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Abstract

The precise temporal and spatial coordination of histone lysine methylation dynamics across the 

epigenome regulates virtually all DNA-templated processes. A large number of histone lysine 

methyltransferase (KMT) enzymes catalyze the various lysine methylation events decorating the 

core histone proteins. Mutations, genetic translocations and altered gene expression involving 

these KMTs are frequently observed in cancer, developmental disorders and other pathologies. 

Therapeutic compounds targeting specific KMTs are currently being tested in the clinic, although 

overall drug discovery in the field is relatively under-developed. Here we review the biochemical 

and biological activities of histone KMTs and their connections to human diseases, focusing on 

cancer. We also discuss the scientific and clinical challenges and opportunities in studying KMTs.

An important mechanism for regulating chromatin involves the reversible covalent 

modification of histones by chemical moieties such as methyl and acetyl groups. These 

different chemical ‘marks’ on histones are linked to discrete chromatin states and regulate 

the accessibility of DNA to trans-acting factors that mediate a wide variety of chromatin-

templated processes such as transcription, DNA repair and DNA replication1. Chemically, 

lysine methylation entails the addition of one, two or three methyl groups to the ε-nitrogen 

of a lysine side chain, forming mono-, di- and trimethylated derivatives (referred to here as 

Kme1, Kme2, and Kme3, respectively; Fig. 1a). This reaction, while only subtly changing 

the primary structure of the modified polypeptide, greatly increases the information encoded 

within the molecule, a feature highlighted by the unique activities frequently coupled to the 

specific extent of methylation. Methylation of lysines on histone and non-histone proteins is 

generated by protein lysine methyltransferases (KMTs; referred to as ‘writers’) and removed 

by protein lysine demethylases (KDMs; referred to as ‘erasers’) (Fig. 1a). In the human 

genome, there are predicted to be over 100 KMTs, and mass spectrometry–based studies 

suggest that more than 1,000 proteins in the human proteome harbor lysine methylation2–4.

Lysine methylation was first described in 1959 on a bacterial flagellar protein5 and soon 

thereafter identified on histone proteins6. Indeed, the core histones contain numerous 
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evolutionarily conserved lysine residues that are methylated in vivo. In humans, the 

canonical lysine methylation sites are found on histone H3 at lysine 4 (H3K4), lysine 9 

(H3K9), lysine 27 (H3K27), lysine 36 (H3K36) and lysine 79 (H3K79), and on histone H4 

at lysine 20 (H4K20). These modifications regulate an array of chromatin functions (Fig. 

1b)1. In addition to these canonical sites, there are several less well characterized sites of 

lysine methylation on the core histones (for example, H3K23me, H3K63me3, H45me1 and 

H4K12me1) (Fig. 1c)4,7. Together, the substantial numbers of methylation sites and 

differentially methylated states present in histones illustrate the potential complexity that 

this signaling system can provide in the regulation of chromatin biology and how its 

deregulation can lead to disease.

In 2000, the discovery of SUV39H1, the first known histone KMT8, was a major 

breakthrough in the field that revealed a direct connection between histone methylation and 

a classic chromatin-mediated epigenetic phenomenon in flies known as position-effect 

variegation (PEV)8 (for a detailed review of PEV, see ref.9). Over the past two decades, the 

discovery and characterization of many additional histone KMTs has uncovered an elaborate 

network connecting chromatin regulation, epigenetic processes and human disease. In this 

context, the majority of research on lysine methylation has naturally focused on histone 

substrates and its role in chromatin and epigenetic regulation. One unintended consequence 

of this emphasis has been the emergence of biases in the initial characterization of the 

catalytic activities of orphan KMTs as histone-modifying enzymes. For example, the 

availability of reagents such as state-specific antibodies with which to study histone 

methylation, combined with the potential underappreciation of the limitations of these 

reagents, has led to the mischaracterization of some enzymes as histone KMTs2 (discussed 

below). As the correct assignment of catalytic specificity for KMTs is crucial for 

understanding the role of chromatin in disease and for efforts to develop therapeutics, here 

we offer our perspective in classifying the reported histone KMTs as (1) bona fide histone-

modifying enzymes, (2) enzymes that are referenced in the literature as histone KMTs but 

clearly are not, or (3) enzymes for which further work is necessary before any meaningful 

conclusions about catalytic activity and specificity can be drawn. Our rationale for making 

these distinctions, and their implications for disease etiology, are discussed below.

