 
regression with generalized estimating equations that accounted for the clustering of the same patient. A ROC 
curve was generated to evaluate the diagnostic performance in each histological group. P < 0.05 was considered 
statistically significant. All statistical analyses were performed using SPSS ver. 21.0 for Windows (IBM SPSS; IBM 
Co., NY, USA) and SAS (version 9.4; AS Institute, Cary, NC, USA).
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