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Abstract

Purpose: Introduce and validate a novel, fast and fully automated deep learning pipeline 

(FatSegNet) to accurately identify, segment, and quantify visceral and subcutaneous adipose tissue 

(VAT and SAT) within a consistent, anatomically defined abdominal region on Dixon MRI scans.

Method: FatSegNet is composed of three stages: (i) Consistent localization of the abdominal 

region using two 2DCompetitive Dense Fully Convolutional Networks (CDFNet), (ii) 

Segmentation of adipose tissue on three views by independent CDFNets, and (iii) View-

aggregation. FatSegNet is validated by: 1) comparison of segmentation accuracy (6fold cross-

validation), 2) test-retest reliability, 3) generalizability to randomly selected manually re-edited 

cases, and 4) replication of age and sex effects in the Rhineland Study - a large prospective 

population cohort.

Results: The CDFNet demonstrates increased accuracy and robustness compared to traditional 

deep learning networks. FatSegNet Dice score outperforms manual raters on VAT (0.850 vs. 

0.788), and produces comparable results on SAT (0.975 vs. 0.982). The pipeline has excellent 

agreement for both test-retest (ICC VAT 0.998 and SAT 0.996) and manual re-editing (ICC VAT 

0.999 and SAT 0.999).

Conclusion: FatSegNet generalizes well to different body shapes, sensitively replicates known 

VAT and SAT volume effects in a large cohort study, and permits localized analysis of fat 

compartments. Furthermore, it can reliably analyze a 3D Dixon MRI in ∼ 1 min, providing an 

efficient and validated pipeline for abdominal adipose tissue analysis in the Rhineland Study.
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1 | INTRODUCTION

The excess of body fat depots is an increasing major public health issue worldwide and an 

important risk factor for the development of metabolic disorders and reduced quality of life 

[1, 2]. While the body mass index (BMI) is a widely used indicator of adipose tissue 

accumulation in the body, it does not provide information on fat distribution [3] – neither 

with respect to different fat tissue types nor with respect to deposit location. Different 

compartments of adipose tissue are associated with different physiopathological effects [4, 

5]. Abdominal adipose tissue (AAT), composed of subcutaneous and visceral adipose tissue 

(SAT and VAT), has long been associated with an increased risk of chronic cardiovascular 

diseases, glucose impairment and dyslipidemia [6, 7]. Recently, several studies have 

indicated a stronger relation between the accumulation of VAT with an adverse metabolic 

and inflammatory profile compared to SAT [8, 9]. Therefore, an accurate and independent 

measurement of VAT and SAT volumes (VAT-V and SAT-V) is of significant clinical and 

research interest.

Currently, the gold standard for measuring VAT-V and SAT-V is the manual segmentation of 

abdominal fat images from Dixon magnetic resonance (MR) scans – a very expensive and 

time-consuming process. Thus, especially for large studies, automatic segmentation methods 

are required. However, achieving good accuracy is challenging due to complex AAT 

structures, a wide variety of VAT shapes, large anatomical differences across subjects, and 

the inherent properties of the Dixon images: low intensity contrast between adipose tissue 

classes, inhomogeneous signals, and potential organ motion. So far, those limitations 

impeded the wide-spread implementation of automatic and semiautomatic techniques based 

on intensity and shape features, such as fuzzy-clustering [10], k-means clustering [11], graph 

cut [12, 13] active contour methods [14] and statistical shape models [15].

Recently, fully convolutional neural networks (F-CNNs) [16, 17] have been widely adopted 

in the computer vision community for pixel/voxel-wise image segmentation in an end-to-end 

fashion to overcome above-mentioned challenges. With these methods there is no need to 

extract manual features, divide images into patches, or implement sliding window 

techniques. F-CNNs can automatically extract intrinsic features and integrate global context 

to resolve local ambiguities thereby improving the results of the predicted models [17]. 