KMTs that catalyze canonical histone lysine methylation

In the human proteome, there are two domains with annotated lysine methyltransferase 

activity: the SET domain (named for three Drosophila melanogaster proteins originally 

recognized as containing the domain: Su(var)3–9, enhancer of zeste and trithorax) and the 

seven-beta-strand (7βS) domain (which is found on enzymes ranging from the histone KMT 

hDOT1L (Fig. 2a) to DNA methyltransferases)1–3. In humans, there are 55 SET-domain-

containing proteins. Of these, half are active KMTs (methylating histone and/or non-histone 

substrates), one protein (SETD3) is a histidine methyltransferase10, and the enzymatic 

activities of the remainder are unclear2 (Fig. 2a,b and Table 1). The 7βS family is larger and 

more diverse than the SET family, with approximately 150–160 members in humans3,11. 

Different 7βS-containing proteins methylate a wide range of substrates including lysine, 

arginine, other amino acid side chains, N-terminal α-amines, DNA, RNA and various 

metabolites3.
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The canonical histone lysine methylation marks found in humans are shown in Fig. 1b. 

These various modifications are generated in a context-dependent manner by a total of 24 

different enzymes: 23 different SET proteins and one 7βS protein (Fig. 2a). In general, 

histone KMTs are highly selective: that is, the enzymes that methylate H3K36 do not 

methylate a different lysine if K36 is mutated. One exception is the meiotic recombination 

factor PRDM9, which trimethylates H3K4 in vivo in meiotic cells, but in vitro also 

methylates H3K9 and H3K36 (Fig. 2a,b). The physiological importance of the H3K9 and 

H3K36 activities of PRDM9 remains to be determined. The 7βS protein hDOT1L is the only 

enzyme in the human proteome that generates H3K79me, one of the few histone 

modifications found within the globular region of the nucleosome (Fig. 1b). In contrast, 

multiple enzymes mediate methylation events at H3K4, H3K9 and H3K36 (Fig. 2a). This 

enzymatic redundancy is used for targeting specific activities in a context-dependent manner 

such as differential genomic localization (such as methylation at an enhancer versus 

promoter region) and for the selective generation of different methylation states (such as 

me2 versus me3).

For example, H3K36me2 is generated by four related enzymes (NSD1, NSD2, NSD3 and 

ASH1L), whereas SETD2 is the only enzyme in somatic cells that synthesizes H3K36me3 

(Fig. 2C). Notably, the generation of H3K36me3 by SETD2 is not dependent on the 

presence of H3K36me212,13; i.e., the initial recognition of the nucleosome as a substrate by 

SETD2 is far more efficient on unmethylated H3K36 than H3K36me2 (Fig. 2c). At H4K20, 

the monomethylated state is generated solely by SETD8, and the higher methylation states 

are synthesized by the KMTs SUV420-H1 and SUV420-H2 (Fig. 2c)14. However, unlike 

SETD2, SUV420-H1 and SUV420-H2 prefer a methylated substrate (H4K20me1) to 

unmethylated H4K2014,15 (Fig. 2c). As a consequence, deletion of SETD8 leads to loss of 

all H4K20 methylation states even though SETD8 generates only the monomethyl 

species14–16.

Notably, SETD8 and several other KMTs that methylate histones also modify non-histone 

substrates2. For instance, SETD7, G9A, GLP and SETD8 methylate p53 (as well as other 

non-histone substrates)2. In this context, knockout of Setd8 in Drosophila is lethal, whereas 

flies harboring a substitution of H4K20A, which prevents methylation of this residue, have a 

substantial delay in development but are otherwise normal17. The more severe phenotype 

that results from the Setd8 deletion versus the H4K20A mutation argues for physiologically 

important roles of SETD8 outside of H4K20 methylation. Thus, for select histone KMTs, 

their ability to methylate non-histone substrates must be taken into account in evaluating 

potential inhibitory compounds as candidate therapeutics.

