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Deep learning for detecting retinal detachment and
discerning macular status using ultra-widefield
fundus images
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Retinal detachment can lead to severe visual loss if not treated timely. The early diagnosis of
retinal detachment can improve the rate of successful reattachment and the visual results,
especially before macular involvement. Manual retinal detachment screening is time-
consuming and labour-intensive, which is difficult for large-scale clinical applications. In this
study, we developed a cascaded deep learning system based on the ultra-widefield fundus
images for automated retinal detachment detection and macula-on/off retinal detachment
discerning. The performance of this system is reliable and comparable to an experienced
ophthalmologist. In addition, this system can automatically provide guidance to patients
regarding appropriate preoperative posturing to reduce retinal detachment progression and
the urgency of retinal detachment repair. The implementation of this system on a global scale
may drastically reduce the extent of vision impairment resulting from retinal detachment by
providing timely identification and referral.
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separates from the retinal pigment epithelium, which may

lead to severe visual loss if not treated timely!. In Western
countries, such as the United States, Scotland, and the Nether-
lands, the annual incidence of RD is 12.05 to 18.2 cases per
100,000 persons®~>, with a peak incidence of 52.5 per 100,000
persons aged between 55 and 59 years*. In Eastern countries, such
as China, Singapore, and Korea, the annual incidence of RD is
7.98 to 17.9 cases per 100,000 persons®~10, with the highest
incidence of 22.2 per 100,000 persons aged between 60 and 69
yearsS.

Although RD often causes visual disability and visual loss, the
early diagnosis of RD can improve the rate of successful reat-
tachment and the visual results, especially before macular invol-
vement!!. However, identifying RD at an early stage remains
challenging, as RD often starts asymptomatically and progresses
from a small size at the peripheral retina!?. Even in patients who
perceive early RD symptoms, such as flashes, curtain, and
increasing floaters, 17% of these patients attribute these changes
to aging or problems with their glasses or contact lenses!3.
Therefore, patients rarely visit a doctor in a timely manner until
the symptoms aggravate or visual acuity sharply drops!3. As a
result, the best timing of treatment can be missed and irreversible
visual loss may occur. Consequently, it is essential to develop an
appropriate screening approach to detect RD at an early stage.

The early detection of RD requires experienced ophthalmolo-
gists to examine the whole retina through a dilated fundus after
mydriasis, which is time-consuming and labour-intensive. These
challenges substantially hinder the implementation of RD
screening, particularly in a large population or underdeveloped
areas with few ophthalmologists. Recently, the development of
artificial intelligence (AI) has enabled the efficient and automatic
detection of retinopathies such as diabetic retinopathy (DR), age-
related degeneration (AMD), and glaucoma. However, most of
these studies trained the deep learning models using images

Retinal detachment (RD) occurs when the sensory retina

Ultra-widefield fundus images
N=11087

|

Classification
(3 retinal specialists and 1
senior retinal specialist)

acquired from traditional fundus camera imaging!4-1°. Such
imaging is adequate for observation of the optic nerve and pos-
terior pole, but provides little information regarding the periph-
eral retina due to the limited visible scope (30° to 60°).

To efficiently screen RD using Al the prerequisite is to obtain
fundus images covering the peripheral retina. The ultra-widefield
fundus (UWF) imaging system meets this requirement by pro-
viding 200° panoramic images of the retina?0. More importantly,
the peripheral retina can be observed through UWF imaging with
a single capture without requiring a dark setting, contact lens, or
pupillary dilation?°. The employment of UWF images in con-
junction with deep machine learning algorithms may provide
accurate identification of RD with high efficiency, thus facilitating
the implementation of RD screening in the general population.
Besides, the presence or absence of macular detachment is a
major determinant of the urgency of RD repair and the visual
prognosis after surgery, indicating that the macula-on RD patient
needs a more urgent surgery and could have better visual acuity
postoperatively than those with macula-off RD! 21> 22, Therefore,
in this study, we aimed to develop and evaluate a cascaded deep
learning system for detecting RD and discerning the macular
status based on UWF images.