Langer et al. [18] proposed a three channel UNet for AAT segmentation, which is a 

conventional architecture for 2D medical image segmentation [19]. While this method 

showed promising results, we demonstrate that our network architecture outperforms the 

traditional UNet for segmenting AAT on our images with a wide range of anatomical 

variation. More recent architectures such as the SD-Net [20] and Dense-UNet, a densely 

connected network [21], have the potential to improve generalizability and robustness by 

encouraging feature re-usability and strengthening information propagation across the 
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network [21]. In prior work, we introduced a competitive dense fully convolutional network 

(CDFNet) [22] as a new 2D F-CNN architecture that promotes feature selectivity within a 

network by introducing maximum attention through a maxout activation unit [23]. The 

maxout boosts performance by allowing the creation of specialized subnetworks that target a 

specific structure during training [24]. Therefore, this approach facilitates the learning of 

more complex structures [22, 24] with the added benefit of reducing the number of training 

parameters relative to the aforementioned networks.

In this paper, we propose FatSegNet, a novel fully automated deep learning pipeline based 

on our CDFNet architecture to localize and segment VAT and SAT on abdominal Dixon MR 

images from the Rhineland Study, an ongoing large population-based cohort study [25, 26]. 

To constrain AAT segmentations to a consistent anatomically defined region, the proposed 

pipeline consists of three stages:

1. Localization of the abdominal region using a semantic segmentation approach 

by implementing CDFNet models on sagittal and coronal planes; we use the 

lumbar vertebrae positions as reference points for selecting the region of interest.

2. Segmentation of VAT and SAT within the abdominal region through 2D 

CDFNet models on three different planes (axial, sagittal and coronal).

3. A view-aggregation stage where the previous generated label maps are 

combined to generate a final 3D segmentation.

We initially evaluate and compare the individual stages of the pipeline with other deep 

learning approaches in a 6-fold cross-validation. We show that the proposed network 

architecture (CDFNet) improves segmentation performance and simultaneously reduces the 

number of required training parameters in step 1 and 2. After asserting segmentation 

accuracy, we evaluate the whole pipeline (FatSegNet) with respect to robustness and 

reliability against two independent test sets: a manually edited and a test-retest set. Finally, 

we present a case study on unseen data comparing the VAT-V and SAT-V calculated from 

the FatSegNet segmentations against BMI to replicate age and sex effects on these volumes 

in a large cohort.

2 | METHODS

2.1 | Data

2.1.1 | MR imaging acquisition—MR image acquisition was performed at two 

different sites both with identical 3T Siemens MAGNETOM Prisma MR scanners (Siemens 

Healthcare, Erlangen, Germany). The body coil was used for signal reception of a three-

dimensional two-point Dixon sequence (acquisition time =12 s, echo time TE1=1.23 ms, 

TE2=2.46 ms, repetition time TR=4.12 ms, axial field of view =500 mm× 437 mm, flip 

angle =6 degrees, left-right readout bandwidth =750 Hz/pixel, partial Fourier factor 6/8 × 

5/8). Based on a preceding moving-table abdominal localizer, the field-of-view was centered 

on the middle of the third lumbar vertebra (L, L3). Data were acquired during a single 

breath-hold in supine position with arms placed at the sides. The image resolution was 

finally interpolated from 2.0 mm× 2.7 mm× 10.0 mm to 2.0 mm× 2.0 mm× 5.0 mm (matrix 

size =256 × 224 × 72).
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2.1.2. | Datasets—The Rhineland Study is an ongoing population-based prospective 

cohort (https://www.rheinland-studie.de/) which enrolls participants aged 30 years and 

above at baseline from Bonn, Germany. The study is carried out in accordance with the 

recommendations of the International Council for Harmonisation (ICH) Good Clinical 

Practice (GCP) standards (ICH-GCP). Written informed consent was obtained from all 

participants in accordance with the Declaration of Helsinki.

The first 641 subjects from the Rhineland Study with BMI and abdominal MR Dixon scans 

are included. The sample presents a mean age of 54.2 years (range 30 to 95) and 55.2% of 

the subjects are women. The BMI of the participants range from 17.2 to 47.7 kg/m2 with a 

mean of 25.2 kg/m2. Subjects were stratified into two subsets: 38 scans were manually 

annotated for training and testing; the remaining 603 subjects were segmented using the 

proposed pipeline. After visual inspection, 16 subjects were excluded due to poor image 

quality or extreme motion artifacts (e.g. potentially caused by breathing. Thus, 587 

participants were used for the case study analysis and a subset of 50 subjects were randomly 

selected for manual corrections of the predicted label maps. This manually edited set and an 

independent test-retest set of 17 healthy young volunteers were used to assess reliability of 

the automated segmentation and volume estimates.