Considerable efforts have been made to develop small-molecule inhibitors of different 

histone KMTs as tool compounds and for therapeutic purposes18. At present, active clinical 

trials (phase 1 and 2) are focused on several inhibitors of EZH2 (the main H3K27 KMT) and 

one inhibitor of the essential EZH2 cofactor EED; these compounds are being evaluated for 

efficacy in the treatment of a wide range of adult and pediatric neoplasm types (for example, 

ClinicalTrials.gov identifiers , , and ). Patients enrolled in the EZH2/EED inhibitor trials 

have tumors that share a common molecular signature: they either are positive for EZH2 
gain-of-function mutations or harbor loss-of-function mutations in other chromatin-
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regulatory factors that are predicted to create cellular dependency on EZH2 activity. Beyond 

EZH2, a clinical compound targeting hDOT1L was evaluated in a phase 1 trial that was 

completed in 2016 (ClinicalTrials.gov identifier ), but as of this writing a phase 2 trial has 

not commenced. Tool and preclinical compounds also exist for several other histone KMTs 

(for example, SETD8 and G9A)18, arguing that KMTs, as an enzyme class, are druggable. 

However, several obstacles need to be overcome in developing drugs against some of the 

more promising KMT targets, including the lack of structural information about the 

enzymes, the need to use nucleosomes as substrates for in vitro drug screening, and the still 

limited, although growing, understanding of the types of compounds best suited to engage 

KMTs.

Mistaken identity: not all KMTs methylate histones

In addition to the enzymes listed in Fig. 2a,b, the following candidate KMTs—many of 

which are linked to human disease—have been reported to generate at least one canonical 

histone methylation mark (the putative modified residue(s) is (are) provided in parentheses 

after each enzyme symbol): MLL5 (H3K4), SETD3 (H3K4, H3K36), SETD5 (H3K9), 

SETDB2 (H3K9), SMYD1 (H3K4), SMYD2 (H3K36), SMYD3 (H3K4), SMYD5 

(H4K20), SETMAR (H3K36), PRDM1 (H3K9), PRDM2 (H3K9), PRDM3 (H3K9), 

PRDM8 (H3K9) and PRDM16 (H3K4, H3K9) (Fig. 2a). Of these enzymes, the specific 

canonical histone methylation activities reported for MLL5, SETD3, SETDB2, SMYD3 and 

SETMAR have been independently tested and not reproduced10,19–22; the original report on 

MLL5 was retracted23. Moreover, biophysical and biochemical analyses of MLL5 indicate 

that it is not an active enzyme22. SETD5, an important protein etiologically linked to 

intellectual disability disorders24,25, is similar in structure to MLL5 and therefore is not 

likely to be an active enzyme22. We recently demonstrated that SETD3 is a highly selective 

histidine methyltransferase and that it has no detectable activity on nucleosomes10 (Fig. 2d). 

SETDB2, given its sequence similarity to SETDB1, is assumed to be an H3K9 

methyltransferase; however, to date, no activity for SETDB2 has been rigorously 

identified21. SMYD3 is a largely cytoplasmic protein that methylates non-histone substrates 

such as MAP3K2 and does not methylate H3K4 on free histones or on nucleosomes20. 

SETMAR is a DNA-repair protein that consists of a fusion between a SET domain and a 

DNA transposase domain19,26. In vitro, SETMAR methylates free H3 and H2B but has no 

activity on nucleosomes, and its activity on free H3 does not target K36, as determined by 

tandem mass spectrometry19. Thus, the physiological substrate of SETMAR and its potential 

role in DNA repair remains to be elucidated. SMYD2 is a relatively promiscuous enzyme (as 

far as KMTs go) and methylates many substrates. However, it has no activity on 

nucleosomes and lacks specificity on free histones, in contrast to its interaction with p53, 

one of SMYD2’s better-characterized substrates, where it shows a highly selective 

activity27. Zebrafish SMYD1 has activity toward histones28, but methylation of histones has 

not been demonstrated for the human homolog. There is one report showing that SMYD5 

has H4K20 trimethylation activity29. However, deletion of both Suv420-H1/2 in mice 

eliminates H4K20me314, leaving the status of SMYD5 as a bona fide H4K20-modifying 

enzyme unresolved. Finally, several conflicting reports have suggested that PRDM1, 

PRDM2, PRDM3, PRDM8 and PRDM16 methylate H3K9 or H3K4, but other researchers 

Husmann and Gozani Page 4

Nat Struct Mol Biol. Author manuscript; available in PMC 2020 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ClinicalTrials.gov


have been unable to reproduce such activities, and thus more definitive work is required to 

determine whether these biologically important proteins are truly active enzymes, and if they 

are, to identify their physiological substrates2 (Fig. 2d).

