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Abstract

Purpose: To use golden-angle (GA) radial sampling and compressed sensing (CS) for 

accelerating mono and biexponential three dimensional (3D) spin-lattice relaxation time in the 

rotating frame (T1ρ) mapping of knee cartilage.

Methods: GA radial stack-of-stars and Cartesian 3D-T1ρ-weighted knee cartilage datasets (n=12) 

were retrospectively undersampled by acceleration factors (AFs) 2–10. CS-based reconstruction 

using eight different sparsifying transforms were compared for mono and biexponential T1ρ-

mapping of knee cartilage, including spatio-temporal finite differences (STFD), wavelets, 

dictionary from Principal Component Analysis (PCA), and exponential decay models (EXP), and 

also low rank (LR) and low rank plus sparse models (L+S). Complex-valued fitting was used and 

Marchenko–Pastur principal component analysis (MP-PCA) filtering also tested.

Results: Most CS methods performed well for an AF of 2, with relative median normalized 

absolute deviation (MNAD) below 10% for monoexponential and biexponential mapping. For 

monoexponential mapping, radial sampling obtained a MNAD below 10% up to AF of 10, while 

Cartesian obtained this level of error only up to AF of 4. Radial sampling was also better with 

biexponential T1ρ mapping, with MNAD below 10% up to AF of 6.

Conclusion: GA radial acquisitions combined with CS outperformed Cartesian acquisitions for 

3D-T1ρ mapping of knee cartilage, being it a good alternative to Cartesian sampling for reducing 

scan time and/or improving image and mapping quality. The methods EXP, STFD, and LR 

obtained the best results for radial sampling patterns.
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INTRODUCTION

The spin-lattice relaxation time in the rotating frame (T1ρ) has shown to be sensitive to the 

proteoglycan content of the cartilage (1,2) and the T1ρ relaxation mapping useful for early 

detection of osteoarthritis (OA) (3). In order to produce T1ρ maps, many T1ρ-weighted 

images must be acquired, taking a long acquisition time, especially if biexponential 

relaxation models are desired (4). While monoexponential models are still predominant in 

OA, a recent study (5) suggested that biexponential mapping of cartilage can provide better 

diagnostic performance. In (6,7), it is shown that change of multiexponential relaxation 

components can be clearly observed with cartilage degradation.

Recently, compressed sensing (CS) has been used to reduce the acquisition time of T1ρ 
mapping. For monoexponential T1ρ mapping of cartilage, CS has been studied in (8–10), 

while for biexponential T1ρ mapping, it has been studied in (11). These studies demonstrated 

that CS can reduce acquisition time by 10 times, with an error of 6.5% for monoexponential 

models (10) and 15% for biexponential models (11).

Those previous studies show that keeping good image quality as acceleration factor (AF) 

increases is extremely important for rapidly obtaining good relaxation maps. According to 

(12), successful CS acceleration is obtained when the incoherently measured data is 

accurate. In MRI this essentially translates into low noise and incoherent k-space sampling 

(13). Artifacts from incoherent sampling are easily reduced or removed by sparse 

reconstruction (14–16), but the measured data need to be as reliable as possible, in other 

words, strong signal and low noise.

Noise can be reduced by improving k-space signal-to-noise ratio (SNR), i.e. the SNR of the 

acquired k-space data (17). Considering the same scanner, k-space SNR can be improved by 

using different pulse sequences (18), by capturing more k-space lines, or even using multiple 

receiving coils (19). Incoherent k-space sampling for CS reconstruction can be obtained by 

choosing an optimal sampling pattern (13,15,20,21). After that, one only needs to combine it 

with adequate sparse reconstruction.

In this sense, one way to improve image quality in accelerated T1ρ acquisitions, with 

relatively good k-space SNR and high incoherence is to modify the k-space sampling 

trajectory and use multiple receiving coils. In this study, we investigate the use of radial 

sampling, specifically golden angle (GA) radial acquisitions (22), which was shown to be 

among the most incoherent radial patterns with proven success in CS-MRI (23,24). Radial 

patterns sample the low frequencies of k-space at every readout, capturing k-space parts 

where the signal is stronger than noise more often than Cartesian does, see Figure 1. If the 

level of the acquisition noise (its variance) is similar in both acquisition schemes then the 

radial k-space data should have higher k-space SNR than Cartesian. Even though radial 

images reconstructed with methods such as regridding (25) may have lower image SNR than 

Cartesian, as noted in (26), this depends on the reconstruction method and it does not behave 

the same way when regularized reconstructions, such as CS, are used (27). We observe this 

in practice with our T1ρ acquisition protocol, as shown later in this study (refer to Table 1, 

supporting information figures S1 and S2). Finding an optimal incoherent Cartesian 
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sampling pattern is also possible (28,29), but when measurements are noisy, some 

redundancy is desired in order to average the measurements in favor of signal, reducing 

random noise. In this sense, GA radial sampling provided a better tradeoff between 

redundancy and incoherence for CS-T1ρ mapping of knee cartilage than the previously used 

Cartesian sampling with Poisson disk (10,11), see Supporting Information Figure S1 for 

comparison.

Good balance between SNR and incoherence is not the only advantage of radial acquisition. 

Radial sampling is also more robust to motion (22,27) and resolution can be easily increased 

within the same scan time. In radial sampling, the readout direction spans a 2D plane (in 3D 

radial stack-of-stars). By adjusting pulse sequence parameters, radial sampling can easily 

increase k-space coverage for higher frequencies, leading to higher image resolution. In 

Cartesian sampling, readout direction is always the same, so only one direction can exploit 

this advantage. Supporting Information Figure S2 shows some T1ρ-weighted images from 

Cartesian and radial acquisition for comparison. Note that in all images the acquisition time 

and the number of k-space samples are the same.