Ground Truth Data:  38 subjects were randomly selected from sex and BMI strata to 

ensure a balanced population distribution. These scans were manually annotated by two 

trained raters without any semi-automated support such as thresholding, which can reduce 

accuracy in the ground truth and lead to overestimation of the performance of the proposed 

automated method.

Specific label schemes were created for each individual task of the pipeline. For localizing 

the abdominal region, raters divided the scans into three different blocks defined by the 

location of the vertebrae as follows: the abdominal region (from lower bound of twelfth 

thoracic vertebra (Th12) to the lower bound of L5), the thoracic region (all above the lower 

bound of Th12), and the pelvic region (everything below the lower bound of L5), as 

illustrated in Fig. 1 e). For AAT segmentation, 60 slices per subject were manually labeled 

into three classes: SAT, VAT, and bone with neighbouring tissues. The bone was labeled to 

prevent bone marrow from being misclassified as adipose tissue. In order to improve spatial 

context and prevent misclassification of the arms, the dataset was complemented by a 

synthetic class defined as “other tissue” that was composed of any soft tissue inside the 

abdomen cavity that is not VAT or SAT. The manual annotations are illustrated in Fig. 1 b) 

and c). Furthermore, four subjects were labeled by both raters to evaluate the inter-rater 

variability.

Test-Retest Data:  17 additional subjects were recruited with the exclusive purpose of 

measuring the acquisition protocol reliability. The group presents a mean age of 25.5 years 

(range: 20 to 31) and 65.0 % of the participants are women; all of them have a normal BMI 

(BMI < 25 kg/m2). Subjects were scanned in two consecutive sessions. Before starting the 

second session, subjects were removed from the scanner and re-positioned.
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2.2 | FatSegNet Pipeline

The FatSegNet is to be deployed as a post-processing adipose analysis pipeline for the 

abdominal Dixon MR images acquired in the Rhineland Study. Therefore, it should meet the 

following requirements: 1) be fully automated, 2) segment the different adipose tissue types 

within the anatomically defined abdominal region, and 3) be robust to body type variations 

and generalizable in presence of high population heterogeneity. Following the prior 

conditions we designed FatSegNet as a fully automated deep learning pipeline for adipose 

segmentation (Fig. 2).

The proposed pipeline consists of three stages: (i)the abdominal region is localized by 

averaging bounding boxes from two abdominal segmentation maps generated by CDFNets 

on the sagittal and coronal view. For each view a bounding box is set to the full image width. 

The height is extracted by localizing the highest and lowest slice with at least 85% of none 

background voxels classified as abdominal region. Highest and lowest slice position are 

averaged across the views. (ii) Afterwards, adipose tissue is segmented within the abdominal 

region by three CDFNets on different views (axial, coronal, and sagittal) with standardized 

input sizes (zero padding). (iii) Finally, a view-aggregation network merges the predicted 

label maps from the previous stage into a final segmentation; the implemented multi view 

scheme is designed to improve segmentation of structures that are not clearly visible due to 

poor lateral resolution. This 2.5D strategy produces a fully automated pipeline to accurately 

segment adipose tissue inside a consistent anatomically defined abdominal region.

2.2.1 | Pipeline components

Competitive Dense Fully Convolutional Network (CDFNet):  For the segmentation task 

we introduce the CDFNet architecture due to its robustness and generalizability properties. 

The proposed network improves feature selectivity and, thus, boosts the learning of fine-

grained anatomies without increasing the number of learned parameters [22]. We 

implemented the CDFNet by suitably adopting the Dense-UNet architecture proposed by 

Roy et al. [27] and extending it towards competitive learning via maxout activations [24].

The Dense-UNet proposed in [27] follows the usual dumb-bell like architecture with 4 

dense-block encoders, 4 dense-block decoders and a bottleneck layer. Each dense-block is 

based on short-range-skip-connections between convolutional layers as introduced for 

densely-connected neural networks [28]; the dense connection approach stacks multiple 

convolutional layers in sequence and the input of a layer is iteratively concatenated with the 

outputs of the previous layers. This type of connectivity improves feature reusability, 

increases information propagation and alleviates vanishing gradients [28]. The architecture 

additionally incorporates the traditional long-range skip-connections between all encoder 

and decoder blocks of the same spatial resolution as introduced by Ronnenberger et al. [19] 

which improves gradient flow and spatial information recovery.