Why have these enzymes been potentially mischaracterized? As mentioned above, in some 

cases, interpretation of data relying solely on state-specific antibodies can be misleading, 

particularly in the absence of tandem mass spectrometry studies as an independent approach 

to confirm the specific methylation event. In addition, although technically challenging, the 

use of nucleosomes as substrates in addition to histone peptides can provide important 

information about whether a putative histone methylation activity is likely to be 

physiologically relevant. Finally, some studies have relied on mass spectrometry data in 

which the mass shifts attributed to methylation reactions are the wrong molecular weight for 

methylation, raising doubt about the studies’ conclusions (for example, ref.30). Taken 

together, these complications emphasize that it is important that those undertaking any 

research, including drug-development efforts, focused on these potentially mischaracterized 

KMTs—many of which have clear links to disease (for example, PRDM1 and PRDM2 are 

important tumor suppressors31, PRDM16 is a key regulator of adipogenesis31 and SETDB2 

is a regulator of fibrotic diseases21)—consider starting with a rigorous and unbiased analysis 

of their enzymatic activities.

H3K36-specific lysine methyltransferases in cancer

The established link between histone lysine methylation dynamics, gene expression 

regulation and oncogenic programming provides a paradigm for the way that pathological 

alterations of histone KMTs can promote the development and progression of diverse 

cancers (Fig. 3). The findings in this field are vast, and many excellent and comprehensive 

reviews on the topic are available for the interested reader1,32,33. Here we focus on the 

pathological roles of the enzymes that either dimethylate or trimethylate H3K36 (see Fig. 

2c) as model histone KMTs and discuss examples of crosstalk between H3K27 and H3K36 

methylation in epigenetic-mediated oncogenic programming.

The state of methylation at H3K36 defines distinct biological outcomes, and mutations in the 

H3K36 KMTs are linked to a variety of developmental disorders and cancer (Fig. 3 and 

Table 2). SETD2, which synthesizes H3K36me3 in humans, regulates DNA methylation, 

RNA processing, DNA repair and tumor suppression13,34–37. In contrast, it is less clear what 

specific molecular functions are associated with H3K36me2, although this modification has 

been linked to DNA methylation, gene activation and cellular transformation12,33,38,39. 

There are four enzymes that generate H3K36me2: NSD1, NSD2, NSD3 and ASH1L (Fig. 

2c). The enzyme(s) responsible for generating H3K36me1 is (are) unknown, and a cellular 

function for H3K36me1 is not clear at present, although it is likely that the mark itself is 

synthesized through the combined actions of KMTs and KDMs.

The initial evidence for a potential tumor-suppressive role of SETD2, and by proxy 

H3K36me3, came from sequencing studies of renal-cell carcinoma (RCC). These studies 

found recurrent biallelic loss of SETD2, a classic hallmark of known tumor-suppressor 

genes40,41. Subsequent sequencing studies have identified recurrent SETD2 mutations across 
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a broad spectrum of human malignancies, including lung adenocarcinoma (LUAC)42, 

multiple types of leukemia and other hematological malignancies43–48, central nervous 

system tumors49, bladder cancer50 and gastrointestinal tumors51. The remarkably high 

frequency of SETD2 mutations across a wide variety of cancer types is reminiscent of other 

classical tumor suppressors and suggests a broad, general role in prevention of cancer.

Further sequencing efforts in RCC found that inactivating mutations in SETD2 occurred in a 

subclonal fraction of the tumor, arguing against a role for SETD2 loss in tumor initiation. 

However, the same studies identified individual tumors with distinct inactivating mutations 

in SETD252, demonstrating parallel evolution toward loss of SETD2. These results suggest 

that SETD2 loss plays a role in cancer progression. Indeed, biallelic loss of SETD2 in 

patients with RCC is unfortunately associated with significantly lower survival rates53. 

Furthermore, although SETD2 is lost in only a fraction of all RCCs (11.3%), its loss is far 

more prevalent in more aggressive subtypes of RCC (63%)54. The role of SETD2 in cancer 

progression extends to high-risk gastrointestinal stromal tumors51. Finally, patients with 

acute lymphocytic leukemia (ALL) who unfortunately relapsed after chemotherapy 

frequently acquire loss-of-function mutations in SETD255.

