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Abstract: This study aimed to investigate the correlation between serum microRNA levels and histological stages of 
liver fibrosis in patients with chronic hepatitis B (CHB). A total of 28 patients with CHB who received liver biopsy at 
China Medical University Hospital between October 2012 and April 2013 were included in the study. The patients 
were divided into four groups according to the histological stages of liver fibrosis by using the METAVIR score. Serum 
microRNA levels were tested using quantitative real-time PCR after microRNA extraction from patients’ serum. Of all 
the tested microRNAs, miR-21, miR-29, and miR-221 were expressed in the serum. The expression levels of serum 
miR-21 were significantly correlated with liver fibrosis stages (r = 0.420, P = 0.026). The expression levels of serum 
miR-21 were significantly correlated with cirrhosis (METAVIR F4 vs. F1-F3, r = 0.386, P = 0.043). The grades of 
serum miR-21 showed significant ordered differences among different stages of liver fibrosis (P = 0.019). However, 
miR-21 exhibited an inferior predictive performance for liver fibrosis F2-F4 (AUROC = 0.69) compared with other 
noninvasive markers of liver fibrosis, namely the aspartate aminotransferase (AST) to platelet ratio index (APRI) and 
Fibrosis-4 (FIB-4) score (AUROC = 0.83 and 0.86, respectively). Serum miR-21 correlated with the histological stage 
of liver fibrosis in patients with CHB. The predictive performance of serum miR-21 for the histological stage of liver 
fibrosis tended to be inferior to those of the APRI and FIB-4 score.

Keywords: miR-21, liver fibrosis, APRI, FIB-4, chronic hepatitis B

Introduction

Liver fibrosis is a tissue-healing process that 
occurs to maintain hemostasis in response to 
chronic liver injury [1-4]. Liver injuries initiate 
recruitment of inflammatory macrophages into 
the liver. Chronic activation of inflammatory 
macrophages induces activation of quiescent 
hepatic stellate cells (HSCs) into activated 
HSCs, the myofibroblasts. Myofibroblasts pro-
duce the extracellular matrix (ECM), and depo-
sition of the ECM promotes liver scarring [5]. 
Advanced liver fibrosis leads to liver cirrhosis, 
which increases the risk of hepatocellular car- 
cinoma and liver failure and requires liver 
transplantation.

The main causes of liver fibrosis and cirrhosis 
in developed countries include chronic infec-

tion with hepatitis C virus, habitual alcohol con-
sumption, and nonalcoholic fatty liver disease. 
Hepatitis B infection is endemic and remains a 
crucial public health problem in the Asia-Pacific 
region and sub-Saharan Africa [6]. Hepatitis B e 
antigen (HBeAg)-positive chronic hepatitis B 
(CHB) leads to cirrhosis at an incidence rate of 
1.6%-3.8% per 100 person years, and the cir-
rhosis incidence rate is 2.8%-9.7% per 100 per-
son years in patients with HBeAg-negative CHB 
[7]. Hepatitis B-related cirrhosis was tradition-
ally believed to be irreversible. With the advent 
of the nucleos(t)ide analog (NA) therapy, rever-
sal of liver fibrosis and cirrhosis has been 
observed in large proportions of CHB patients 
[8, 9]. Nonetheless, patients receiving antiviral 
therapy are still at a risk of hepatocellular carci-
noma and cirrhosis-associated complications, 
and the risk is associated with the severity of 
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liver fibrosis [10]. Therefore, identifying diag-
nostic and therapeutic biological targets for 
liver fibrosis is crucial.

Assessment of liver fibrosis is important be- 
cause the degree of liver fibrosis is associated 
with the risk of complications caused by liver 
fibrosis and cirrhosis, such as hepatic ence- 
phalopathy and esophageal variceal bleeding. 
Notably, reversal of liver fibrosis after antiviral 
therapy has been observed among patients 
with CHB [8, 9] and chronic hepatitis C (CHC)-
related liver fibrosis [11] and cirrhosis and 
among cirrhotic patients with alcohol absti-
nence [12]. The gold-standard diagnosis meth-
od for liver fibrosis is liver biopsy. Common his-
tological scores include the METAVIR [13, 14] 
and Ishak scores [15]. Liver biopsy is an inva-
sive procedure with a potential risk of complica-
tions to patients, especially in cirrhotic patients 
with thrombocytopenia [16]. Therefore, nonin-
vasive assessment methods of liver fibrosis 
have been developed and extensively used in 
the past 20 years. Noninvasive imaging mo- 
dalities, such as transient elastography (Fibro- 
Scan®) [17] and acoustic radiation force im- 
pulse elastography [18], are commonly used in 
clinical practice.