Within the Dense-UNet, the information aggregation through these connections is performed 

by concatenation layers. Such a design increases the size of the output feature map along the 

feature channels, which in turn results in the need to learn filters with a higher number of 

parameters. Goodfellow et al. introduced the idea of competitive learning through maxout 
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activations [23], which was adapted by Liao and Carneiro [24] for competitive pooling of 

multi-scale filter outputs. Both [23] and [24] proved that the use of maxout competitive units 

boosts performance by creating a large number of dedicated sub-networks within a network 

that learns to target specific sub-tasks and reduces the number of required parameters 

significantly; which in turn can prevent over-fitting.

The maxout is a simple feed-forward activation function that chooses the maximum value 

from its inputs [23]. Within a CNN, a maxout feature map is constructed by taking the 

maximum across multiple input feature maps for a particular spatial location. The proposed 

CDFNet uses competitive layers (maxout activation) instead of concatenation layers. Our 

preliminary results [22] demonstrate that these competitive units promote the formation of 

dedicated local sub-networks in each of the densely connected blocks within the encoder and 

the decoder paths. This encourages sub-modularity through a network-in-network design 

that can learn more efficiently. Towards this, we propose two novel architectural elements 

targeted at introducing competition within the short- and long-range connections, as follows:

• Local Competition - Competitive Dense Block (CDB): By introducing maxout 

activations within the short-range skip-connections of each of the densely 

connected convolutional layers (at the same resolution), we encourage local 

competition during learning of filters. The multiple convolution layers in each 

block prevent filter coadaptation.

• Global Competition - Competitive Un-pooling Block (CUB): We introduce a 

maxout activation between a longrange skip-connection from the encoder and the 

features up-sampled from the prior lower-resolution decoder block. This 

promotes competition between finer feature maps with smaller receptive fields 

(skip connections) and coarser feature maps from the decoder path that spans 

much wider receptive fields encompassing higher contextual information.

In brief, the proposed CDFNet comprises a sequence of four CDBs, constituting the encoder 

path (down-sampling block), and four CDBs constituting the decoder path (up-sampling 

block), which is joined via a bottleneck layer. The bottleneck consists of a 2D convolutional 

layer followed by a Batch Normalization. The skip-connections from each of the encoder 

blocks feed into the CUB that subsequently forwards features into the corresponding 

decoder block of the same resolution as illustrated in Fig. 3.

View-Aggregation Network: The proposed view-aggregation network is designed to 

regularize the prediction for a given voxel by considering spatial information from the 

coronal, axial and sagittal view. The network, therefore, merges the probability maps of the 

three different CDFNets from the previous stage by applying a (3×3×3) 3D-convolution (30 

filters) followed by a Batch Normalization. Then a (1×1×1) 3D-convolution is employed to 

reduce the feature maps to the desired number of classes (n=5). The final prediction 

probabilities are obtained via a concluding softmax layer (as illustrated in supporting 

information Fig. S1). Our approach learns to weigh each view differently on a voxel level, 

compared to standard hard-coded global view-aggregation schemes. Such hard-coded 

weighting schemes can be suboptimal when working with anisotropic voxels sizes (e.g., here 

2 mm × 2 mm × 5 mm) as resolution differences impose a challenge when combining the 
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spatial information from the finer (within-plane) and coarser (across slice) resolutions. 

Additionally, in the presence of high variance of abdominal body shapes across subjects 

segmentation benefits from data-driven approaches that can flexibly adopt weights to 

individual situations and even spatial locations, which is not possible if hard-coded global 

weights are being used.

