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Abstract

Even though the majority of population studies in environmental health focus on a single factor, 

environmental exposure in the real world is a mixture of many chemicals. The concept of 

“exposome” leads to an intellectual framework of measuring many exposures in humans, and the 

emerging metabolomics technology offers a means to read out both the biological activity and 

environmental impact in the same dataset. How to integrate exposome and metabolome in data 

analysis is still challenging. Here, we employ a hierarchical community network to investigate the 

global associations between the metabolome and mixed exposures including DDTs, PFASs and 

PCBs, in a women cohort with sera collected in California in the 1960s. Strikingly, this analysis 

revealed that the metabolite communities associated with the exposures were non-specific and 

shared among exposures. This suggests that a small number of metabolic phenotypes may account 

for the response to a large class of environmental chemicals.

Introduction

The health impact from environmental exposures is rarely isolated. Most human beings live 

under the exposure of a complex mixture of many chemicals, and their physiological 

conditions contribute to the biological responses. The concept of exposome is to obtain 

comprehensive measurements of environmental exposures [1–3]. This is accompanied by the 

advancing of other high-dimensional molecular data in systems biology, which can be used 

to understand the biological responses to exposome. Metabolomics is an emerging data type 

that is of great interest to environmental research [4, 5]. LC-MS (liquid chromatograph – 
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mass spectrometry), the dominant metabolomics technology, is now capable of routine 

measurement of over 10,000 features in biological matrices. Besides biological metabolites, 

the data also capture dietary intake, use of pharmaceuticals and other substances, microbial 

products and increasingly environmental chemicals. Because these measurements of small 

molecules serve as a readout of both gene activities and environmental impacts, 

metabolomics is positioned as an important layer between the interaction of gene and 

environment (G x E). We therefore postulate that the more actionable model of “G x E” is 

“G x M x E”, where M stands for metabolome. Metabolome-wide association studies 

(MWAS) are now part of the toolbox for epidemiology [6–9]. The integration of exposome 

and metabolome is still new and challenging.

The Child Health and Development Studies (CHDS) followed a birth cohort in California. 

During 1959-1967, over 15,000 pregnant women in the Kaiser Permanente Health Plan 

joined the CHDS. Over time, exposure data and health records were collected in multiple 

generations. Several studies have reported link between early-life DDT 

(dichlorodiphenyltrichloroethane) exposure and breast cancer risk based on the CHDS 

pregnancy cohort [10–13]. High level of o,p’-DDT in maternal serum corresponded to nearly 

four fold increase of breast cancer risk in the daughters [12]. In this special issue of 

Reproductive Toxicology, Hu et al have reported the MWAS results on DDTs in this cohort 

[14], that amino acid pathways were associated with levels of p,p’-DDT and o,p’-DDT, 

while mitochondrial pathways of carnitine and lipid metabolism were associated with p,p’-

DDE. The MWAS analysis of PFAS (poly and perfluoroalkyl substances) compounds was 

also reported in this issue, that carnitines and urea cycle metabolites were positively 

associated with PFOS (perfluorooctane sulfonic acid) levels [15]. Overall in this cohort, we 

have targeted measurement of 39 environmental chemicals. Besides DDTs and PFASs, 

oxychlordane, hexachlorobenzenes, and a number of polychlorinated biphenyl compounds 

are among the available measurements (Suppl Table 1). This data collection thus provides an 

opportunity to systematically assess the mutual influence between exposome and 

metabolome. Specifically, what metabolic pathways are associated with what chemical 

classes, and how quantitative and specific are the associations?