Results

Baseline information. As shown in Fig. 1, 11,087 UWF images
from 7966 patients aged 10-86 years (mean age 47.5 years, 43.6%
female) were labelled for RD. After deleting 636 poor-quality
images due to the opacity of the refractive media or artifacts (e.g.,
arc defects, dust spots, and eyelash images), the first deep learning
model designed to identify RD was developed using 10,451
images, 2009 of which were classified as RD, while the remaining
8442 images were classified as non-RD. All eligible images were
randomly divided into 3 sets (no overlapping patients), with 70%
(7323 images) as a training set, 15% (1556 images) as a validation
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Fig. 1 The workflow of developing deep learning (DL) systems for identifying retinal detachment (RD) and discerning macula-on/off RD based on ultra-

widefield fundus images.

2 COMMUNICATIONS BIOLOGY'| (2020)3:15 | https://doi.org/10.1038/s42003-019-0730-x | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0730-x

ARTICLE

set, and 15% (1572 images) as a test set. After excluding 238
fair-quality images, 1771 RD images were used to build the sec-
ond deep learning model designed to discern macula-on RD from
macula-off RD, with 70% (1239 images) as a training set, 15%
(266 images) as a validation set, and 15% (266 images) as a test
set. The functions of the above two models are displayed in Fig. 2.
In addition, the RD category in our study included images of the
following five different types: rhegmatogenous RD, tractional RD,
exudative RD, recurrent RD after scleral buckling, and recurrent
RD after vitrectomy. The non-RD category included images of the
normal retina and various retinopathies such as DR, AMD, and
central serous chorioretinopathy. The numbers of labels in the
training, validation, and test datasets are shown in Table 1.

Performance of deep learning models. The performance of the
deep learning models and general ophthalmologists to detect RD
and to discern the macular status is shown in Table 2. For RD
detection, the general ophthalmologist with 5 years of experience
had a 95.4% sensitivity and a 99.8% specificity, and the general
ophthalmologist with 3 years of experience had a 94.4% sensi-
tivity and a 99.1% specificity, whereas the first model had a 96.1%
sensitivity and a 99.6% specificity with an area under the curve
(AUC) of 0.989 (95% confidence interval (CI): 0.978-0.996)
(Fig. 3a). For discerning macula-on RD from macula-off RD, the
general ophthalmologist with 5 years of experience had a 91.3%
sensitivity and a 92.4% specificity, and the general ophthalmol-
ogist with 3 years of experience had an 86.3% sensitivity and an
87.1% specificity, whereas the second model had a 93.8% sensi-
tivity and a 90.9% specificity with an AUC of 0.975 (95% CI:
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0.957-0.988) (Fig. 3b). Compared with the reference standard, the
unweighted Cohen’s « coefficients were 0.965 (95% CI:
0.948-0.982) and 0.811 (95% CI: 0.736-0.887) for the first model
and the second model, respectively. The performance of the
models in the dataset from Zhongshan Ophthalmic Centre is
displayed in Table 3.

False-negative and false-positive findings. Among the 12 RD
images classified erroneously into the non-RD category by the
first model, 2 showed localized RD surrounded by laser scars,
2 showed partial opacity of the refractive media, 5 presented
very shallow RD, and 3 were too dark for an accurate assess-
ment by the model (Fig. 4a). In contrast, five non-RD images
were mistakenly assigned to the RD category, including one
image of fundus albipunctatus, one image of retinal breaks, two
images showing changes associated with subretinal pro-
liferative membranes, and one image of a normal fundus
including part of the conjunctiva of the lower eyelid (Fig. 4b).
Similarly, using the second model, five images showed macula-
on RD misclassified as macula-off RD. Among these images,
two images showed an epiretinal membrane within the macula
area, two showed macular distortion due to traction from the
lesion in the peripheral retina, and one showed an atrophic
macula (Fig. 5a). In contrast, of 17 macula-off RD images
misclassified as macula-on RD images, 8 showed a strong light
reflex within the region of the macula, 6 showed shallow
macular detachment, and the remaining 3 showed exudative
RD (Fig. 5b).
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2. Relatively poor vision
prognosis.