Indirect serum markers of liver fibrosis are col-
lection indexes, including markers that reflect 
liver inflammation and liver function [19-21], 
such as serum aminotransferase, γ-glutamyl 
transferase (γ-GT), platelet count, prothrombin 
time, apolipoprotein A, α2 macroglobulin, α2 
globulin, and γ globulin [20]. The aspartate  
aminotransferase (AST) to platelet ratio index 
(APRI) and Fibrosis-4 (FIB-4) index are inexpen-
sive, noninvasive tests for assessing liver fibro-
sis in low- and middle-income countries, as rec-
ommended by the recent WHO guideline [22]. 
APRI and FIB-4 showed high specificity but low 
sensitivity for hepatitis B-related advanced 
liver fibrosis and cirrhosis [23, 24]. These non-
invasive tests are not capable of assessing all 
stages of liver fibrosis; therefore, diagnosis of 
advanced liver fibrosis and cirrhosis may be 
missed by using these noninvasive tests only 
due to their low sensitivity [22].

Direct serum markers of liver fibrosis are un- 
der investigation and offer another method to 
assess liver fibrosis. Liver fibrogenesis occurs 

through the activation of HSCs and several 
inflammatory pathways to produce the ECM 
[25]. Direct serum markers reflect the dynam-
ics of deposition and removal of the ECM dur- 
ing fibrogenesis [26]. Markers associated with 
ECM deposition include procollagen type I car-
boxy terminal peptide (PICP), procollagen type 
III amino-terminal peptide (PIIINP), and tissue 
inhibitor of metalloproteinases (TIMPs). Mar- 
kers associated with ECM degradation inclu- 
de the procollagen IV C peptide (PIVCP), procol-
lagen IV N peptide (PIVNP), type IV collagen, 
and metalloproteinases (MMPs) [26-29]. Other 
direct markers include hyaluronic acid (HA), 
YKL-40 (chitinase-3-like-1 or human cartilage 
glycoprotein-39), and cytokines that are invol- 
ved in ECM metabolism, such as transforming 
growth factor β (TGF-β) and platelet-derived 
growth factor (PDGF) [27]. PICP and PIIINP are 
released through proteolytic cleavage of procol-
lagen (a precursor of collagen) into the serum 
during ECM deposition and remodeling. PICP 
reflects the severity of alcoholic cirrhosis more 
accurately than chronic liver disease related to 
other etiologies [27]. PIIINP predicts both liver 
fibrosis and liver inflammation. PIIINP exhibits 
more accurate prediction of liver inflammation 
than liver fibrosis [27]. Propeptides of type IV 
procollagen, PIVCP and PIVNP, enhance the 
basement membrane turnover in active fibro- 
sis [30]. Type IV collagen reflects fibrolysis and 
remodeling of the interstitial connective tissue 
[30]. HA is an essential component of the ECM 
produced by activated HSCs [31]. HA exhibits 
more accurate predictive performance for liver 
fibrosis than PIIINP [32]. MMPs and their inhibi-
tors, TIMPs, together play a role in ECM metab-
olism. MMP-2 is expressed by activated HSCs 
during liver injuries. MMP-2 induces ECM deg-
radation, and TIMPs inhibit MMP-2-induced 
ECM degradation [33]. YKL-40 is a chitinase-
like protein expressed in multiple tissues in- 
cluding the liver. It functions as a growth fac- 
tor for fibroblasts and epithelial cells [26]. 
Moreover, YKL-40 is involved in ECM remodel-
ing. Serum YKL-40 is associated with the liver 
fibrosis stage in CHB [34]. TGF-β is released 
from necrotic hepatocytes during chronic liver 
injury [35]. TGF-β1 activates HSCs, inhibits HSC 
apoptosis, suppresses MMPs, and upregulates 
TIMP, and thereby induces ECM production and 
prevents ECM degradation [35].
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HSC activation is pivotal in liver fibrogenesis. It 
requires epigenetic remodeling of the de novo 
expression of regulators of the myofibroblast 
phenotype [36, 37]. Mechanisms of epigenetic 
modulation and post-transcriptional gene regu-
lation of HSCs include DNA methylation, his-
tone modification, and alteration of mRNA de- 
gradation and translation repression by micro- 
RNAs [38]. MicroRNAs are small noncoding 
RNA molecules that post-transcriptionally af- 
fect mRNA stability and translation by targeting 
the 3’-untranslated region (3’-UTR) of various 
transcripts. Dysregulation of microRNAs epige-
netically affects some liver fibrogenesis path-
ways [37]. miR-21 is upregulated in many can-
cer types [39]. miR-21 is also enhanced after 
initiation of fibrosis of the heart, kidney, and 
lung [40, 41]. miR-21 acts as a profibrogenic 
microRNA, activates HSCs through PTEN/Akt 
signaling [42], and represses the TGF-β inhibi-
tory Smad 7 protein [43]. miR-21 upregulation 
during liver fibrogenesis is based on TGF-β-
induced Smad-2 and Smad-3 phosphorylat- 
ion. Phosphorylated Smad-3 aggregates with 
Smad-4 and transcriptionally induces pri-miR- 
21 synthesis [38, 44]. TGF-β also promotes the 
expression of mature miR-21 by the DROSHA 
complex. After TGF-β exposure, Smad-2 and 
Smad-3 interact with RNA helicase p68, a com-
ponent of the DROSHA microprocessor com-
plex, and further promote the formation of pre-
miR-21 [45]. miR-29 is highly expressed in 
HSCs. miR-29 mediates the regulation of liver 
fibrosis and is part of a signaling nexus involv-
ing TGF-β- and NF-κB-dependent downregula-
tion of miR-29 family members in HSCs with 
subsequent upregulation of extracellular matrix 
genes [46]. miR-29 mediates the repression of 
ECM and growth factors such as PDGF and 
insulin-like growth factor-1 (IGF-I). Stimulation 
of TGF-β and PDGF results in miR-29 repres-
sion and upregulation of profibrogenic expres-
sion of the ECM, PDGF-C, or IGF-I. PDGF and 
IGF-I stimulate stellate cell proliferation and 
ECM production [37]. miR-221/222 upregula-
tion correlates with the mRNA expression levels 
of α1 (I) collagen and α-smooth muscle actin 
and activation of HSCs [47].