These advantages may render radial acquisition a better option than Cartesian for accelerated 

T1ρ mapping. Potentially reducing acquisition time even further than Cartesian, or obtaining 

more accurate relaxation maps when the same acceleration is used. In this paper, we use k-

space radial sampling, following golden angle increments (approx. 111.25°), in order to 

improve the quality of the compressed sensing-accelerated 3D-T1ρ mapping of human 

articular cartilage.

METHODS

Radial and Cartesian-MRI Data Acquisition

Five in vivo human knee 3D-T1ρ-weighted datasets were acquired with 10 different TSLs 

using a modified 3D golden angle radial stack-of-stars sequence (24), which follows the 

details of radial acquisition described in (22). The radial lines comprehend the kx-ky plane, 

and they are stacked in the kz Cartesian direction. The details of the radial T1ρ pulse 

sequence are shown in Supporting Information Figure S4. Fourier Transform is applied in kz 

direction to separate 3D radial data into multiple slices. Seven in vivo human knee 3D-T1ρ-

weighted datasets were acquired with 10 different TSLs using a modified 3D Cartesian 

turbo-Flash sequence (4). The physical readout direction is the kx direction in Cartesian 

acquisitions, where Fourier Transform is applied to separate 3D Cartesian data into multiple 

slices on the ky-kz plane. However, in order to keep our notation simplified, we will denote 

the slices as in the kx-ky plane as in radial acquisitions.

The MRI scans were performed using a 3T clinical MRI scanner (Prisma, Siemens 

Healthcare, Erlangen, Germany) with a 15-channel Tx/Rx knee coil (QED, Cleveland OH). 

The general 3D-T1ρ acquisition parameters were the same for both: TR/TE=7.60ms/3.86ms, 

flip angle=12°, matrix size 256×128×64, longitudinal magnetization restoration 

delay=1000ms, 64 k-space lines captured per preparation pulse, spin-lock frequency=500Hz, 

slice thickness=2mm, the field of view (FOV)=160mm×160mm, and receiver 

bandwidth=510 Hz/pixel.
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The T1ρ-weighted scans of the knee were acquired in the sagittal plane from twelve healthy 

volunteers (age=29.6±7.5 years), with 10 TSLs including 2/4/6/8/10/15/25/35/45/55ms, and 

total acquisition time of a knee is 32 minutes. This study was approved by the institutional 

review board (IRB) and all the volunteers consented before scanning.

Estimating Noise Levels and Signal to Noise Ratio:

In order to estimate the standard deviation of the noise and the respective SNR, we use the 

Marchenko–Pastur Principal Component Analysis (MP-PCA) method from (30). This 

method is able to separate a matrix into two matrices, one containing the structured signal 

and other containing uncorrelated Gaussian noise, such as y = y− + η−. The normalized noise 

level can be computed by:

σ−η− = σ η−/σ y, [1]

where σy is the estimated standard deviation of the data (k-space data or reconstructed 

image), and σ η− is the estimated standard deviation of the noise. The estimated σ η− of k-space 

data matched the scanner noise calibrations obtained previously to the T1ρ scans. The SNR, 

which is the ratio of the noise-free data y− by the pure noise η−, is given by:

SNRy = σ y−/σ η−, [2]

This algorithm is applied to Cartesian and radial k-space data (for radial data, MP-PCA is 

applied to the original domain and to the regridded Cartesian domain) and reconstructed 

images (complex-valued images), in order to estimate the noise levels and SNR presented in 

Table 1 and Supporting Information Figure S2.

Synthetic Phantoms and Ground Truth

In order to have experiments with ground truth, we generate several synthetic knee images 

with known mono or biexponential maps. The relaxation maps were created from real 

Cartesian knee T1ρ-weighted images. Fully sampled Cartesian data were reconstructed with 

SENSE (31), their exponential decays were estimated, the values were inspected to make 

sure they were in knee cartilage ranges, and synthetic images were artificially generated (see 

figures 2, 3 and 5). Cartesian and radial k-space data were computed, using FFT and 

NUFFT, and Gaussian noise was added in k-space, according to the measured noise levels of 

the acquisitions, from Table 1.

Retrospective Undersampling

The 3D-golden angle radial stack-of-stars k-space data were retrospectively undersampled 

by reducing the number of radial k-space lines, or projections (24). The “full-sampled” GA 

radial dataset has 128 k-space lines, to match the same number of k-space points as the 

Cartesian acquisition. This is less than π/2 × 128 as recommended for standard radial 

acquisitions, but more than enough for radial MRI with multiple coils (27). The 

undersampling process removes the number of projections required by a specific 

acceleration factor (AF). To simulate prospective sampling as close as possible, the 

projections are removed in sequential block for each TSLs, but starting at a different point in 
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each TSL, so the sequence of angles is not the same for two consecutive TSLs. For example, 

for AF=2, the data of the first TSL uses only the projections from 1 to 64 (from all 128 

captured golden angle projections starting at 0°), the second TSL uses projections from 65 to 

128. The AF is defined as the ratio of the number of k-space lines used for reconstruction by 

the total number of measured k-space lines. The sampling pattern for Cartesian acquisitions 

followed the Poisson disk, as used in (10), with different sampling pattern for each TSL.

Reconstruction Algorithms

In previous studies (10,11) the reference method for reconstruction was SENSE (31), with 

fully-sampled data, which solves:

x = argminx y − FCx 2
2, [3]

where x is a vector that represents one of the NZ reconstructed image sequences, originally 

of size Nx × Ny × Nt, with Nx being the image size in the x-axis and Ny the size in the y-

axis, Nt is the number of TSLs. The vector y represents the captured k-space. For Cartesian 

acquisitions the original size of y is Nx × Ny × Nt × Nc, where Nc is the number of coils. The 

matrix C contains the coil sensitivities and phase compensation (15,32), F the Fourier 

transforms of all sensitivity-weighted images. For radial acquisitions, the original size of y is 

Ns × Nr × Nt × Nc, where Ns is the number of samples on each radial k-space line and Nr is 

the number of radial lines. The squared l2-norm or Euclidean norm, e 2
2
, is the sum of the 

squared magnitudes.