Macula-on RD

4

1. Receiving RD repair

as soon as possible,
preferably in 24 hours.
2. Relatively good vision
prognosis.

Fig. 2 Framework of the cascaded deep learning system and its corresponding clinical application. The first model is used to identify retinal detachment
(RD) and the second model is used to identify macula-on RD. UWF ultra-widefield fundus.
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Medical guidance based on heatmaps. In the test set, all 292
true-positive RD images displayed heatmap visualization in the
region of RD. An arrow was successfully created and embedded in
the UWF image automatically to instruct the RD patients in
appropriate preoperative posturing, which could reduce RD
progression after detection and before surgical treatment. For
peripheral RD, the patients are instructed to turn their heads to
the direction of the quadrant indicated by the arrow and maintain
the position (Fig. 6a). For RD primarily located in the area of the
macula or approximately total RD, a circle was displayed on the
image, which indicated that the patients should maintain a supine
position (Fig. 6b). In ten images, the arrows transformed into
circles when the peripheral RD rather than the macula appeared
at the centre of these images due to incorrect gazing during image
capturing (Fig. 7).

Discussion

In this study, we developed a cascaded deep learning system
containing two models based on 11,087 UWF images. The first
deep learning model was used to identify RD and showed robust
performance (AUC 0.989, sensitivity 96.1%, and specificity
99.6%). The second deep learning model used to discern macula-
on RD from macula-off RD also exhibited ideal performance
(AUC 0.975, sensitivity 93.8%, and specificity 90.9%). In addition,
the agreement between the deep learning models and the refer-
ence standard was almost perfect according to the unweighted

Table 1 Number of ultra-widefield fundus images in the
training, validation, and test datasets.

Training set  Validation Test set
no. (%) set no. (%)  no. (%)
Rhegmatogenous RD 1169 (16.0) 244 (15.9) 256 (16.3)
Tractional RD 50 (0.7) 15 (1.0) 1 (0.7)
Exudative RD 54 (0.7) 12 (0.8) 7 (0.4)
Recurrent RD after 59 (0.8) 14 (0.9) 16 (1.0)
scleral buckling
Recurrent RD after 72 (1.0) 16 (1.0) 14 (0.9)
vitrectomy
RDs 1404 (19.2) 301 (19.3) 304 (19.3)
Non-RD 5919 (80.8) 1255(80.7) 1268 (80.7)
Total images of RD/ 7323 (100) 1556 (100) 1572 (100)
non-RD
Macula-on RD 360 (29.1) 77 (28.9) 80 (30.1)
Macula-off RD 879 (70.9) 189 (71.1) 186 (69.9)
Total images of macula- 1239 (100) 266 (100) 266 (100)

on/off RD

RD retinal detachment

Cohen’s x coefficients (the first model 0.965, the second model
0.811). These results validate that our deep learning system
provides an objective RD diagnosis with high accuracy and
efficiency, while also determining whether the macula is involved.
Besides, the sensitivities of both models were higher than those of
the general ophthalmologists, although the general ophthalmol-
ogists with 5 years of experience had slightly higher specificities
(Table 2). As high sensitivity is a prerequisite for a potential
screening tool and can reduce the workload and medical costs by
avoiding the need for further examination of evidently normal
eyes!> 23 24  this system can be used to screen RD as a part of
ophthalmic health evaluations in physical examination centres or
community hospitals lacking ophthalmologists, or be deployed in
hospitals with a large number of patients to assist ophthalmolo-
gists. In addition, this system can be applied to detect peripheral
RD in patients who cannot tolerate a dilated fundus examination,
such as those with a shallow peripheral anterior chamber. More
importantly, based on the images obtained from a different UWF
imager at another institution, the models still performed well for
RD detection and macula-on RD recognition, which proves the
generalizability of our deep learning system (Table 3). Previously,
Ohsugi et al.2> reported a deep learning-based diagnostic system
for rhegmatogenous RD using a small number of UWF images
(n = 831) without external validation. Compared with their study,
the system developed in this study can identify different kinds of
RD based on 10451 UWF images and has verified its efficacy in
an independent external dataset, which is more representative of
the real world.