To identify serum microRNAs as the potential 
biomarkers of liver fibrosis, this study investi-
gated the correlation of serum profibrogenic 
and antifibrogenic microRNA levels with the his-
tological stages of liver fibrosis in patients with 
CHB.

Materials and methods

Patients

A total of 28 patients with CHB who received 
liver biopsy at China Medical University Hos- 
pital between October 2012 and April 2013 
were included. All patients met the following 
inclusion criteria: age ≥ 18 years and ≤ 70 years 
and HBsAg positivity for more than 6 months. 
Patients were excluded if they had concurrent 
diagnosis of hepatitis C infection, alcoholic 
hepatitis, autoimmune hepatitis, Wilson’s dis-
ease, hemochromatosis, or hepatocellular car-
cinoma. All the patients underwent blood tests 
at the time of liver biopsy. Blood chemistry, 
complete blood count, HBV DNA, HBeAg, anti-
HBe, and α-fetoprotein were measured. Another 
10 mL of the blood sample was stored at -80°C 
until further study of microRNAs.

Liver biopsy and assessment of liver fibrosis

Liver biopsy was performed with real-time guid-
ance of abdominal sonography by puncturing a 
biopsy needle into the right lobe of the liver 
through the right intercostal space. A liver tis-
sue piece of length > 1.0 cm was sampled. 
Formalin-fixed liver tissues were then stained 
with hematoxylin and eosin and Masson’s tri-
chrome. For histological assessment of liver 
fibrosis, the METAVIR scoring system was used.