2.3 | Experimental setup

For training and testing the pipeline, we perform a 6-fold cross-validation subject-space split 

on the ground truth dataset. For each fold, 32 subjects are used for training and 6 held out 

for testing; the test sets splits are approximately balanced based on their BMI classification 

(underweight [BMI<18.5 kg/m2], normal [18.5 ≤ BMI<25 kg/m2], overweight [25 ≤ 

BMI<30 kg/m2] and obese [BMI ≥ 30 kg/m2]). This selection process ensures that all BMI 

categories are used for bench-marking the cross-validation models. Additionally, a final 

model is implemented using 33 subjects for training holding out 5 subjects spanning 

different BMI levels for a final performance sanity-check (visual quality check and stability 

of Dice score). Given the limited ground truth data, for all models a validation set to assets 

convergence during training was created by randomly separating 15% of the slices from the 

corresponding training set. This allows evaluating performance and generalizability on a 

completely separate test set.

Baselines and comparative methods: We validate the FatSegNet by comparing the 

performance of each stage of the pipeline against the cross-validation test sets using Dice 

score index (DSC) to measure similarity between the prediction and the ground truth. Let M 

(ground truth) and P (prediction) denote the labels binary segmentation, the Dice score index 

is defined as

DSC = 2 ⋅ M ∩ P
M + P (1)

Where |M| and |P| represents the number of elements in each segmentation, and |M ∩ P| the 

number of common elements. Therefore, the DSC ranges from 0 to 1 and a higher DSC 

represents a better agreement between segmentations.

Additionally, we benchmark the proposed CDFNet models for abdominal region localization 

and AAT delineation with state-of-the-art segmentation F-CNNs such as UNet [19], SD-Net 

[20], and Dense-UNet [27]. We use the probability maps generated from the aforementioned 

networks to train the view-aggregation model and measure performance with and without 

view-aggregation. The proposed view-aggregation performance for each FCNNs is 

compared against two non-data-driven (hard-coded) methods: equally balanced weights for 

all views, and axial focus weights (accounting for higher in-plane resolution, axial=0.5, 

coronal=0.25, sagittal=0.25). Finally, to permit a fair comparison, all benchmark networks 

follow the same architecture of 4 encoder blocks, 4 decoders blocks, and a bottleneck layer 

as illustrated in Fig. 3 with an input image size of 224× 256. Note, significant differences 

between our proposed methods and comparative baselines are evaluated by a Wilcoxon 

signed-rank test [29] after multiple comparisons correction using a one-sided adaptive FDR 

[30].
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The aforementioned models are implemented in Keras [31] with a TensorFlow back-end 

using an NVIDIA Titan Xp GPU with 12 GB RAM and the following parameters: batch size 

of 8, momentum set to 0.9, constant weight decay of 10−06, and an initial learning rate of 

0.01 decreased by a order of 10 every 20 epochs. The models are trained for 60 epochs with 

an early-stopping criterion (no relevant changes on the validation loss after the last 8 epochs 

– convergence was observed around 50 epochs). A composite loss function of median 

frequency balanced logistic loss and Dice loss [20] is used. This loss function emphasizes 

the boundaries between classes and supports learning of unbalanced classes such as VAT. 

Finally, online data augmentation (translation, rotation and global scaling) is performed to 

increase training set size and improve the networks generalizability. Note, the FatSegNet 

implementation is available at https://github.com/reuter-lab/FatSegNet.

Pipeline reliability: We assess the FatSegNet reliability by comparing the difference of 

VAT-V and SAT-V across sessions for each subject of the test-retest and manually edited set. 

Given a predicted label map and Ni(l) the number of voxels classified as l (VAT or SAT) in 

session i (test-retest, or manual-automated), the absolute percent difference (APD (l)) of a 

label volume measures variability across sessions. It is defined as

APD(l) =
2 ⋅ N1(l) − N2(l)

N1(l) + N2(l) ⋅ 100 (2)

Additionally, we calculate the agreement of total VAT-V and SAT-V between sessions by an 

intra-class correlation (ICC) using a two-way fixed, absolute agreement and single measures 

ICC(A,1) [32].

Case study analysis on the Rhineland Study: We compare the volumes of 

abdominal adipose tissue (AAT-V, SAT-V and VAT-V) generated from FatSegNet with BMI 

on the unseen dataset. A fast quality control is performed to identify drastic failure cases. 