To answer this question, several methodological challenges need to be addressed. In -omics 

data, it’s common that many measured variables are not independent from each other, 

harboring a large degree of inter-correlation and redundancy. When exposome intersects 

with other high-dimensional molecular data, the combinatorial space explodes and the 

complexity becomes overwhelming. The biological interpretation is confounded by the built-

in properties of living organisms: they can tolerate and adapt to exposures, and toxicity is not 

necessarily manifested under most conditions [16]. A more specific challenge in the field of 

metabolomics is that a large number of metabolite features are not identified in the data, thus 

the interpretation can be severely restricted [17, 18]. Therefore, we apply to this CHDS 

dataset unbiased multivariate analyses, and assess the association between metabolome and 

mixed exposures in a hierarchical community network model. The metabolic pathways 

connected with the exposures are inferred using the mummichog software [19], and the 

hierarchical community network is used to investigate the breast cancer risk in the 

daughters’ generation.
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Result

Variance analysis of the metabolome reveals both redundancy and specificity in exposure 
effects

The initial CHDS study followed pregnant women during 1960’s in California, when 

exposure to DDT was at a historically high level. Besides the DDT compounds, we 

measured 39 environmental chemical exposures in 467 CHDS participants using archived 

peripheral blood samples (Suppl Table 1). The metabolomics analysis was performed on the 

peripheral blood samples of 397 participants, using high-resolution mass spectrometry 

coupled with liquid chromatography. This is a subset of the 467 participants for which we 

described the exposure data above, as not all samples were available for the metabolomics 

analysis. The samples used in this study were from women of an average age of 25, mostly 

nonobese and non-African-American, and the detailed demographics was given in Hu et al 

in this issue [14, 15].

Principal component analysis (PCA) of the serum metabolome of 397 participants shows 

that principal component 1 captures 58.5% of the variance, with small contributions from 

other components (Figure 1, left). The levels of each environmental chemicals were 

regressed against each principal component of the metabolome, to assess their influence on 

the metabolome. As seen in the heatmap in Figure 1, several chemicals, such as PFOA, 

PFOSA and HCB, do not show significant association with any of the top ten principal 

components of the metabolome. DDE is associated with principal components 1 through 4, 

and DDT with component 9. Typically, each exposure explains less under 5% of each 

principal component. The three lipid measurements, total lipid (TL), triglycerol (TG) and 

total cholesterol (TC), were included as a control, and they show the highest association with 

principal component 4 of the metabolome (explaining ~14% variance therein). Of note, 

when common linear regression models are used to test the association between a metabolite 

and an exposure, they operate mostly on principal component 1. The result here indicates 

that the influence of exposures is not limited to principal component 1, but specific to a 

principal component by different exposures. The effect size is small in general, and could 

also be easily masked by other variances. The variables associated with the same principal 

component (e.g. many PCB chemicals on principal component 4) are likely to be driven by 

inter-correlation. This redundancy in the exposure data is further examined in the next 

section.

These data here provide the justification for the PLS (project to latent structures, or partial 

least squares) methods that are now popular in multi-omics integration. Because different 

data types may not associate on the same principal component, and PLS gives more flexible 

projection than PCA. Still, pairwise feature association disregards the inter-correlations and 

creates a large combination space (3,121 × 39 here). Therefore, we resort to a hierarchical 

community network approach [20, 21], to combine PLS regression with identifying the 

granular community structures within each data types. Instead of feature-level associations, 

the individual features are organized as members of communities, and the associations are 

tested at community level across exposome and metabolome.
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Community structures detected in the exposome

To assess the correlation between all 39 chemicals, we computed pairwise Spearman rank 

correlations, and unsupervised hierarchical clustering was performed on the correlation 

coefficients (Figure 2A). The community structure is visually clear in the heatmap, as most 

PCB congeners form the largest cluster, and DDT compounds and PFAS compounds form 

their own clusters. In addition, we included TL, TG and TC measurements of in the analysis, 

because they add an important reference and the level of many environmental chemicals is 

influenced by these lipid levels. Not surprisingly, TL, TG and TC form their own cluster in 

the upper-left corner of the map (Figure 2A).

To investigate the community structure beyond pairwise relationships, we converted the data 

into a correlation network. That is, an edge was formed between two nodes (variables) when 

their correlation coefficient was greater than a threshold of 0.5, and all edges defined the 

network in Figure 2B. A community was then defined as a set of nodes that have more 

connections within themselves than with the other members in the network. Many 

algorithms of community detection were developed in recent years. The application of a 

common Girvan-Newman algorithm [22] resulted in the detection of four communities, 

marked by dashed circles in Figure 2B. These correspond to communities of lipids, PCB, 

DDT and PFAS compounds. While these 39 measurements are far from a complete 

exposome, they provide a proxy to test the methodologies in investigating how complex 

mixtures impact the human physiology.