Blood sampling

Serum RNA was extracted using the miRNeasy 
Serum/Plasma Kit (QIAGEN®, Hilden, Germany) 
following the manufacturer’s protocol. cDNA 
was obtained from reverse transcription of to- 
tal serum RNA by using the miScript II RT Kit 
(QIAGEN®).

Real-time quantitative PCR analysis of serum 
microRNAs

The expression of serum microRNAs was quan-
tified through real-time quantitative PCR by 
using the SYBR green method. Primer sequenc-
es of microRNAs are listed in Table S1. Cel-
miR-39 was chosen for internal control by us- 
ing miRNeasy Serum/Plasma Spike-In Control 
(QIAGEN®). Real-time quantitative PCRs were 
performed in triplicate in a LightCycler® 480 
system (Roche Molecular Systems, Inc. Plea- 
santon, CA, USA).
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Noninvasive fibrosis markers: APRI and FIB-4 
score

The APRI was calculated using the patient’s 
AST level and platelet count. The formula for 
APRI calculation is as below [48]:

APRI 100Platelet counts (10 /L)
AST/(ULN of AST)

9= #

ULN of AST: 34 U/L.

The FIB-4 score was calculated using the 
patient’s AST level, ALT level, platelet count, 
and age. The formula for FIB-4 score calcula-
tion is as below [49]:

FIB4 Platelet count (10 )
Age (years) AST level (U/L)

/L ALT (U/L)9=
#

#

Statistical analysis

All variables were first tested for distribution by 
using normality tests. Continuous variables 
that fitted with normal distribution are pre- 
sented as mean ± standard deviation (SD). 
Continuous variables that did not match nor-
mal distribution are presented as medians (25 
percentiles, 75 percentiles). Categorical vari-
ables are presented as numbers (percentage). 
The correlation analysis was performed using 
Pearson’s correlation. To examine the differ-
ence in the relative quantifications of serum 
microRNA levels, we graded each level of mi- 
croRNA according to its mean ± 1 SD value. 
Grade 1 was defined as the low microRNA le- 
vel (0 to mean - 1 SD); Grade 2 was defined as 

the medium level (between mean - 1 SD and 
mean + 1 SD); and Grade 3 was defined as the 
high level (> mean + 1 SD). The Jonckheere-
Terpstra trend test was then performed to 
examine the ordered difference between serum 
microRNA grades and stages of histological 
liver fibrosis. All the aforementioned tests were 
performed with IBM® SPSS® Statistics soft-
ware, version 23, IBM Corp, Armonk, NY, USA. 
Receiver operating characteristic (ROC) curve 
analysis was performed using SigmaPlot soft-
ware, version 14.0, Systat Software, Inc, San 
Jose, CA, USA. A p value of < 0.05 was consid-
ered significant.

Results

Patient demographics

The demographic data and clinical data of  
the 28 CHB patients with liver fibrosis are  
listed in Table 1. Seventeen (60.7%) patients 
had genotype B infection. Six (21.4%) patients 
were HBeAg-positive. Twenty-five (89.3%) pati- 
ents exhibited fatty metamorphosis on histolo-
gy. The characteristics of CHB patients strati-
fied by liver fibrosis are presented in Table 2.

Expression of serum miR-21, miR-29, and miR-
221 in CHB patients with liver fibrosis

Of all the tested microRNAs, miR-21, miR-29, 
and miR-221 were expressed in the serum (Fig- 
ure 1). By contrast, miR-122, miR-138-2, miR-
140, miR-143, and miR-222 were not express- 
ed in the serum of CHB patients with liver fibro-

Table 1. Baseline characteristics of 28 patients with CHB
Age (year) 50.9 ± 6.9
Gender (Male, %) 21 (75%)
BMI (kg/m2) 24.7 ± 3.7
AST (U/L) 110.3 ± 223.6, 53 [33.3, 104]
ALT (U/L) 148.5 ± 219.5, 63.5 [38.3, 164]
Total bilirubin (mg/dL) 1.3 ± 1.1
Albumin 4.1 ± 0.47
PT (INR) 1.1 ± 0.1
Platelet count (× 103/µL) 162.3 ± 46.1
AFP (ng/mL) 14.6 ± 44.8, 4.0 [2.9, 7.5]
Genotype (B vs. C), % 17 (60.7%)
Serum HBV DNA (IU/mL) 2.1 × 1010 ± 1.1 × 1011, 2.5 × 105 [1.6 × 104, 4.27 × 107]
HBeAg (positive vs. negative), % 6 (21.4%)
qHBsAg (IU/mL) 705.6 [213.8, 1945.3]
METAVIR score (1 vs. 2 vs. 3 vs. 4) 7 (25%), 7 (25%), 7 (25%), 7 (25%)
Fatty metamorphosis (0 vs. 1 vs. 2 vs. 3) 3 (10.7%), 3 (0.7%), 21 (75%), 1 (3.6%)
Median [first quartile, third quartile]. Number (percentage).
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sis. cel-miR-39 was expressed in all serum sa- 
mples (data not shown).