In clinics, interpreting the output of a deep learning system is
important for clinicians’ and patients’ acceptance of the system?°.
Thus, we performed heatmap visualization in all 292 true-positive
RD images to identify the regions contributing the most to the
deep learning system’s classification. Inspiringly, the result
showed that all these images highlighted the region of RD, which
further corroborated the validity of our deep learning system.
Similarly, Kermany et al.?” performed an occlusion test on 491
optical coherence tomography images to identify the most
important area that the neural network used to predict AMD and
this test identified the region of interest in 94.7% of the images
and correctly located drusen in 100% of all the images.

Preoperative posturing on the side where the RD mainly
located is an effective strategy to reduce the progression of
macula-on RD?% 29, However, in our view, although macula
detachment occurs in partial RD, preoperative posturing is still
indispensable as the extent of detachment is positively related to
the failure rate of RD repair3’. In addition, bed rest is proposed to
RD patients, as this strategy can reduce the quantity of subretinal
fluid, which can facilitate the performance of surgery and lower
the complication rate3!. Therefore, in this study, an arrow used to
instruct the RD patients in preoperative positioning between

Sensitivity (95% CI)

Table 2 Performance of the deep learning models vs. general ophthalmologists in the test sets.

Specificity (95% CI) Accuracy (95% CI)

Retinal detachment

Ophthalmologist A
Ophthalmologist B
The first model

Ophthalmologist A
Ophthalmologist B
The second model

Macula-on detachment

95.4% (93.0-97.8)
94.4% (91.7-97.1)
96.1% (93.9-98.3)

91.3% (84.8-97.8)
86.3% (78.2-94.4)
93.8% (88.3-99.3)

99.8% (99.6-100)
99.1% (98.6-99.6)
99.6% (99.3-99.9)

92.4% (88.4-96.4)
87.1% (81.9-92.3)
90.9% (86.6-95.2)

99.0% (98.5-99.5)
98.2% (97.5-98.9)
98.9% (98.4-99.4)

92.1% (88.7-95.5)
86.8% (82.4-91.2)
91.7% (88.2-95.2)

confidence interval

A general ophthalmologist with 5 years of working experience at a physical examination centre, B general ophthalmologist with 3 years of working experience at a physical examination centre, Cl
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Fig. 3 Receiver operating characteristic (ROC) curves of the deep learning models derived from the test datasets, compared with general
ophthalmologists’ performance using reference standard. a Detection performance of retinal detachment. b Detection performance of macula-on retinal
detachment. AUC area under the ROC curve; General ophthalmologist A, 5 years of working experience at a physical examination centre; General
ophthalmologist b, 3 years of working experience at a physical examination centre.

AUC

Table 3 Performance of the deep learning models in the dataset from the Zhongshan Ophthalmic Centre.

Sensitivity (95% ClI)

Specificity (95% Cl) Accuracy (95% CI)

The first model
The second model

1.000 (95% Cl: 0.999-1.000)
0.934 (95% Cl: 0.846-0.995)

99.5% (98.5-100)
93.5% (84.5-100)

99.5% (98.5-100)
95.3% (92.0-98.6)

99.5% (98.8-100)
95.0% (91.9-98.1)

AUC area under the curve, RD retinal detachment. The first model is used to identify RD. The second model is used to identify macula-on RD

diagnosis and treatment was automatically created and embedded
in the images through heatmaps (Fig. 6). On the premise of bed-
rest immobilization, patients with an upward arrow in the images
(RD mainly in the superior quadrant) should be positioned
supine with their head bending back; patients with a leftward
arrow (RD mainly in the left quadrant) should be positioned on
the left side; patients with a rightward arrow (RD mainly in the
right quadrant) should be positioned on the right side; patients
with a downward arrow (RD mainly in the inferior quadrant)
should be instructed to maintain a semi-supine position or sit
upright; and patients with a circle (RD mainly in the macula area
or total RD) should be instructed to maintain the supine position.
Meanwhile, for the RD patients identified by our deep learning
system, binocular occlusion is advised, because this strategy can
decrease the frequency and amplitude of eye movements®2. In
combination with posturing, binocular occlusion can reduce the
size of RD or at least prevent its further spreading®? 33.