SENSE is a good method for reconstruction of fully-sampled Cartesian data, as shown in 

(10). For radial acquisitions, however, iterative conjugate gradient SENSE (CG-SENSE) 

reconstruction (33) are required, basically because Equation 3 represents an ill-posed 

problem. In ill-posed problems as these (34,35), noise may be amplified and some residual 

undersampling artifact may exist. The use of regularization is mandatory in order to produce 

useful images, in the case of CG-SENSE, the regularization is done by running just a few 

iterations (35), but this may not be enough to properly regularize the inverse. The most 

suitable approach to solve for radial acquisition would be using a side penalty such as the 

ones used in CS, even for “fully-sampled” data. The coil sensitivity maps, required by the 

multichannel coil reconstructions were estimated using ESPIRiT (36) from the synthesized 

Cartesian k-space area produced with a low-resolution regridding using NUFFT (25). We 

also used low-order phase information, following (15,32), for phase compensation. Phase 

compensation assures the reconstructed images have nearly zero-phase for later complex-

valued fitting in the T1ρ mapping step.

Following (10,11), eight different regularization functions are compared for CS. Our focus 

here is to compare radial and Cartesian acquisitions, but the type of regularization used can 

affect the reconstructions differently for Cartesian and radial trajectories.

The regularization penalties, described in Table 2, use l1-norm with different sparsifying 

transforms, nuclear-norm (37,38) of the Casorati matrix representation of the image, i.e. low 

rank (LR) model, and the low rank plus sparse (L+S) model, where the nuclear-norm and the 
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l1-norm are combined (39). In the Casorati matrix, each row contains the magnetization 

signal of one particular voxel over TSL.

The l1-norm (15) regularized CS problems are posed as:

x = argminx y − SFCx 2
2 + λ Tx 1, [4]

or

x = D argminu y − SFCDu 2
2 + λ u 1, [5]

Where the vector x, matrices C and F are described after Equation 3. For Cartesian 

acquisitions, the undersampling matrix S is a diagonal matrix, where the non-sampled k-

space points have zeros in their diagonal positions; the respective elements in y are replaced 

by zeros as well. For radial acquisitions, the SF is a (Nx × Ny × Nt × Nc)×(Ns × Nr × Nt × 

Nc) mapping, performed by the undersampled Non-Uniform Fast Fourier Transform 

(NUFFT) (40).

The l1-norm, ‖u‖1, is the sum of the magnitudes, and λ is the regularization parameter. The 

transform T and dictionary D are chosen as described in Table 2. In this table, transform T 
contains the spatiotemporal FD (STFD) (41–43) set to order 1 spatially and order 2 

temporally. Fixed dictionary models for D are utilized for 3D wavelet transform (44), WAV 

in Table 2, or for overcomplete multiexponential dictionary D, EXP in Table 2 (6,45), with 

much more columns than rows. Learned dictionary models for D can be created using 

temporal principal component analysis (PCA) (46), using singular value decomposition 

(SVD) on the Casorati representation (47).

The LR reconstruction is defined as:

x = argminx y − SFCx 2
2 + λ x * . [6]

In [3], ‖x‖* represents the matrix nuclear-norm (37) where x is reshaped as a NyNx × Nt 

Casorati matrix, and the SVD is utilized at each iteration using the currently available 

reconstruction (48).

The L+S reconstruction (39) is given by:

l , s = argminx y − SFC l + s 2
2 + λl l * + λs Ts 1, [7]

where x is decomposed into a sparse part s and a low rank part l, recombined by x = l + s. 

The low rank part uses of the nuclear-norm ‖l‖*, while the sparse part uses of the l1-norm 

with a specific sparsifying transform T, as listed in Table 2 for L+S reconstructions. This is 

also an overcomplete description of the images to be reconstructed (49). The highly 

correlated temporal part is represented by the LR component, while the temporally varying 

part, usually sparse in some spatially transformed domain, is represented by the sparse part. 

In (50), a similar combination of low rank and wavelet sparsity was studied for T2 mapping.
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Also following (10), and its supplemental material, the regularization parameters, λ or λl 

and λs, were adjusted in order to minimize xλ − xref 2 where xλ is the CS reconstruction 

and xref is the fully-sampled SENSE reconstruction or the ground truth (synthetic 

experiments). The CS reconstruction was performed using the monotone fast iterative 

shrinkage-thresholding algorithms with variable acceleration (MFISTA-VA) (51). All 

methods stopped when ‖xi+1 − xi‖2/‖xi+1‖2 < 10−5, or when i > 600, being i the iteration 

index.

Exponential Models and Fitting Algorithms

The T1ρ relaxation is usually considered an exponentially decaying process. Magnitude 

models, such as the ones used in (10,11), require compensation for bias since noise follows a 

Rician distribution when only the magnitude of the signal is utilized (52). Since noise levels 

differ considerably among different acquisitions and kinds of reconstruction, we used 

complex-valued models (53). The complex-valued monoexponential model is described as:

x t, n = a n exp − t
τ n , [8]

with complex-valued a(n). Note the relaxation time τ(n) is real-valued.

The complex-valued biexponential model can be written as:

x t, n = a n f s n exp − t
τs n + f l n exp − t

τl n , [9]

where a(n) is complex-valued. However, the fractions of short and long components at 

position n, given by 0 ≤ fs(n) ≤ 1 and fl(n) = 1 − fs(n), and the T1ρ relaxation times of the 

short and long components, given by τs(n) and τl(n), are all real-valued.

The biexponential T1ρ parameters estimation, or simply fitting process, was done using non-

linear least squares, using models of Equation 8 and 9, where the minimization was done 

using conjugate gradient Steihaug’s trust-region (CGSTR) algorithm (54). The CGSTR 

algorithm stopped at a maximum of 1500 iterations for monoexponential, or 3500 iterations 

for biexponential, or else when normalized parameter update is lower than 10−5. 