The serum miR-21 level is correlated with the 
stage of liver fibrosis and cirrhosis

The expression levels of serum miR-21 were 
significantly correlated with the stage of liver 

fibrosis (P = 0.026). By contrast, miR-29 and 
miR-221 were not significantly correlated with 
the liver fibrosis stage (Table 3).

The expression levels of serum miR-21 were 
significantly correlated with cirrhosis (METAVIR 
F4 vs. F1-F3) (P = 0.043). Serum levels of miR-
21 were not significantly correlated with signifi-
cant fibrosis (METAVIR F2-4 vs. F0-F1) (P = 
0.143) or severe fibrosis (METAVIR F3-F4 vs. 
F1-F2) (P = 0.061) (Table 4).

Grades of serum miR-21 show ordered differ-
ences among different stages of liver fibrosis

The serum levels of miR-21, miR-29, and miR-
221 showed no ordered differences among dif-
ferent stages of liver fibrosis (Figure 2). The 
distribution of serum miR-21 grades in each 
stage of liver fibrosis is shown in Table 5. The 
grades of serum miR-21 showed significant 
ordered differences among different stages of 
liver fibrosis (P = 0.019) (Figure 3). The grades 
of miR-29 (P = 0.626) and miR-221 (P = 0.849) 
did not show significant differences among dif-
ferent stages of liver fibrosis (data not shown).

Comparison of the predictive performances of 
miR-21, APRI, and FIB-4 for liver fibrosis stage

The APRI and FIB-4 score were not significantly 
correlated with the liver fibrosis stage (P = 
0.818 and p = 0.106, respectively) (Table 6). 
The AUROC of miR-21 was lower than those of 
the APRI and FIB-4 score in predicting METAVIR 
F1 vs. METAVIR F2-F4, and the differences were 
not significant (miR-21 vs. APRI, P = 0.4413, 

Table 2. Characteristics of patients stratified by liver fibrosis

Liver fibrosis METAVIR score
Patient Groups

P
F1 (n = 7) F2 (n = 7) F3 (n = 7) F4 (n = 7)

Age (year) 47 ± 6.1 49 ± 6.1 55.6 ± 9.6 51.6 ± 1.9 0.266

Gender (Male, %) 6 (85.7) 5 (71.4) 4 (57.1) 6 (85.7)

BMI (kg/m2) 21.7 ± 1.5 23.9 ± 2.8 26.5 ± 2.9 26.5 ± 4.9 0.041*

AST (U/L) 52.3 ± 56.2 207.7 ± 200.4 53.7 ± 30.7 45 ± 15.6 0.016*

ALT (U/L) 64.4 ± 57.4 325.6 ± 237.1 62.9 ± 36.4 45.6 ± 7.5 0.031*

Total bilirubin (mg/dL) 0.9 ± 0.1 1.8 ± 2.2 1.0 ± 0.1 1.3 ± 0.4 0.372

Albumin 4.5 ± 0.3 3.8 ± 0.5 4.0 ± 0.3 3.9 ± 0.5 0.032*

PT (INR) 1.0 ± 0.03 1.1 ± 0.1 1.1 ± 0.04 1.2 ± 0.1 0.010*

Platelet count (× 103/µL) 196.3 ± 27.7 166.6 ± 25.8 165.3± 46.7 121 ± 50.7 0.031*

AFP (ng/mL) 2.9 ± 0.6 8.7 ± 8.1 8.3 ± 4.4 37.8 ± 88 0.050

Genotype (B vs. C), % 6 (85.7) 7 (100) 7 (100) 6 (85.7)