A hierarchical community network model for Metabolome x Exposures

We next sought to identify the communities within the metabolomics data. This approach 

helps to organize both the biological and analytical redundancy. Since these are untargeted 

metabolomics data, a metabolite can be represented in the data as multiple features (adduct 

ions and isotopes). The community grouping is an appealing approach to compartmentalize 

the redundancy in metabolomics data. We previously reported a method [20] to incorporate 

retention time in the distance function in hierarchical clustering, because chemicals of 

similar chromatographic retention time are more likely to belong to the same class or 

pathway. This clustering method was used to define 34 metabolite communities in this 

dataset (Suppl Figure 1, Suppl Table 2).

The association between each exposure community and each metabolite community was 

assessed by PLS regression, as described previously [20, 21]. Briefly, the goodness of using 

one data matrix (e.g. a metabolite community) to predict another data matrix (e.g. an 

exposure community) was recorded as PLS scores. These scores were compared against 

those obtained on randomly resampled data and statistical significance was assigned as a p-

values. Taking all associations with p < 0.01, a network was formed between the exposure 

communities and metabolite communities (Figure 3). This network is hierarchical, because 

each node is a community on its own, and contains another level of members as depicted in 

Figure 2B. The connections in Figure 3 are visualized according to their significance. A 

number of metabolite communities showed strong associations with DDT and PFAS 

communities (and lipids), but the connection between the PCB community and the 

metabolome was less significant. Of note, the association by PLS can be either positive or 
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negative, while each community contains members that are only positively correlated with 

each other. To accommodate the rich information from this type of analyses, we have also 

created a supplemental web tool to support interactive exploration of this hierarchical 

network (Suppl Figure 2, https://hiconet.appspot.com/exposome).

To exemplify the connections in this hierarchical community network, a metabolite 

community (M4) specifically associated with the lipid community is shown in Figure 4. 

Using the mummichog software [19], the metabolites in M4 were shown to be enriched for 

several fatty acid pathways, as expected (Figure 4B). Here, the lipid community consists of 

three members (TL, TG and TC), and they are shown in Figure 4C, ordered by TL. The 

metabolite community M4 consists of 103 LC-MS features, shown in the bottom heatmap in 

Figure 4C, with participants matched to the lipid data. Although multivariate project 

methods are not always visually intuitive, this shows a general trend that the member 

metabolites have higher intensity in the participants of higher lipid level (Figure 4C).

Metabolome x Exposures converges on common metabolic phenotypes

A striking property of the metabolome – exposure network is that most connections are 

commonly shared and few are specific to one exposure community (Figure 3). The most 

significant connections are with the DDT and PFAS communities, and they are shared with 

the lipid community (shown in isolation in Figure 5A). Although the lipophilic properties of 

the exposure chemicals may account for some shared associations with the lipid community, 

this does not explain the majority of the connections, because PFASs are not lipophilic [23], 

while many of the PCBs are lipophilic but share few connections in Figure 3. This raises the 

question if a small number of metabolic phenotypes dictates the interaction with and 

response to the exposures.

We used mummichog to identify the enriched pathways for each metabolite communities in 

Figure 5A, and they are shown collectively in Figure 5B. Among the metabolite 

communities, Ml is more enriched for mitochondria related pathways, M28 more for alanine 

and aspartate pathways, M12 more for fatty acid pathways. Xenobiotics metabolism is most 

significant in M2 and M13. A few common clusters are marked in red boxes in Figure 4B. 

The fatty acid cluster agrees with a previous MWAS study on p,p’-DDE using a different 

platform in a Swedish cohort [24]. Although there are specific preferences, e.g. M30 is more 

significantly associated with the DDT community, and the M4 community in Figure 4 is 

only significantly associated with the lipid community, the shared connections dominate the 

M x E network. Intriguingly, these metabolite communities show a rather sparse pattern of 

pathways in Figure 5B.