Biexponential estimation started with monoexponential fitting results, classifying them as 

short (0.5–10ms) or long (10–300ms), depending on its estimated monoexponential T1ρ 
relaxation time. Similar to (55), F-test was utilized for detecting mono/biexponential voxels. 

We follow the F-test method from (56), voxels were assumed to have biexponential behavior 

if F-ratio>5.14 (p-value=0.05) related to monoexponential. This means the sum of the 

squares (SS) of the biexponential fitting process is reduced significantly compared to 

monoexponential fitting. Also, both fractions (fs(n) and fl(n)) need to be higher than 5% in 

order to be a valid biexponential in these experiments.

Spatial filtering, used as denoising over the regions of interest (ROIs), prior to the parameter 

estimation is sometimes helpful (57) to improve the quality of the estimated parameters. In 

this paper, we compare the non-filtered results with MP-PCA denoising (58).
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Analysis of the CS Reconstruction and Fitting

The performance of the CS methods was evaluated according to the quality of the 

reconstructed images and the quality of the estimated T1ρ parameters. Image reconstruction 

quality was assessed using normalized root mean squared error (nRMSE) against SENSE 

reconstruction of the fully-sampled data or the ground truth (for the synthetic phantom). The 

nRMSE is defined as:

nRMSE x, xref = x − xref 2/ xref 2 . [10]

The fitting process was applied only on each specific ROI, as shown in Supporting 

Information Figure S3. For in vivo knee cartilage, 5 ROIs were employed, following (4): 

medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage 

(LFC), lateral tibial cartilage (LTC), and patellar cartilage (PC). In those regions, the T1ρ 
parameters, including T1ρ times and fractions for short and long components, from CS 

reconstructions were compared against the parameters obtained from the reference 

reconstruction (and ground truth, when available).

The quality was assessed using normalized absolute deviation (NAD) of the parameters 

obtained in each voxel position n, given by:

NAD n =
p n − pre f n

p n + pre f n /2
, [11]

where p(n) is the T1ρ time for the monoexponential model in Equation 8 or one of the four 

biexponential parameters (fs(n), fl(n), τs(n), τl(n)) for Equation 9. Voxels in which any of 

the fractions were lower than 5% were excluded from the biexponential evaluation. As 

observed here and in (4), small fractions had inaccurate estimated T1ρ parameters, even for 

fully-sampled images, leading to unrealistic NADs.

The errors in T1ρ mapping were quantized by the median of NADs (MNAD):

MNAD ROI = mediann ∈ ROI
p n − pre f n

p n + pre f n /2
, [12]

The ROI in Equation 12 can comprehend a specific ROI as shown in Supporting Information 

Figure S3, or all ROIs. An MNAD of 0.1 corresponds to a median deviation of 10% on the 

parameters compared to the reference method.

In order to compare parameters among different in-vivo subjects and acquisition, where 

voxel-based metrics is not possible, we used median parameters of an ROI, given by:

p− ROI = median
n ∈ ROI

 p n . [13]
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The median, in Equation 13, is used as a robust measurement of central tendency of the 

parameters of the relaxation model (times and fractions) in the ROI. If the cartilage is not 

well segmented, wrongly segmented voxels not belonging to the cartilage, which can be 

considered as outliers, may corrupt mean values. This is strongly diminished by using the 

median. The variability of relaxation parameters are measured by the median of the absolute 

deviation (MAD), given by:

MAD ROI = median
n ∈ ROI

p n − p− ROI . [14]

The MAD is also more robust than standard deviation as a measure of variability.

The percentage error of the median values (PEMV) of a ROI is also presented for 

comparison of median values of parameters obtained by a particular method in comparison 

with the values obtained by the method of reference. The PEMV is given by:

PEMV ROI = 100 ×
p− ROI − p−re f ROI

p− ROI + p−re f ROI /2
. [15]

RESULTS

Evaluating Normalized Noise and SNR

In this study, we apply the MP-PCA to separate the noise from the signal of interest. The 

MP-PCA (30,58) works by observing the singular values of a random matrix, related to 

noise, follows a Marchenko-Pastur distribution. The components of the signal of interest, 

reshaped as a matrix, usually compose a low rank matrix, while pure noise (reshaped as a 

matrix) usually keep full rank. By separating the components of the singular value 

decomposition using truncation, two matrices can be recovered: one with the filtered signal 

and another with the noise. We apply the MP-PCA in k-space, in order to have an estimation 

of the noise level of the acquired data. The k-space data was reshaped in a matrix of size 

(NyNx) ×(NtNc) for Cartesian and of size (NsNr) ×(NtNc) for radial before applying MP-

PCA. As an exercise of curiosity, we measured SNR of radial k-space data gridded into a 

Cartesian grid, to account for density compensation and interpolation effects. However, note 

that compressed sensing reconstruction of radial data do not need explicit gridding of k-

space data, since this is done implicitly during iterative reconstruction using NUFFT. We 

also applied the MP-PCA to the images reconstructed with SENSE and with L+S 

regularization (as a reference for regularized methods). The 3D images were reshaped in a 

matrix of size (NyNx) ×(NtNz), and the normalized results are shown in Table 1.

In Table 1 we clearly see lower normalized noise and better k-space SNR in the radial 

acquisitions (normalized noise of 1.3%, SNR of 74.51 in the original radial k-space, and 

normalized noise of 7.5%, SNR of 13.03 after regridding it to Cartesian) than in Cartesian 

acquisitions (normalized noise of 30.1%, SNR of 2.87). This happens because of the 

stronger signal in radial acquisitions since the central area of the k-space is measured in each 

projection. Using SENSE reconstruction, the difference between radial (normalized noise of 

3.2%, SNR of 30.17) and Cartesian (normalized noise of 11.5%, SNR of 8.54) is reduced, 

Zibetti et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



basically due to artifacts and amplification of the noise in radial reconstruction (since it is an 

ill-posed problem). This increase in noise that happens with radial acquisition can also be 

seen in the regridded k-space measurements.