HBV DNA (IU/mL) 1.3 × 108 ± 3.2 × 108 8.1 × 1010 ± 2.1 × 1011 4.3 × 106 ± 9.1 × 106 2.2 × 105 ± 1.8 × 105 0.002*

HBeAg (positive vs. negative), % 1 (14.3) 2 (28.6) 0 3 (42.9)

qHBsAg (IU/mL) 617 ± 519.6 1108.1 ± 1272.3 2532.4 ± 3616.0 697.5 ± 687.8 0.795

Fatty metamorphosis (0 vs. 1 vs. 2 vs. 3) 0:3:4:0 3:0:3:1 0:0:7:0 0:0:7:0
*P < 0.05.

Figure 1. Expression of serum microRNAs in CHB pa-
tients with liver fibrosis.

Table 3. Correlation of serum miR-21, miR-
29, and miR-221 levels with liver fibrosis 
stage
MicroRNAs Correlation coefficient, r p value
miR-21 0.420 0.026*

miR-29 -0.040 0.841
miR-221 0.192 0.328
*P < 0.05.
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miR-21 vs. FIB-4, P = 0.335). Similar results 
were noted in the prediction of F1-F2 vs. F3-F4 

these microRNAs, serum miR-21 was correlat-
ed with the histological stage of liver fibrosis. 
Studies have shown a correlation between miR-
21 and liver fibrosis. miR-21 activates HSCs 
through PTEN/Akt signaling [42]. miR-21 pro-
motes α-SMA and collagen I expression in 
HSCs through the Smad 7 signaling pathway 
[43]. miR-21 overexpression enhances TGF-β1-
induced fibrogenic epithelial-to-mesenchymal 
transition by targeting RECK in hepatic oval 
cells [50]. microRNA-21 along with program- 
med cell death protein 4 and activation pro-
tein-1 is associated with the development of 
hepatic fibrosis [51]. Although a recent study 
showed that miR-21 and Dicer are responsible 
for HSC activation and the development of to- 
xic liver fibrosis caused by CCl4 [52], our results 
showed a correlation of miR-21 with HBV-asso- 
ciated liver fibrosis. Different contexts of chron-
ic liver injury may induce different fibrogenic 
pathways; therefore, an inconsistent correla-
tion between microRNAs and the liver fibrosis 
stage may be observed.

In our study, the APRI and FIB-4 score were not 
significantly correlated with the liver fibrosis 
stage (P = 0.818 and P = 0.106, respectively). 
However, studies have demonstrated that both 
APRI and FIB-4 are reliable predictors of liver 
fibrosis [53, 54]. We further compared the pre-
dictive performance of miR-21, APRI, and FIB-4 
for liver fibrosis. We demonstrated that FIB-4 
and APRI showed good predictive performan- 
ce for liver fibrosis F2-F4 (both AUROCs > 0.8). 
miR-21 exhibited inferior predictive performan- 
ce for liver fibrosis F2-F4 (AUROC = 0.69), with 
no significant differences among different stag-
es of liver fibrosis. Although the predictive per-
formance of miR-21 for cirrhosis was also in- 
ferior to that of FIB-4 (METAVIR F4 vs. F1-F3, 
AUROC = 0.59 vs. 0.68, respectively), miR-21 
correlated with cirrhosis (METAVIR F4 vs. F1-F3, 
r = 0.386, P = 0.043). In our study, APRI exhib-
ited more accurate predictive performance for 

Table 4. Correlation of serum miR-21 levels with the 
early and late stages of liver fibrosis

Stage of fibrosis Correlation 
coefficient, r p value

Significant fibrosis (F2-4 vs. F0-F1) 0.284 0.143
Severe fibrosis (F3-F4 vs. F1-F2) 0.358 0.061
Cirrhosis (F4 vs. F1-F3) 0.386 0.043*

*P < 0.05.

Figure 2. Expression of (A) serum miR-21, (B) miR-
29, and (C) miR-221 among different stages of liver 
fibrosis: miR-21 (P = 0.120), miR-29 (P = 0.964), and 
miR-221 (P = 0.512) showed no ordered differences 
among different stages of liver fibrosis.