The differences among BMI groups are evaluated with a one-way analysis of variance 

(ANOVA) with subsequent Tukey’s honest significant difference (HSD) post-hoc 

comparisons. The associations of volumes of abdominal adipose tissue and BMI is assessed 

using partial correlation and linear regression after accounting for age, sex, and height of the 

abdominal region. Separate linear regression analyses are performed to explore the effect of 

age on SAT-V and VAT-V in men and women. All the statistical analyses are performed in R 

[33].

3 | RESULTS

3.1 | Method Validation

Localization of abdominal region: For assessing the performance of abdominal region 

detection after creation of an average bounding box from the coronal and sagittal views the 

average Dice overlap (6-fold cross-validation) was calculated, as illustrated on the 

supporting information Fig. S2. We observe that all models perform extremely well on the 

relatively easy task of localizing the desired abdominal region (DSC > 0.96). There is no 
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significant difference between the models, however, we use our CDFNet because it requires 

substantially less parameters (see Table 1) compared to the UNet and Dense-UNet.

Segmentation of AAT: In Table 1 we present the average Dice score (6-fold cross-

validation) for VAT and SAT for each individual view as well as for the view-aggregation 

model. Here, we observe that all methods work extremely well for SAT segmentation. 

Nevertheless, our proposed CDFNet outperforms the UNet and SD-Net on all single view 

models and, when compared with the Dense-UNet, there is significant improvement in the 

sagittal and coronal views. For the more challenging task of VAT recognition, which is a 

more fine-grained compartment with large shape variation, the proposed CDFNet 

outperforms the SD-Net on all single planes; when compared with Dense-UNet and U-Net 

there is only significant improvement in the axial and coronal plane. Nonetheless, CDFNet 

achieves this performance with ∼30 %( Dense-UNet) and ∼80 %(UNet) less parameters, 

demonstrating that the proposed architecture improves feature selectivity and simplifies 

network learning. Furthermore, fewer parameters can help decrease over-fitting error, 

especially when training with limited annotated data, and thus improve generalizability.

Note, that Dice scores increase and difference of pairwise comparisons is slightly reduced 

after the view-aggregation (Table 1), showing that this steps helps all individual networks to 

reach a better performance by introducing spatial information from multiple views and 

regularizing the prediction maps. The proposed data-driven aggregation scheme outperforms 

(DSC) the hard-coded models for SAT and with statistically significance for VAT as shown 

in Table 2. Furthermore, learned weights are spatially varying and can adjust to subject-

specific anatomy, which in turn can improve generalizability. We empirically observe that 

the aggregation model smoothes the label maps slightly, resulting in visually more appealing 

boundaries. It also significantly reduces the arms from being misclassified as adipose tissue 

which can otherwise be observed in different views, especially on overweight and obese 

subjects, where arms are located closer to the abdominal cavity, as seen supporting 

information Fig. S3.

Finally it should be highlighted, that all single-view and the view-aggregation models 

achieve similarly excellent results on the SAT segmentation compared to inter-rater 

variability and outperform the manual raters for the more challenging VAT segmentation by 

a margin.

FatSegNet reliability: Table 3 presents the reliability metrics evaluated on the test-retest 

and the manually edited test set. The proposed pipeline presents only a small absolute 

percent volume difference (APD) for VAT and SAT, and excellent agreement between the 

predicted and corrected segmentation maps. It must be noted, that APD is larger for both 

tissue types in the test-retest setting as it also includes variance from acquisition noise (e.g. 

motion artefacts, non-linearities based on different positioning) in addition to potential 

variances of the processing pipelines. Nevertheless, we observe excellent agreement (ICC) 

between sessions for the test-retest dataset for both adipose tissue types.
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3.2 | Case Study: Analysis of Rhineland Study Data

The characteristics of the study population: After visual quality inspection, 16 scans 

were flagged due to image artefacts, such as motion or low contrast (see Fig. 4 c) and d) for 

two examples). The characteristics of the remaining 587 participants with valid data on BMI 

and volumes of abdominal adipose tissue are presented in supporting information Table S1. 

The mean (SD) age of the subjects is 54.2 (13.3) years, and 54.7% are women. 311 (53.0%) 

subjects are normal-weight, 209 (35.6%) overweight, and 67 (11.4%) obese. We observed a 

BMI increase with age (β = 0.03, p=0.007), and a borderline significance of age difference 

among BMI groups (p=0.052, ANOVA). Obvious differences are observed in AAT-V, VAT-V 

and SAT-V across BMI groups (p<0.001, ANOVA). VAT-V to SAT-V ratio is higher in over-

weight and obese participants compared to those with normal weight (p<0.001), but there is 

no difference between overweight and obese (p=0.505).