Regularization is extremely important in the case of radial reconstructions, but it also works 

as a denoising procedure in Cartesian reconstructions. Using L+S reconstruction the SNR is 

largely improved for radial images (normalized noise of 0.3%, SNR of 365.90), but only 

marginally increased for Cartesian (normalized noise of 7.8%, SNR of 12.40).

Experiments with Synthetic Phantoms

In order to have a comparison with ground truth, we used synthetic phantoms of the knee 

joint. This evaluation shows how good CS acceleration is with Cartesian and GA radial 

acquisitions. Note that the levels of noise in Cartesian and radial experiments are different, 

in order to match measured values observed in Table 1.

Figures 2(a)–(b) show the reconstruction errors (nRMSE) for noiseless Cartesian and radial 

acquisitions using different CS reconstructions when comparing with the ground truth. 

Figures 2(c)–(d) show the nRMSE for noisy Cartesian (k-space SNR=2.87) and radial (k-

space SNR=74.51). Some of the reconstructed images are shown in figures 2(e)–(l).

Note that in the noiseless case, figures 2(a)–(b), Cartesian acquisition perform much better. 

Radial acquisitions do not sample the k-space entirely, only a central circle (27), leaving out 

important high-frequency components. The advantage of radial acquisition is seen in the 

noisy case of figures 2(c)–(d). In the noisy case, due to a better SNR, radial reconstructions 

outperform Cartesian. Note that without acceleration (AF=1, no undersampling), some CS 

methods perform a denoising effect in Cartesian data, generating results better than those 

from SENSE (the reference method). For noisy radial acquisition, CS reconstructions 

performed very close to SENSE even for high AFs.

Figures 3(a)–(b) show the monoexponential mapping errors (MNAD) for noiseless Cartesian 

and radial acquisitions using different CS reconstructions when comparing with the ground 

truth. Figures 3(c)–(d) show the MNAD for noisy Cartesian and radial. Same 

monoexponential T1ρ maps are shown in figures 3(e)–(l).

Results for the noiseless case in figures 3(a)–(b) show the advantage of Cartesian when the 

noise is low or inexistent. Cartesian performed better than radial in this case. In the noisy 

case, in figures 3(c)–(d), we should see an advantage on radial acquisitions. However, 

Cartesian performed better for some methods at small AF (up to 4-fold), while radial was 

better for higher AF, such as 6-fold and up. We also noted the increase in MNAD with AF 

was much slower for radial acquisitions.

Figures 4(a)–(b) show the biexponential mapping errors (MNAD) for noiseless Cartesian 

and radial acquisitions using different CS reconstructions when comparing with the ground 

truth. Figures 4(c)–(d) show the MNAD for noisy Cartesian and radial. Figures 4(e)–(f) 

show the biexponential errors (MNAD) for noisy Cartesian and radial acquisitions when 

MP-PCA filtering prior to the biexponential fitting process is used.
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Results from figures 4(a)–(b) confirm the advantage of Cartesian acquisition when noise is 

inexistent. SENSE and most CS methods performed better with Cartesian. Results from 

figures 4(c)–(d), with the noisy data, show that radial acquisition is better, with most CS 

methods performing better in radial for all AF. However, the reconstruction method is also 

very important. Note that CS with WAV produced poor results in both acquisitions. Results 

from figures 4(e)–(f), with the noisy data and MP-PCA denoising filtering used before 

fitting, show substantial improvement of SENSE and some CS methods with noisy 

Cartesian. However, there was very little change in results with radial data. This is expected 

because MP-PCA filters basically noise, which is much stronger in Cartesian SENSE. 

Essentially, these results indicate the problem with Cartesian acquisitions is the noise. If 

SNR is good, or noise is reduced by filtering, Cartesian is a good alternative. Also, radial 

acquisitions show errors from not sampling k-space entirely, this can be seen even in a 

noiseless acquisition. However, the level of noise is small, which means that the captured 

samples are very reliable and high AF can be used with very little increase in errors. Some 

examples of biexponential maps are shown in Figure 5.

Experiments with In-vivo Knee Cartilage Data

Our goal is to find suitable CS scheme, combining acquisition and reconstruction that 

perform well with in-vivo knee cartilage. So far, we should expect results with noisy data, in 

which measured noise levels are shown in Table 1. However, we do not have ground truth. 

The reference method, SENSE, is shown to generate images no better than CS for AF=1. At 

this point, the results in this section only show how good CS can replace SENSE. Supporting 

Information Figure S5 shows the synthetic results when compared to SENSE instead of the 

ground truth, which can connect the synthetic results with what will be observed here.

Figure 6(a)–(b) shows the resulting reconstruction error (nRMSE) for Cartesian and GA 

radial data. At AF=1 (no acceleration), most Cartesian and radial CS methods have an error 

or 5% (nRMSE=0.05). As AF increases, however, the error of most CS Cartesian methods 

increases quickly, while most CS radial methods performed better, having a lower error 

when compared to fully-sampled SENSE.

Figure 6(c)–(d) shows the MNAD for monoexponential T1ρ mapping for Cartesian and 

radial. In these plots, radial acquisition performed better with most CS methods, especially 

at high AF. Figure 6(e)–(f) shows the MNAD for biexponential T1ρ mapping for Cartesian 

and radial. Also in this case we observe advantage of radial acquisitions, except for AF=1. 

Note that the MP-PCA filtering changed very little the results, as shown in Figure 6(g)–(h).

It is also important to evaluate the obtained in-vivo parameters of the cartilage to make sure 

bias are in acceptable levels. We evaluated the central tendency of the mono and 

biexponential T1ρ parameters using median, and the variability, or dispersion, using MAD. 