Association of exposure and metabolite communities with breast cancer occurrence in 
offspring generation

The goal of integrating M x E is to better understand the impact on human health. Within the 

397 participants in Figure 3, the daughters of 50 were diagnosed for breast cancer in follow-

up studies. Our dataset provides an opportunity to examine the relationship of the detailed 

molecular phenotypes embedded in metabolomics, and how they relate to environmental 

exposures. As described previously [21], we used the GSA algorithm [25] to query the 
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hierarchical community network. Each community was treated like a geneset, and the GSA 

score represented how the community members collectively predicted an outcome, in this 

case, breast cancer (BC) in daughters. Permutation was performed on community members 

and participant labels to estimate null distribution. As shown in Figure 6A, the PFAS, lipid 

and PCB communities showed significant associations with BC occurrence, while the DDT 

community didn’t reach statistical significance (Suppl Table 3). Using the same approach, 

seven metabolite communities showed significant association with BC with p-value under 

0.01 (Figure 6B, Suppl Table 3). The M16 community, the most significant, had 24 member 

features with yet no clear annotation.

These communities associated with BC were then mapped back to the M x E network from 

Figure 3. This revealed that the metabolite communities M20, M22 and M18 were 

connected with the lipid community, suggesting a concerted role in either contributing or 

reacting to BC risk related physiology. Of note, the connections in Figures 3 and 6C are not 

directional: PLS regression captures both positive and negative associations. While the PFAS 

community was negatively associated with BC occurrence, its network neighbor M5 was 

positively associated with BC occurrence. While the DDT community itself showed no 

significant association with BC occurrence, four DDT-linked metabolite communities were 

significantly associated. These results demonstrate that both the exposures and the 

endogenous metabolism are statistically predictive of BC occurrence. The colored 

metabolite communities in Figure 6C may shed lights on the metabolic phenotypes that are 

prone or resistant to breast cancer.

Discussion

The CHDS cohort has been featured in many studies and conferences. With a large list of 

exposure measurements and new metabolomics data, we sought to use this cohort to explore 

how to effectively integrate exposome and metabolome. Our network model revealed that 

most metabolite communities were not specific to the association with a particular exposure, 

and many are shared between exposures. They could reflect the modes of toxic actions other 

than serving as biomarkers. These data are concordant with observations in other exposure 

MWAS studies [26, 27], and the concept of a systems response to exposures [16]. This poses 

an interesting question on how investigators should approach these MWAS analyses. It is 

possible that a small number of metabolic phenotypes are associated with a large number of 

exposures. As we proposed in the “G x M x E” model, the metabolome carries information 

from both ends. The metabolite communities we identified in this study could reflect both 

the endogenous metabolic capability and the result of varying exposure levels. The exposure 

data in this study were still limited, but these are chemicals of concern that have been 

reported to impact human health [28]. It will be interesting to see how MWAS data on more 

chemicals turn out.

As the measurement of exposures becomes high-dimensional, new approaches of analyzing 

and interpreting data are needed. In general, the integration of multi-omics data holds the 

promise to obtain more comprehensive understanding of the biological problem, to better 

identify the biological mechanisms at the intersection of data types, and to cross validate the 

findings from multiple data types [29–31]. The practice, however, has to be tailored to 
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specific study design. The biological connection between enzymatic activity and metabolite 

concentration is important to integrate gene/protein data and metabolite measures in the 

same model. But this is rarely relevant in populations studies due to sampling. For example, 

it is common that gene expression is measured from blood cells and metabolomics from 

serum. Such mechanistic coupling cannot be assumed because serum metabolites may be 

regulated by enzymes in the liver not in monocytes. In the absence of a reasonable biological 

model, data-driven integration becomes necessary. Due to the different variance structure 

from different data types, many methods of data-driven integration employ some kind of 

decomposition or projection. Sparse methods are also popular to reduce the data dimension 

to a manageable and interpretable scale. The examples include the mixOmics package [32], 

group sparse CCA [33], multiple factor analysis (MFA, [34]), Co-Inertia analysis (CIA, 

[35]), sparse partial least squares [36], a joint latent variable model for integrative clustering 

[37] and a structured sparse CCA method [38]. Instead of removing statistically redundant 

features, an alternative is to group them in hierarchical networks. We have applied this 

hierarchical community network approach successfully in vaccine and infection studies [20, 