(miR-21 vs. APRI, P = 0.3641, miR-21 vs. 
FIB-4, P = 0.8835) and F1-F3 vs. F4 (miR-
21 vs. APRI, P = 0.8871, miR-21 vs. FIB-4, 
P = 0.6757). The ROC curves are shown in 
Figure 4.

Discussion

According to our results, miR-21, miR-29, 
and miR-221 were expressed in the ser- 
um of CHB patients with liver fibrosis. Of 
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Table 5. Grades of serum miR-21 exhibit sig-
nificant correlation with the liver fibrosis stage

METAVIR score
Grades of miR-21

p valueLow  
(n = 19)

Medium 
(n = 5)

High  
(n = 4)

F1 7 (36.8) 0 0 0.019*

F2 5 (26.3) 2 (40) 0
F3 3 (15.8) 3 (60) 1 (25)
F4 4 (21.1) 0 3 (75)
Cutoffs for low, medium, and high serum miR-21 levels are 
defined by mean ± 1 standard deviation. *P < 0.05.

Figure 3. Correlation of miR-21 grades with the liver 
fibrosis stage.

Table 6. Correlation of APRI and FIB-4 with 
the liver fibrosis stage

Correlation coefficient, r p value
APRI -0.046 0.818
FIB-4 0.312 0.106

significant fibrosis (METAVIR F2-F4 vs. F1, 
AUROC = 0.83) than cirrhosis (METAVIR F4 vs. 
F1-F3, AUROC = 0.55). This result was consis-
tent with those of previous studies [23, 54]. A 
meta-analysis on APRI in hepatitis B-related 
fibrosis and cirrhosis revealed AUROC = 0.79 
for significant fibrosis and AUROC = 0.75 for  
cirrhosis [23]. In another meta-analysis, APRI 
exhibited AUROC = 0.7407 for significant fib- 
rosis detection (METAVIR F2-F4 vs. F1), 0.7347 
for advanced fibrosis detection (METAVIR F3-F4 
vs. F1-F2), and 0.728 for cirrhosis detection 
(METAVIR F4 vs. F1-F3) [54]. Furthermore, our 
results were consistent with those of previous 
meta-analysis [54] and suggested that APRI 
had a lower accuracy for predicting HBV-related 

significant fibrosis, severe fibrosis, and cirrho-
sis compared with FIB-4 (AUROC = 0.83, 0.49, 
and 0.55 and AUROC = 0.86, 0.76, and 0.68, 
respectively).

In our study, the predictive performance of 
FIB-4 for cirrhosis (METAVIR F4 vs. F0-F3, 
AUROC = 0.68) was lower than that for signifi-
cant fibrosis (METAVIR F2-F4 vs. F0-F1, AUROC 
= 0.86). This result differed from those of the 
previous studies [23, 53, 54]. In a previous 
meta-analysis, FIB-4 exhibited higher diagnos-
tic accuracy in predicting hepatitis B-related 
liver cirrhosis (METAVIR F4 vs. F0-F3, AUROC = 
0.89) than significant fibrosis (METAVIR F2-F4 
vs. F0-F1, AUROC = 0.78) and severe fibrosis 
(METAVIR F3-F4 vs. F0-F2, AUROC = 0.79) [53]. 
Another recent meta-analysis also revealed 
that FIB-4 showed higher predictive perfor-
mance for cirrhosis (METAVIR F4 vs. F1-F3, 
AUROC = 0.8448) than for advanced fibrosis 
(METAVIR F3-F4 vs. F1-F2, AUROC = 0.8165) 
and significant fibrosis (METAVIR F2-F4 vs. F1, 
AUROC = 0.7844) [54]. The small numbers of 
cases of patients with F3 and F4 might have 
accounted for the lower AUROCs of FIB-4 in our 
study.