The in-vivo values of all healthy volunteers were measured at each ROI and shown in 

supporting information tables S1–S5 for SENSE reconstruction and some selected CS 

methods at AF=4, for Cartesian and radial acquisitions. The results in this tables show very 

similar median parameters between Cartesian and radial methods, with smaller variability 

and smaller PEMV observed in radial acquisition.
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As observed in supporting information tables S1–S5, the measured median monoexponential 

T1ρ time was 36.8ms for Cartesian SENSE, and ranged between 35.2~36.5ms in CS 

Cartesian methods at AF=4, while it was 37.5ms for radial SENSE and ranged from 

36.2~37.9ms in CS radial methods. The median biexponential parameters was: a) time short 

5.7~6.1ms, time long 40.7~43.0ms, short fraction 15.0~16.8%, and long fraction 

83.2~85.0% for Cartesian, and b) time short 5.7~6.2ms, time long 41.9~43.5ms, short 

fraction 14.5~16.6%, and long fraction 83.4~85.5% for radial.

Overall Classification

In order to have an overall quantification of the results, we compute MNAD for all the 

results with synthetic noisy and in-vivo knee cartilage datasets together, all compared to the 

reference. The first score, in Tables 3A–B, is simply the MNAD of all monoexponential 

errors (NADs), from a total of 4 noisy synthetic datasets and 12 in-vivo knee cartilage 

datasets, when no-filter is utilized, including Cartesian and Radial acquisitions. The second 

score in Table 3C–D is the MNAD of all biexponential errors (NADs).

From Table 3A–B, one can notice that a median error below 10% (bold marked) is expected 

for monoexponential mapping when using Cartesian with AFs up to 4 with the methods 

STFD and EXP, and radial with AFs up to 10 for the same methods. According to Table 3C–

D, one can expect an MNAD for biexponential models below 10% up to AF of 2 for 

Cartesian CS methods, while one can push acceleration up to AF of 6 with the radial CS 

methods EXP and LR.

DISCUSSION

Recommended CS Methods for T1ρ mapping

For AF=2, almost all CS methods produced good results, for Cartesian and radial 

acquisitions, mono and biexponential mappings. However, the use of higher AF should be 

done carefully. Cartesian acquisitions can safely go up to AF of 4 on monoexponential 

mapping using STFD and EXP. Radial acquisitions can be pushed to AF of 10-fold with 

methods such as EXP and STFD for mono, and to AF of 6-fold with EXP and LR for 

biexponential mapping.

Cartesian vs Radial Acquisitions

Considering our T1ρ sequences available, this study shows that GA radial acquisitions 

enable higher acceleration than Cartesian. This happened because of the better k-space SNR 

of GA radial together with good incoherence. The better k-space SNR makes sense, since 

radial samples the central area of k-space, where the signal is stronger, more often than 

Cartesian (as reported in Table 1). We did not observe streaking artifacts affecting the 

cartilage region in our experiments using radial MRI. However, it is important not to ignore 

this possibility, especially for high AF and in cartilage areas far from the image center.

According to results in supporting information tables S1 to S5, the median values of mono 

and biexponential relaxation parameters are more similar to the reference in the radial 

acquisitions. This can also be observed by the PEMV values. Also the variability of the 
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parameters between voxels in a ROI, measured by MAD, are smaller with radial acquisition, 

which is likely due to better SNR.

Computational Issues

Radial reconstructions are slower than that of Cartesian ones. This happens because even 

fast operators, such as NUFFT, are far slower than the Cartesian FFT. As observed in Table 

2, on average CS radial reconstructions took 6.5× more time to converge than Cartesian 

reconstructions.

Comparison with Previous Studies

This is the first study that compares CS acceleration for Cartesian and radial T1ρ mapping, 

considering mono and biexponential models. CS radial acquisition has been studied for 

sodium imaging before (59). Inspired by the results in (59), we decided to test it with T1ρ 
mapping.

Cartesian CS has been successfully utilized for monoexponential T1ρ mapping before. In (8) 

a combination of CS and autocalibration reconstruction (ARC) was utilized for knee 

cartilage T1ρ monoexponential mapping errors close to 5%, or lower, for AFs around 2. In 

(60), three specific CS-like methods: integrating PCA and dictionary learning (PANDA), 

focal underdetermined system solver with PCA (k-t FOCUSS-PCA) and model-based 

dictionary learning (MBDL) were compared to accelerate brain and spine T1ρ mapping up to 

AF of 4. T1ρ relaxation errors between 8.9% and 12% were reported. In (9), a combined 

reconstruction with locally adaptive iterative support detection (k-t LAISD) and joint image 

reconstruction and sensitivity estimation in SENSE (JSENSE) method was proposed for 

knee cartilage T1ρ mapping, with acceleration up to 3 and 3.5. In (61) blind compressed 

sensing (BCS) was applied to monoexponential T2 and T1ρ mapping of the brain.

In (11) it was observed that Cartesian biexponential T1ρ mapping using magnitude-only 

models is more unstable than with monoexponential models, since it is more sensitive to 

noise and the bias caused by noise (52). One of the reasons is the demanded SNR and 

stability of biexponential fitting (7). However, here we observed that using complex-valued 

fitting, with the model proposed in Equation 9, biexponential T1ρ mapping became much 

more stable. By using this new complex-valued fitting, the error levels of biexponential 

mapping dropped to similar levels obtained with monoexponential mapping, much lower 

than the errors observed in (11) with magnitude-only fitting. The complex-valued fitting was 

robust enough to produce similar median T1ρ parameters among different acquisitions and 

reconstructions. One of the advantages of the complex-valued fitting is that it does not 

require any compensation due to noise (52). This study also differ from our previous 

Cartesian studies (10,11) on two other aspects. Now the MP-PCA filter is used, instead of 

3×3 averaging filter, and MFISTA-VA (51) is used for CS reconstruction.