21], and extended it here to the integration of exposome and metabolome. While PLS based 

methods are popular in the field of multi-omics integration, our innovation is to combine 

PLS with community structures within each data type, thus improving granularity of 

knowledge extraction and interpretation. This strikes a balance between specificity and 

redundancy. Not all redundancy is bad in - omics data, because multiple biological pathways 

can converge in statistical space. For example, we observed strong correlation between TLR 

signaling and glycerophospholipid metabolism in our previous vaccine study [21]. By 

keeping both in the data interpretation, it led to a new appreciation of these metabolic 

pathways in the context of immune response. This approach of hierarchical community 

networks is expected to be useful in gaining a global view of exposome – metabolome 

interactions, and to complement feature selection and biomarker studies. This is analogous 

to measuring the locales and variety of a forest instead of focusing on individual trees. A 

web supplement is provided for this dataset, and the software development is continued 

(https://github.com/shuzhao-li/hiconet).

We did not address the covariates such as age, gender and life styles. The age distribution in 

this birth cohort is very narrow, and gender cannot be accounted for in an all-female cohort. 

But it’s not the goal of this paper to assess their impact on the metabolome, and the 

metabolome is rather viewed as a phenotype than an outcome here. A compendium of 39 

chemicals is a start to think of the exposome problem but nowhere close to the real 

complexity. Indeed, as shown in Figure 1, these exposures only account for a few 

percentages of variance in the metabolome. However, this is a static picture and does 

exclude the possibility of disease causality to be manifested at a different time or by a 

different data type. While the complete information may never be available, a useful step is 

to model the measured complexity properly. Despite of the disparities in measured 

exposures, we found that metabolite communities shared associations with the chemical 

exposures after the inter-correlation of the latter was removed by community detection. 

Because the exposures can modify the metabolome and vice versa, it is useful to view them 

as an interaction model, which can be applied to investigate outcomes such as breast cancer 
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risk. The communities in our model are a useful tool of dimension reduction, which opens 

doors to further mediation and interaction models using the communities as computing units.

This study has major limitation in sampling. The samples were archived for over 50 years 

under suboptimal storage conditions, which were reflected in the smaller number of quality 

metabolite measurements compared to those from fresh samples on the same platform. The 

data were also from pregnant women who delivered daughters. Therefore, we could not 

study associations in men or compare differences between men and women. Our study 

investigated the metabolome in about 50% of the available cases and thus may have limited 

power for detecting associations of BC with the metabolome. Nonetheless, the metabolite 

association with the DDT community was concordant with the previous published studies 

[10–12, 39, 40]. The methodology is expected to be useful for broader studies of exposome.

Materials and Methods

Study Population

This study is made possible by a 54-year follow-up of 20 754 pregnancies, resulting in 9300 

live-born female offspring in the CHDS pregnancy cohort. The CHDS was designed to 

examine the association between prenatal exposures and health and development over the 

life course for parents and children. The CHDS recruited women residing in the area of 

Oakland, California, who were members of the Kaiser Foundation Health Plan and received 

obstetric care for pregnancies between 1959 and 1967 [41]. More than 98% of all eligible 

women enrolled. CHDS founding mothers (F0) voluntarily participated in an in-person 

interview and gave permission to researchers for medical record access for themselves and 

their children. Their blood specimens were collected at several times through pregnancy and 

1–3 days after delivery. As part of the Three Generations Study (3Gs) study 118 breast 

cancer cases in the daughters (F1) and 3 controls per case (matched on birth year and 

trimester of maternal blood draw, n=354) were chosen to for environmental chemicals 

analysis. For our current analysis, we chose to use all controls and 50 cases were randomly 

selected. We did not use all cancer cases to ensure that he that the MWAS didn’t get skewed 

from normal population. We also wanted to keep an oversampling of cases to ensure enough 

power to compare exposure and metabolite communities associated with cancer cases.