The association between abdominal adipose tissue volumes and BMI: BMI 

shows a strong positive correlation with AAT-V and SAT-V (AAT-V: r = 0.88, p<0.001; SAT-

V: r=0.85, p<0.001), but only a moderate correlation with VAT-V (r=0.65, p<0.001) after 

adjusting for age, sex, and abdominal region height. As illustrated in Fig. 5, both SAT-V and 

VAT-V are positively associated with BMI after accounting for age, sex, and abdominal 

region height (p<0.001). The accumulation of SAT-V is higher than VAT-V as BMI 

increases.

Influence of age and sex on VAT-V and SAT-V: The influence of age and sex on VAT-

V and SAT-V follows different patterns (as illustrated in Fig. 6). Men tend to have lower 

SAT and higher VAT compared to women (p<0.001). VAT-V significantly increase with age 

in both men and women. Conversely, SAT-V is weakly associated with age in women (β = 

0.02, p=0.012), but not in men (β = −0.01, p=0.337).

4 | DISCUSSION

In our study, we established, validated, and implemented a novel deep learning pipeline to 

segment and quantify the components of abdominal adipose tissue, namely, VAT-V, SAT-V, 

and AAT-V on a fast acquisition abdominal Dixon MR protocol for subjects from the 

Rhineland Study, a large population-based cohort. The proposed pipeline is fully automated 

and requires approximately 1 min for analyzing a subject’s whole volume. Moreover, since 

the pipeline is based on deep learning models, it can be easily updated and retrained as the 

study progresses and new manual data is generated - which can further improve overall 

pipeline robustness and generalizability, providing a pragmatic solution for a population-

based study.

The proposed pipeline, termed FatSegNet implements a three stage design with the CDFNet 

architecture at the core for localizing the abdominal region and segmenting the AAT. The 

introduction of our CDFNet inside the pipeline boosts the competition among filters to 

improve feature selectivity within the networks. CDFNet introduces competition at a local 

scale by substituting concatenation layers with maxout activations that prevent filter co-

adaptation and reduce the overall network complexity. It also induces competition at a global 
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scale through competitive unpooling. This network design, in turn, can learn more 

efficiently.

For the first stage of the pipeline, i.e. localization of the abdominal region, all FCNNs can 

successfully determine the upper and lower limit of the abdominal region from a 

segmentation prediction map. However, our CDFNet requires significantly fewer parameters 

compared to the traditional UNet and Dense-UNet. Furthermore, the localization block is 

able to identify the abdominal region correctly even in cases with scoliosis (curved spine) as 

illustrated in Fig. 7 f). For the more challenging task of segmenting AAT, we demonstrate 

that CDFNet recovers VAT significantly better than traditional deep learning variants that 

rely on concatenation layers. Additionally, each individual CDFNet view model outperforms 

manual raters for segmenting the complex VAT and accomplishes equivalent results on SAT. 

The selection of an inhomogeneous BMI testing set ensures that our method is evaluated for 

different body types and avoids biases, as better segmentation performance can be achieved 

on subjects with high content of AAT compared to lean subjects [34, 35]. On the other hand, 

images from individuals with high AAT could be accompanied by other types of issues, such 

as fat shadowing (Fig. 7 d), or arms located in close proximity to the abdominal cavity (Fig. 

7 a), d) and e). These issues are mitigated by our view-aggregation model that regularizes 

the predicted segmentation by combining the spatial context from different views ultimately 

improving segmentation of tissue boundaries. Moreover, this approach automatically 

prevents misclassification of arms whereas previous deep learning AAT segmentation 

methods required manual removal of the upper extremities in a pre-processing step [18]. 

Note, that we prefer the 2D over a full 3D approach in this work. A full 3D network 

architecture has more parameters, requiring significantly more expert annotated training data 

(full 3D cases) and/or artificial data augmentation, which could increase the chance of 

overfitting – in addition to increased GPU memory requirements.