On the basis of the high accuracy in discerning macular-on/off
RD, our deep learning system could be applied to notify patients

of the optimal timing of surgery and the possible visual prognosis
after surgery. According to the guidelines from the American
Academy of Ophthalmology, RD repair should be performed on
patients with attached macula prior to patients with detached
macula as soon as possible!. Specifically, for macula-on RD,
surgical treatment should be performed before the macula is
involved, preferably within 24h; for macula-off RD, surgical
treatment should be conducted within 6 days! 34 35, In addition,
eyes with macula-on RD have an 82-87% chance of retaining a
visual acuity of 20/50 or better postoperatively, whereas eyes with
macula-off RD only have a 20-37% chance of achieving such
visual acuity36-38. Therefore, our system not only facilitates the
detection of RD, but also may help to greatly improve and predict
the prognosis of RD in the clinic by discerning the macular status.

For better recognition of RD regardless of pathogenesis, our
study included three different types of RD (rhegmatogenous RD,
exudative RD, and tractional RD) in the datasets to develop and
evaluate the deep learning system (Table 1). Moreover, to increase
the application range of our system, recurrent RD after scleral
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B2 B3

Fig. 4 Ultra-widefield fundus images showing typical misclassified cases in retinal detachment (RD) detection. a False-negative images: A1, RD
surrounded by laser scars on the bottom left; A2, shallow RD at the bottom; A3, low-brightness image with RD on the top right. b False-positive images: B1,
retinal breaks at the bottom; B2, subretinal membrane on the right side; B3, fundus albipunctatus.

B1 B2 B3

Fig. 5 Ultra-widefield fundus images showing typical misclassified cases in macula-on retinal detachment (RD) detection. a False-negative images: A1,
macula-on RD with the distorted macula; A2, macula-on RD with an atrophic macula; A3, macula-on RD with an epiretinal membrane within the macular
area. b False-positive images: B1, macula-off RD with a strong light reflex within the region of the macula; B2, shallow macular detachment; B3, exudative
retinal detachment.
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B1

B2

Fig. 6 Examples of ultra-widefield fundus images with an arrow/circle generated according to heatmaps. a The arrow towards the area of retinal
detachment in image ATl is established automatically based on the highlighted region in heatmap A2. b The circle located at the centre of retinal
detachment in image B1 is created automatically on the basis of the highlighted region in heatmap A2. The arrow/circle is used to instruct patients in
preoperative posturing to reduce the progression of retinal detachment between detection and treatment. The dotted diagonal line in the image is used to

divide the retina into four quadrants (superior, inferior, left, and right).

A1

A2

Fig. 7 Example of an ultra-widefield fundus image with a mistaken circle generated according to a heatmap. A circle which should have been a
downward arrow in image A1 of inferior retinal detachment is established mistakenly based on the highlighted region in heatmap A2. The arrow/circle is
used to instruct patients in preoperative posturing to reduce the progression of retinal detachment between detection and treatment. The dotted diagonal
line in the image is used to divide the retina into four quadrants (superior, inferior, left, and right).

buckling or vitrectomy were also included in our datasets
(Table 1). As images of recurrent RD from the test set were
detected by the system, we speculated that our system could also
be applied to RD recurrence detection.