Limitations of This Study and Future Directions

In this study, we did not evaluate prospective undersampling. However, an example of radial 

acquisition with AF=2 is displayed in Supplemental Figure S2 (d)–(e) as example. We hope 

to address this in the future, together with an automatic choice of the regularization 
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parameter, when a fully-sampled reference is not available. In this study, the best CS 

methods previously studied (10,11) were included. However, the list of far from exhaustive.

The MP-PCA is a relatively new tool for noise estimation and denoising. Unfortunately, 

there are no studies validating it for knee cartilage mapping yet. However, in our preliminary 

tests, the MP-PCA provided an exact estimation of the noise levels on the synthetic data. 

The MP-PCA (30,58) works well when the k-space data or image sequence can be reshaped 

into a low-rank matrix, while noise is complex-valued and Gaussian, as is the case in this 

paper.

This study used golden-angle radial sampling, which allowed higher AFs for T1ρ mapping. 

However, the “fully-sampled” reference, as well as AF=1, used the same angles each TSL. It 

is important to investigate using different angles for different TSLs. It may be an interesting 

alternative to use fewer k-space lines per TSL but more TSLs for better temporal resolution. 

Spatiotemporal regularization (via STFD and LR) can help correlate different spatial 

information in each TSL improving the quality of T1ρ mapping.

Improving reconstruction speed with radial sampling shown to be very important, in order to 

produce radial T1ρ maps in processing time similar to the ones with Cartesian sampling. 

Methods such as MFISTA-VA (51) provide a significant improvement over FISTA (62), but 

this is still not enough for radial sampling.

CONCLUSION

This study showed that GA radial sampling combined with CS produced 3D-T1ρ mapping of 

knee cartilage with lower median error than Cartesian, for mono and biexponential models. 

The best results were obtained by CS methods such as EXP, STFD, and LR, However, other 

methods can also be considered depending on other factors of interest.

GA radial sampling and regularized reconstruction were able to accelerate T1ρ scans up to 

AF of 10, with MNAD below 10% for monoexponential, compared to AF of 4 with 

Cartesian sampling. For biexponential models, CS with radial sampling was able to 

accelerate T1ρ scans up to AF of 6, with MNAD below 10%, compared to AF of 4 with 

Cartesian. These results considered evaluation on noisy synthetic phantoms as well as in 
vivo knee cartilage without any pre-filtering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the differences in radial and Cartesian sampling. In (a), the Cartesian pattern 

captures parallel readout lines. The line is shown in (b) cross the central frequency and has a 

stronger signal, while the line shown in (c) captures the edge of the k-space and has a 

weaker signal. In (d), radial sampling always captures lines crossing the center of the k-

space, so all k-space lines have stronger signals, as shown in (e)-(f).
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Figure 2: 
Results for reconstruction error (nRMSE) of the synthetic phantom, including (a) Cartesian 

with no noise in the acquisition, (b) radial with no noise, (c) Cartesian noisy (SNR=2.87), 

and (d) radial noisy (SNR=74.51). All nRMSE values are computed comparing 

reconstructions with ground truth. Representative images are shown in (e)-(l).
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Figure 3: 
Results for monoexponential T1ρ mapping error (MNAD) of the synthetic phantom, 

including (a) Cartesian with no noise in the acquisition, (b) radial with no noise, (c) 

Cartesian noisy (SNR=2.87), and (d) radial noisy (SNR=74.51). All MNAD values are 

computed comparing T1ρ maps with ground truth. Representative T1ρ maps are shown in 

(e)-(l).
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Figure 4: 
Results for biexponential T1ρ mapping error (MNAD) of the synthetic phantom, including 

(a) Cartesian with no noise in the acquisition, (b) radial with no noise, (c) Cartesian noisy 

(SNR=2.87), and (d) radial noisy (SNR=74.51), and also (e) MP-PCA filtered Cartesian 

noisy, and (f) MP-PCA filtered radial noisy. All MNAD values are computed comparing all 

parameters of the biexponential maps with ground truth.
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Figure 5: 
Selected visual results for biexponential T1ρ mapping, showing the fraction of the short 

component, time of the short component and time of the long component, for SENSE 

reconstruction and CS with AF=8 and LR regularization, Cartesian and radial, noisy and 

noiseless. The images of Cartesian noiseless SENSE (a)-(c) are exactly like the ground truth.
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Figure 6: 
Results for human knee cartilage, including: reconstruction error (nRMSE) for (a) Cartesian 

and (b) radial sampling; monoexponential T1ρ mapping error (MNAD) for (c) Cartesian and 

(d) radial sampling; biexponential T1ρ mapping error (MNAD) for (e) Cartesian and (f) 

radial sampling; and biexponential T1ρ mapping error (MNAD) for (g) Cartesian and (h) 

radial sampling when MP-PCA pre-filtering is used. All errors are compared to the reference 

method, SENSE.
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Figure 7: 
Example of monoexponential and biexponential maps for real acquired data of the same 

volunteer. Maps produced with fully-sampled SENSE and accelerated CS with Cartesian and 

radial sampling.
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Table 1:

Estimated normalized noise standard deviation, shown in percentage and SNR for Cartesian and radial 

acquisitions using MP-PCA, considering noise in the k-space (for radial k-space, SNR values are different 

after gridding), and in the reconstructed images with SENSE and L+S using fully sampled data.

Cartesian-Sampling GA Radial-Sampling

Normalized noise standard 
deviation

SNR Normalized noise standard 
deviation

SNR

k-space data (raw) 30.1% 2.87 1.3% 74.51

Regridded k-space data 30.1% 2.87 7.5% 13.03

SENSE Reconstruction (Fully-sampled) 11.5% 8.54 3.2% 30.17

L+S Regularized Reconstruction (Fully-sampled) 7.8% 12.4 0.3% 365.90
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Table 2:

Different compressed sensing methods, their corresponding equations, and minimization algorithm, a brief 

description, median computational time to converge (Intel Skylake 6148 core@2.4GHz, 32GB DDR4–

2666DIMM) adjusted per slice.