Cancer Cases

Breast cancer cases were identified by linkage to the California Cancer Registry and the 

California Vital Status Records as previously described [10, 42] and by self-report during a 

survey of CHDS daughters conducted from 2010 to 2013. All names for each CHDS subject 

were submitted for cancer linkages using fixed (ie, birth date, sex, race, and name) and 

changeable (ie, address and patient record number) identifiers. Cases were defined as CHDS 

daughters with incident invasive or noninvasive breast cancer diagnosed by age 52 years, 

identified through surveillance and through self-report through March of 2013. There were 

137 cases who met this case definition, diagnosed as of 2012.
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Serum Environmental Exposure Assays

Sample order was randomly assigned within and across batches and case-control strata were 

analyzed in the same batches to minimize differences due to laboratory drift. The laboratory 

was blind as to case or control status of the samples. Dichlorodiphenyltrichloroethane 

(DDTs), polychlorinated biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFASs) 

and serum lipids were measured in nonfasting maternal perinatal serum samples that had 

been collected from 1959 through 1967. We preferred to use the early postpartum samples 

(collected within 1–3 d after delivery) when available to conserve serum for future studies 

when timing within pregnancy is more critical. Prior work has established that 

organochlorine levels are consistent across all trimesters of pregnancy and soon after 

delivery within women [43].

Serum assays methods have previously been described in detail [10–12, 44]. Briefly, the 

laboratory of the California Department of Toxic Substances Control (CDTSC) assayed our 

prenatal samples. DDT compounds (o,p’-DDT, p,p’-DDT, and p,p’-DDE) were analyzed on 

a DB-5ms column (30 m × 0.25 mm inner diameter, 0.25 μm film thickness; Agilent 

Technologies) installed in an Agilent gas chromatograph-tandem mass spectrometer 

(7890/7000B series). We used CDTSC’s online SPE-HPLC-MS/MS method to analyze 

samples for PFASs [45].

Total cholesterol and triglycerides were measured enzymatically on a Roche P Modular 

system using reagents and calibrators from Roche Diagnostics at the Clinical and 

Epidemiologic Research Laboratory (CERLab) at Boston Children’s Hospital, which is 

certified by the Centers for Disease Control and Prevention/National Heart, Lung, and Blood 

Institute Lipid Standardization Program.

LC-MS metabolomics analysis

Samples were thawed and analyzed by high-resolution liquid chromatography mass 

spectrometry (LC-MS) at Emory University as previously described [6, 46]. Briefly, sample 

aliquots (65 μL) were treated separately with acetonitrile containing a mixture of 14 stable 

isotopes. Samples were kept on ice for 30 minutes prior to centrifugation for 10 minutes at 

13,400 × rpm at 4°C. The supernatant was removed and placed into autosampler vials. Mass 

spectral data for the samples from the CHDS cohort were collected with a 10-minute 

gradient on a Dionex U3000 coupled with a Thermo QExactive (Thermo Fisher, San Diego, 

CA) with an m/z range of 85 to 1275 and a resolution of 70,000. Three technical replicates 

were run for each sample, using C18 column in positive electrospray ionization (ESI) mode.

Following LC-MS, the data were collected and pre-processed using apLCMS [47] and 

xMSanalyzer [48] for feature detection and extraction. A metabolite feature was defined as a 

specific mass-to-charge ratio (m/z) along with its retention time and associated ion intensity. 

Data were log2 transformed and subjected to standard quality assessment including 

exclusion of data for technical replicates with overall Pearson correlation (r) < 0.70. The 

metabolite features were averaged for replicates. After filtering for missing values (by > 50 

percent presence), 3,121 metabolite features were retained for subsequent data analysis.
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The reporting of metabolite annotation adheres to the five confirmation levels in 

metabolomics literature [49]. Level 1 annotation applies to the metabolites confirmed by 

matching both m/z (mass accuracy under 10ppm) and retention time to that of authenticated 

chemical standards, previously characterized in our laboratory. Additional putative 

annotation was performed by m/z matching to KEEG database (mass accuracy under 10ppm 

– annotation level 3). The metabolomics data are accessible at the Metabolomics Workbench 

(http://www.metabolomicsworkbench.org).