Compared with ground truth, our deep learning models made
a few mistakes, although they still had high accuracy. For the first
model, when assessing the reasons for false-negative classification,
approximately half of misclassified images were attributable to
RD that was too shallow to be detected (41.7%). The remaining
false-negative cases were a result of interference factors caused by

opaque refractive media, dark image illumination, or laser scars.
While evaluating the reasons for the false-positive classification,
the features of all misclassified cases were similar to those of RD
in varying degrees. For the second model, macula-on RD mis-
classified as macula-off RD was due to coexisting maculopathy.
Conversely, among the reasons for macula-off RD misclassified as
macula-on RD, almost half of misclassed images were caused by
the strong light reflex in the area of the macula (47.1%) and
the rest of the misclassified images were a result of shallow
macular detachment. In the ten images with erroneous circles, the
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peripheral RD was located at the centre of the picture instead of
the macula due to an incorrect gazing direction during image
capture, which led to the heatmap presenting in the centre. Thus,
the circles, which should have been arrows, were mistakenly
presented in the images (Fig. 7). To further improve the perfor-
mance of our models, we intend to increase the number of these
error-prone images in the training set in the future, which may
potentially minimize both false-positive and false-negative results.
To increase the accuracy of the icons (arrows/circles) in the RD
images, the macula should be centred when taking a UWF
photograph.

Several limitations exist in this study. First, although UWF
imaging can capture the largest retinal view compared with other
existing technologies, this method still could not cover the whole
retina. Hence, our deep learning system may miss a few RD
diagnoses that are not captured by UWF imaging. Moreover, a
missed diagnosis would occur if RD appears in an obscured area
of the image. Second, these images were collected from a tertiary
hospital. Further research is needed to investigate the perfor-
mance of the deep learning systems in other hospitals at different
levels. In addition, financial support from the government or
lowering the price of OPTOS imaging will aid in the deployment
of deep learning-based OPTOS imaging generally, even in pri-
mary eye care settings.

In conclusion, the present study verifies that our robust cas-
caded deep learning system can be applied to identify RD and
discern macula-on/off RD. Furthermore, our system can provide
guidance to patients regarding appropriate preoperative posturing
to reduce RD progression and the urgency of RD repair. Pro-
spective clinical studies to evaluate the cost-effectiveness and the
performance of this system in the real-world settings are ongoing.

Methods

To develop the cascaded deep learning system, a total of 11,087 UWF images were
retrospectively obtained from patients presenting for retinopathy examinations or
undergoing a routine ophthalmic health evaluation between November 2016 and
January 2019 at Shenzhen Eye Hospital using an OPTOS nonmydriatic camera
(OPTOS Daytona, Dunefermline, UK) and 200° fields of view. Patients underwent
this examination without mydriasis. All images were deidentified prior to transfer
to research investigators. This study was approved by the Institutional Review
Board of Zhongshan Ophthalmic Centre (Guangzhou, Guangdong, China) and
adhered to the tenets of the Declaration of Helsinki.

Image classification and the reference standard. First, all images were classified
into two types: RD and non-RD. Then, we further classified RD images into

macula-on RD and macula-off RD according to whether subretinal fluid extended
to involve the fovea®®. Image quality was included in the classification as follows:

1. Excellent quality referred to images without any problems.

2. Good quality referred to images with deficiencies in focus, illumination, or
other artifacts, but the region of RD and the macula could still be identified.

3. Fair quality referred to images with an obscured view of the macula, but part
of the RD region could still be identified.

4. Poor quality referred to images that were insufficient for any interpretation
(an obscured area over one-third of the image).

Poor-quality images were excluded from the study and fair-quality images were
excluded from the training of the deep learning model designed to discern macula-
on RD from macula-off RD. Figure 1 illustrates the workflow of image
classification.

Training a deep learning system requires a robust reference standard*® 4l. To
ensure the accuracy of the image classification, all anonymous images were
classified separately by three board-certified retinal specialists with at least 5 years
of experience. The reference standard was determined based on the agreement
achieved by all three retinal specialists. Any level of disagreement was arbitrated by
another senior retinal specialist with over 20 years of experience. The deep learning
system performance for identifying RD and discerning macula-on RD was
compared against this reference standard.

Image preprocessing and augmentation. We performed image standardization
before deep feature learning. First, the images were downsized to 512 by 512 and the
pixel values were normalized within the range of 0 to 1. Data augmentation was
applied to increase the diversity of the dataset and thus reduce the chance of overfitting

in the deep learning process. Horizontal and vertical flipping, rotation up to 90°, and
brightness shift within the range of 0.8-1.6 were randomly applied to the images in the
training and validation datasets to increase their size to five times the original size.