CS Method Equation Minimization 
algorithm Transform/Dictionary

median comp. 
time Cartesian

median 
comp. time 

Radial

STFD [4] MFISTA-VA-FGP Spatial and temporal finite difference, spatial 
order 1 and temporal order 2 134 sec 1319 sec

WAV [5] MFISTA-VA 3D Wavelet transform (2D+time) Daubechies 4, 
with 4 levels of decomposition. 152 sec 445 sec

PCA [5] MFISTA-VA Unitary transform from temporal PCA of fully-
sampled data 44 sec 264 sec

EXP [5] MFISTA-VA Overcomplete temporal dictionary of exponentials 
with 50 relaxation times between 0.75 and 300 ms 201 sec 776 sec

LR [6] MFISTA-VA
Applied to a NyNz × Nt matrix formed with the 

reshaped NyNzNt × 1 vector. 57 sec 244 sec

L+S [7] MFISTA-VA Same as LR, plus identity for l1-norm 50 sec 408 sec

L+S SFD [7] MFISTA-VA-FGP
Same as LR, plus spatial finite difference for l1-

norm
87 sec 1091 sec

L+S WAV [7] MFISTA-VA
Same as LR, plus 2D spatial wavelet for l1-norm, 

also Daubechies 4, with 4 levels.
152 sec 597 sec
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Table 3:

Median of the normalized absolute difference (MNAD) of the T1ρ maps for A) monoexponential models using 

Cartesian sampling, B) monoexponential models using radial sampling, C) biexponential models using 

Cartesian sampling and D) biexponential models using radial sampling. Bold-marked results represent CS 

methods and corresponding AF that obtained MNAD below 10% on monoexponential and biexponential 

models.

A. MNAD of Monoexponential Errors with Cartesian Data

AF 2 AF4 AF 6 AF8 AF 10

EXP 0.045 STFD 0.076 STFD 0.101 STFD 0.120 STFD 0.137

STFD 0.047 EXP 0.078 EXP 0.106 EXP 0.130 EXP 0.151

WAV 0.057 L+S SFD 0.101 L+S SFD 0.129 L+S SFD 0.143 L+S SFD 0.155

L+S SFD 0.059 WAV 0.103 WAV 0.137 L+S WAV 0.160 L+S WAV 0.172

PCA 0.064 PCA 0.114 L+S WAV 0.146 WAV 0.162 LR 0.176

L+S WAV 0.069 L+S WAV 0.119 LR 0.147 LR 0.163 L+S 0.181

LR 0.070 LR 0.120 PCA 0.152 L+S 0.171 WAV 0.182

L+S 0.081 L+S 0.129 L+S 0.155 PCA 0.176 PCA 0.201

B. MNAD of Monoexponential Errors with Radial Data

AF 2 AF 4 AF 6 AF 8 AF 10

EXP 0.027 EXP 0.039 EXP 0.048 EXP 0.068 EXP 0.078

L+S SFD 0.048 STFD 0.063 STFD 0.071 STFD 0.087 STFD 0.095

STFD 0.048 L+S SFD 0.069 L+S SFD 0.085 L+S SFD 0.103 L+S SFD 0.116

WAV 0.058 WAV 0.081 LR 0.094 LR 0.119 LR 0.121

LR 0.060 LR 0.083 WAV 0.097 WAV 0.120 L+S WAV 0.130

L+S WAV 0.074 L+S WAV 0.098 L+S WAV 0.108 L+S WAV 0.128 WAV 0.138

L+S 0.077 L+S 0.116 L+S 0.124 L+S 0.140 L+S 0.144

PCA 0.082 PCA 0.118 PCA 0.130 PCA 0.145 PCA 0.147

C. MNAD of Biexponential Errors with Cartesian Data

AF 2 AF 4 AF 6 AF 8 AF 10

STFD 0.081 STFD 0.115 L+S WAV 0.134 L+S WAV 0.142 LR 0.148

L+S SFD 0.085 L+S SFD 0.117 LR 0.135 LR 0.142 L+S WAV 0.149

WAV 0.087 LR 0.121 L+S SFD 0.135 L+S SFD 0.144 L+S SFD 0.152

PCA 0.087 L+S WAV 0.121 STFD 0.136 STFD 0.150 L+S 0.157

EXP 0.088 PCA 0.125 L+S 0.143 L+S 0.151 STFD 0.162

LR 0.089 L+S 0.129 PCA 0.146 PCA 0.158 PCA 0.170

L+S WAV 0.089 EXP 0.136 WAV 0.167 WAV 0.190 WAV 0.205

L+S 0.095 WAV 0.136 EXP 0.168 EXP 0.199 EXP 0.228

D. MNAD of Biexponential Errors with Radial Data

AF 2 AF 4 AF 6 AF 8 AF 10

EXP 0.063 EXP 0.078 EXP 0.086 EXP 0.103 EXP 0.115

LR 0.065 LR 0.082 LR 0.094 LR 0.107 LR 0.115

L+S SFD 0.066 L+S SFD 0.086 L+S WAV 0.104 L+S WAV 0.116 L+S WAV 0.122

STFD 0.070 STFD 0.091 L+S SFD 0.105 L+S SFD 0.122 L+S 0.133
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WAV 0.075 L+S WAV 0.091 STFD 0.109 L+S 0.125 PCA 0.134

L+S WAV 0.076 L+S 0.102 L+S 0.114 PCA 0.132 L+S SFD 0.135

L+S 0.077 WAV 0.103 PCA 0.126 STFD 0.136 STFD 0.145

PCA 0.090 PCA 0.115 WAV 0.137 WAV 0.167 WAV 0.184
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