Statistical and bioinformatics analyses

The data analysis was performed using Python (2.7 or 3.7), with libraries scipy and 

statsmodels (statistical implementation), pandas (data I/O), seaborn (heatmaps and bubble 

panels), and scikit-learn (PCA and PLS). Networks visualization was carried out using 

Cytoscape 3.4.0 (http://cytoscape.org).

The community detection in the exposure data was based on Girvan-Newman algorithm 

[22]. The community detection in metabolomics data was performed as previously described 

[20]. The PLS regression was performed similarly as previously described [21]. The 

significance of associations from PLS regression was assessed by permutation on both 

community member and sample labels. The mummichog software (version 1.0.9) was used 

for metabolic pathway enrichment analysis (mass accuracy under 10 ppm, which uses a 

probabilistic algorithm different from feature level statistics and produces pathway p-values 

based on permutation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• hierarchical community network to integrate exposome and metabolome

• Fatty acid and mitochondria related pathways are among associations with 

DDTs and PFASs

• Breast cancer risk in offspring positively associated with PCB compounds, 

negatively with PFASs

• small number of metabolic phenotypes may account for large number of 

exposures
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Figure 1. Variance analysis of the metabolome and environmental exposures.
Principal component analysis was performed on the serum metabolomics data from 397 

CHDS participants, and the contribution of top 10 principal components is shown on the left. 

Corresponding to each of the components, the variance explained by each exposure (R2) is 

colored coded in the heatmap on the right. Data are only shown for features with p < 0.05 in 

Pearson correlation analysis. The lipid measures, TG, TC and TL, are included as control.
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Figure 2. Exposure communities detected by quantitative correlations.
Each variable was measured in the CHDS cohort by conventional assays, either enzymatic or 

targeted mass spectrometry. (A) Unsupervised hierarchical clustering of exposure 

measurements, aside with several clinical variables, using Spearman correlation. (B) 

Communities detected among the variables from the correlation network, which was defined 

by all pairs of variables with Spearman correlation coefficient above 0.5. The result is 

similar to the clusters identified by the dendrogram (above the dashed line) in A.
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Figure 3. Hierarchical community network between exposures and metabolomics in the CHDS 
cohort.
Each node represents one exposure community or metabolite community. The lipid 

community is included as a reference. The width of edges is proportional to PLS score 

linking between two communities, and color of edges proportional to −log10(p-value) with 

darker shades indicating more significance.
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Figure 4. A metabolite community (M4) strongly associated with the lipid community.
(A) A representative association link taken from Figure 3. (B) The metabolite features in the 

M4 community were tested by the mummichog software for their pathway enrichment. 

Significantly enriched metabolic pathways are plotted by their significance (−log10(p-

value)). The numbers in parentheses indicate the number of significant metabolites/the 

number of detected metabolites for each pathway. (C) Each column represents a study 

participant, sorted by their blood level of total lipid in descending order (top). The levels of 

the three members of the LIPID community are shown in the middle and the intensities of 

metabolites of the M4 community are shown in the bottom heatmap, whereas each row 

represents a feature. In all panels, each column is matched to the same participant
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Figure 5. Common metabolite communities associated with PCB, PFAS and LIPID communities.
(A) The association links from Figure 2. (B) Metabolic pathways enriched in the top 

metabolite communities in A, tested by the mummichog software showing commonly shared 

clusters of pathways among communities (red box).
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Figure 6. Exposure and metabolite communities associated with breast cancer occurrence in 
offspring generation.
(A) The significant association between exposure communities and breast cancer occurrence 

in offspring, based on GSA (gene set analysis) test of each community. The green area 

shows the distribution of permutation data, and vertical bars of exposure communities (red 

higher in breast cancer cases, blue lower in breast cancer cases, DDT community not 

significant). (B) The significant association between metabolite communities and breast 

cancer occurrence in offspring, based on GSA test of each community. The green area shows 

the distribution of permutation data, and vertical bars of metabolite communities (red higher 

in BC cases, blue lower in BC cases, only communities with p < 0.01 shown). (C) The 

significant communities (p<0.05) mapped on the hierarchical community network as in 

Figure 2, recolored based on the association with breast cancer occurrence in offspring. Red 

higher in breast cancer cases; blue lower in breast cancer cases.
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