Deep learning system development. In the present study, the cascaded deep
learning system included two models, each of which was trained using a state-of-
the-art convolutional neural network (CNN) architecture InceptionResNetV2.
InceptionResNetV2 mimics the architectural characteristics of two previous state-
of-the-art CNNs: the Residual Network and the Inception Network. Weights
pretrained for ImageNet classification were used to initialize the CNN archi-
tectures®2. The first model identified RD in input images. The second model further
discerned macula-on RD from RD images detected by the first model. Figure 2
shows the framework of this cascaded deep learning system.

Each deep learning model was trained up to 180 epochs. During the training
process, the validation loss was evaluated using the validation set after each epoch
and used as a reference for model selection. Early stopping was applied, and if the
validation loss did not improve over 60 consecutive epochs, the training process
was stopped. The model state where the validation loss was the lowest was saved as
the final state of the model.

To train the first model, the whole dataset obtained from Shenzhen Eye
Hospital was randomly divided into three independent sets: 70% in a training set,
15% in a validation set, and the remaining 15% in a test set, with no patients
overlapping among these sets. To train the second model, the images of RD were
randomly divided into three independent sets in the same manner. The training
and validation sets were used to train and determine the models, respectively. The
test sets were used to evaluate the performance of the selected models.

To verify the deep learning system, we randomly selected 400 qualified images
(200 RD images and 200 non-RD images) from 383 patients, which were obtained
from another type of OPTOS nonmydriatic camera (OPTOS 200Tx, Dunefermline,
UK) in the Zhongshan Ophthalmic Centre between January and June 2019, to
compare our system’s classifications with those of the reference standard. Among
200 RD images, 31 are macula-on RD and 169 are macula-off RD.

Characteristics of misclassification. The UWF images, misclassified by the two
deep learning models, were arbitrated and analysed by a senior retinal specialist,
with the features documented.

Visualization heatmap and arrow embedding. To highlight the regions on which
the deep learning system focused the most when detecting RD, heatmaps were
generated using the Saliency Map visualization technique for all true-positive
images. The Saliency Map technique calculates the gradient of the output of the
CNN with respect to each pixel in the image, to identify the pixels with the greatest
impact on the final prediction. To provide guidance to patients regarding head
positioning, which may reduce RD progression before visiting their ophthalmol-
ogists, the centre of RD was located according to the hot regions in the heatmap
and then an arrow pointing from the centre of the image to the centre of RD was
automatically generated. Dotted diagonals were automatically created on the
images to divide the retina into four quadrants (superior, inferior, left, and right).
The specific direction of the preoperative posturing was determined according to
the quadrant to which the arrow pointed. A circle was displayed on an image when
the centre of the hot regions was within a 400-pixel diameter at the image centre,
which was approximately equivalent to the area of the macula (overall image pixel
size: 2600 x 2048).

General ophthalmologist comparisons. To evaluate our deep learning system in
the context of screening RD, we recruited two general ophthalmologists who
had 3 and 5 years of experience, respectively, in UWF image analysis at a
physical examination centre, and then compared the performance of the

deep learning models with that of the general ophthalmologists based on the
test sets.

Statistics and reproducibility. We used a receiver operating characteristic curve
and the AUC with 95% ClIs to evaluate the performance of the deep learning
models. The accuracy, sensitivity, and specificity of the models and general oph-
thalmologists for detecting RD and discerning the macular status were computed
according to the reference standard. In the test sets, unweighted Cohen’s k coef-
ficients were employed to compare the results of the models with the reference
standard as determined by the aforementioned retinal specialists. All statistical
analyses were performed using Python 3.7.3. The performance of the system can be
repeated when training on the same UWF images with the same deep learning
algorithm.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability

The datasets generated and/or analysed during the current study are available from the
corresponding author on a reasonable request. Correspondence and requests for data
materials should be addressed to HTL (haot.lin@hotmail.com). All datasets are stored at
Baidu Netdisk.

Code availability
The code used in this study can be accessed at GitHub (https://github.com/gocai/
uwf_retinal_detachment).
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