The present study had some limitations. First, 
our study had a small sample size. Thus, the 
statistical power is insufficient to generate a 
conclusion for the general population. None- 
theless, our preliminary result indicated that 
three specific microRNAs were expressed in the 
serum of patients with HBV-related liver fibro-
sis. Further research should be conducted  
on these microRNAs to elucidate their roles in 
liver fibrogenesis in the context of liver tissu- 
es. Second, we were unable to determine the 
expression levels of microRNAs in the liver tis-
sues due to the limited amount of available 
biopsy specimens. The relationships between 
these microRNAs in the serum and fibrotic  
liver tissues were not explored in this study. 
Some published reports have evidenced the 
expression of these microRNAs in the liver tis-
sues, including the expression of miR-21 th- 
rough miRNA array hybridization [55], miR-29 
through microarray analysis [46], and miR-221 
through microarray analysis [47]. A correlative 
study of microRNAs between these two sourc-
es is warranted to evaluate the feasibility of 
using serum microRNAs as surrogate biomark-
ers for liver fibrosis. Third, demographic param-
eters (BMI, AST, ALT, and HBV DNA level) were 
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not matched in the four liver fibrosis groups. 
Studies have suggested that miR-21 is invol- 
ved in nonalcoholic fatty liver disease (NAFLD) 
and nonalcoholic steatohepatitis (NASH). Liver 
miR-21 is overexpressed in NASH in mouse 
models [56]. Serum levels of miR-21, miR-34a, 
miR-122, and miR-451 were higher in patients 
with NAFLD [57]. In addition, HBV virologic fac-
tors may influence the expression of miR-21. 
HBV X protein induced miR-21 expression in 
cell culture models [58, 59]. NAFLD and HBV 
virologic factors may confound the correlation 
between microRNAs and the liver fibrosis stage 
[56-58].

In conclusion, serum miR-21 correlated with 
the histological stage of liver fibrosis in pati- 
ents with CHB. The predictive value of serum 
miR-21 for the histological stage of liver fibro- 
sis tended to be inferior to those of the APRI 
and FIB-4 scores.
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Table S1. Primer sequences of microRNAs
microRNAs
miR-21 UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACA
    Forward primer: 5’-GATCTTAACAGGCCAGAAATGC-3’
    Reverse primer: 5’-CCAGACAGAAGGACCAGAG-3’
miR-29 AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUUCUAGCACCAUCUGAAAUCGGUUAU
    Forward primer: 5’-CCAACCCTCACGACCTTCT-3’
    Reverse primer: 5’-CATTTCCTCTCAGCAGTCAG-3’
miR-122 CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUUGUGUCUAAACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGCUAGGC
    Forward primer: 5’-CTTCGTGGCTACAGAGTTTC-3’
    Reverse primer: 5’-CCAGACTTTATTCAGTAAGTACA-3’
miR-138-2 CGUUGCUGCAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCAUCA
    Forward primer: 5’-GGCGGAGTTCTGGTATCGT-3’
    Reverse primer: 5’-GCTGCCAGGTGATTCTGAG-3’
miR-140 UGUGUCUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGGGUAGAACCACGGACAGGAUACCGGGGCACC
    Forward primer: 5’-CCGTGGATGGATGTTCCTTT-3’
    Reverse primer: 5’-ATTCAGAGTCCTTTTGGGCTT-3’
miR-143 GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUCUCUGGUCAGUUGGGAGUCUGAGAUGAAGCACUGUAGCUCAGGAAGAGAGAAGUUGUUCUGCAGC
    Forward primer: 5’-GGAAACACAGTTGTGAGGAAT-3’
    Reverse primer: 5’-CTTACCACTTCCAGGCTGAT-3’
miR-221 UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCUACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUGUUCUC
    Forward primer: 5’-CTGAGGTGATCAGCTTTCTT-3’
    Reverse primer: 5’-GTAGGCAGTTGTGTTGAAATAGT-3’
miR-222 GCUGCUGGAAGGUGUAGGUACCCUCAAUGGCUCAGUAGCCAGUGUAGAUCCUGUCUUUCGUAAUCAGCAGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUCUAGCU
    Forward primer: 5’-GTGTGTGTGTGTGTAATTCAAG-3’
    Reverse primer: 5’-CAGTCAGTATCTGTTGGATAAGT-3’
Cel-miR-39 (kit) UAUACCGAGAGCCCAGCUGAUUUCGUCUUGGUAAUAAGCUCGUCAUUGAGAUUAUCACCGGGUGUAAAUCAGCUUGGCUCUGGUGUC
Primer sequences are 5’-3’.