As demonstrated on the Rhineland Study data, the proposed pipeline exhibits high 

robustness and generalizability across a wide range of age, BMI, and a variety of body 

shapes as seen in Fig. 7 and Fig. 4 a) and b). FatSegNet successfully identifies the AAT in 

different abdomen morphologies, spine curvatures, adipose shadowing, arms positioning, or 

intensity inhomogeneities. Furthermore, the pipeline has a high test-retest reliability between 

the calculated volumes of VAT and SAT without the need of any image pre-processing (bias-

correction, image registration, etc.) or manual selection of a slice or region. Furthermore, the 

manually edited test set demonstrates a high similarity of automated and manual labels and 

excellent agreement of volume estimates. However, as is usual with any automated method, 

segmentation reliability decreases when input images have low quality as illustrated in Fig. 4 

c), and d) where the scans present severe motion/breathing artifacts or very low image 

contrast. In order to detect these problematic images in large studies an automated or manual 

quality control protocol should be implemented before passing images to automated 

pipelines.

In accordance with previous studies on smaller data sets [13, 36], our data showed a lower 

correlation of BMI with VAT-V than with AAT-V and SAT-V. We also observed a sex 

difference of the SAT-V and VAT-V accumulation as previously reported [37, 38]: men were 

more likely to have higher VAT-V and lower SAT-V compared to women. Moreover, we 
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further explored the association between age with SAT-V and VAT-V and found an obvious 

age effect on the accumulation of VAT-V in both men and women, and a weak age effect on 

SAT-V in women but not in men. This discrepancy was previously observed by Machann 

et.al. [37], who assessed the body composition using MRI in 150 healthy volunteers aged 19 

to 69 years. They reported a strong correlation between VAT-V and age both in men and 

women, whereas SAT-V only slightly increased with age in women. The fact that our results 

replicate these previous findings on a large unseen dataset corroborates stability and 

sensitivity of our pipeline.

In conclusion, we have developed a fully automated post-processing pipeline for adipose 

tissue segmentation on abdominal Dixon MRI based on deep learning methods. While 

reducing the number of required parameters, the pipeline outperforms other deep learning 

architectures and demonstrates high reliability. Furthermore, the proposed method was 

successfully deployed in a large population-based cohort, where it replicated well known 

SAT-V and VATV age and sex associations and demonstrated generalizability across a large 

range of anatomical differences, both with respect to body shape and fat distribution.
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FIGURE 1. MR Dixon images and ground truth from two subjects with different BMI (obese 
(upper), normal (lower).
a) Fat images: axial plane. b) Initial manual segmentation (blue: SAT, green: VAT, orange: 

bone and surrounding structures). c) Ground truth with additional synthetic class (red: other-

tissue) and filled-in bone structures (orange). d) Fat images: coronal plane. e) Ground truth 

for localization of region of interest (red: thoracic region, white: abdominal region (region of 

interest), blue: pelvic region).
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FIGURE 2. Proposed FatSegNet Pipeline for segmenting AAT.
The pipeline is divided into three stages: First, localization of abdominal region. Then, tissue 

segmentation on the abdominal region and finally, view-aggregation. Both local and global 

volume estimates of individual structures are calculated on the final prediction.
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FIGURE 3. Proposed network architecture:
Competitive Dense Fully Convolutional Network (CDFNet), with 4 competitive dense 

blocks (CDB) on each encoder and decoder path and 4 competitive unpool blocks (CUB) 

between them. CDB and CUB induce local and global competition within the network. Note 

- the output filters for all convolutional layers in CUB, CDB and Bottleneck were 

standardized to 64 channels.
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FIGURE 4. Examples of FatSegNet predictions and excluded cases on the Rhineland Study.
(a-b) Subjects with different body shapes and accurate segmentations. (c-d) Excluded 

subjects from the case study due to extreme motion noise (c), or low image contrast quality 

(d).
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FIGURE 5. 
Association of BMI with SAT-Volume and VAT-Volume
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FIGURE 6. 
The association between age and SAT-Volume and VAT-Volume in men and women.
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FIGURE 7. Examples of FatSegNet predictions on the Rhineland Study.
(a-f) Accurate automatic segmentation of different body shapes. Extreme cases: a) arms are 

in front of the abdominal cavity,and f) deviated spine.
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