More recent analyses of multiple cancer subtypes have provided additional evidence that 

loss of SETD2 drives tumor progression. In comprehensive studies of acute myeloid 

leukemia (AML), ALL and LUAC, SETD2 was mutated at a much higher frequency in 

tumors driven by fusion oncogenes56. Specifically, mutations in SETD2 were detected in 

22.6% of patients with MLL-rearranged leukemia but in only 4.6% of patients without the 

oncogenic fusion. Similarly, in LUAC, SETD2 mutations were found in 18% of patients 

with cancers driven by fusion oncogenes, compared with 9% of those lacking oncogenic 

fusions. Other studies have observed co-occurrence of SETD2 loss and silencing of 

CDKN2A42, as well as Ras-activating mutations55. This co-occurrence suggests that the 

requirement for SETD2 in tumor suppression may be enhanced in specific contexts.

In vivo screens for tumor suppressors have identified SETD2 as a top candidate in multiple 

cancer models, including ALL57, hepatocellular carcinoma58 and gastrointestinal cancer59. 

Moreover, recent work using multiplexed in vivo CRISPR-based genome editing to knock 

out numerous known and putative tumor-suppressor genes in a Kras-driven mouse model of 

LUAC demonstrated that Setd2 depletion dramatically increased tumor size60. Indeed, loss 

of Setd2 resulted in the largest tumors observed in the study, surpassed only by tumors 

harboring p53 inactivation. These results are consistent with earlier work demonstrating a 

role for SETD2 in suppressing Kras-driven LUAC in mouse models61. Collectively, these 

studies provide compelling experimental evidence for the tumor-suppressor function of 

SETD2, in accordance with the numerous SETD2 mutations identified in human tumors 

(Fig. 3). However, further work is needed to determine the mechanism(s) of tumor 

suppression by SETD2, the relationship to H3K36me3 catalysis and the effects of genetic 

context.

At the molecular level, the ability of SETD2 to regulate several fundamental biological 

processes is directly linked to selective recognition of H3K36me3 by methyl-lysine reader 

domains. Baubec et al. demonstrated that crosstalk between DNA methylation and histone 
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methylation is mediated by recognition of H3K36me3 by the DNMT3B PWWP domain37. 

This interaction facilitates the targeting of DNMT3B to the bodies of transcribed genes, 

which are enriched for H3K36me3. This leads to focal de novo DNA methylation at these 

genomic regions37, which may influence the expression of nearby genes. Indeed, SETD2 
loss in mouse oocytes causes defects in DNA methylation, genomic imprinting and 

development62. SETD2-mediated regulation of transcription and pre-mRNA splicing is also 

mediated by an H3K36me3-selective reader domain35,36. The tandem bromo-PWWP 

domains on the nuclear factor BS69 (also known as ZMYND11) recognizes K36me3, but 

only in the context of nucleosomes containing the histone variant H3.336. The binding of 

BS69/ZMYND11 to H3.3K36me3-enriched chromatin recruits BS69/ZMYND11 and its 

associated proteins, which include RNA splicing and transcription factors35,36. Connections 

between DNA-repair mechanisms and SETD2 are also mediated by reader domains. For 

example, recognition of H3K36me3 by the PWWP-domain-containing factor MSH6 

facilitates the association of the mismatch-recognition complex to facilitate DNA repair63. 

Collectively, the discovery of selective H3K36me3-reader domains has provided crucial 

insight into the molecular mechanisms of action by which SETD2 regulates biology and 

how these functions may influence oncogenesis. For example, altered gene expression 

and/or compromised DNA repair in a SETD2-deficient setting could promote cellular 

transformation. Finally, two interesting studies recently reported that SETD2 directly 

methylates tubulin and STAT164,65. The strong substrate preference of SETD2 for intact 

nucleosomes suggests that it recognizes a specific three-dimensional topology during 

catalysis. Therefore, the molecular basis for the recognition of such disparate substrates 

(nucleosomal H3K36, tubulin and STAT1) and the relative contributions of H3K36me3 

versus the non-histone substrates in tumor suppression are important questions to address in 

the future.

Whereas H3K36me3 is generated exclusively by SETD2, the biosynthesis of H3K36me2 is 

more complex. There are four related enzymes, NSD1, NSD2, NSD3 and ASH1L, that can 

generate H3K36me2 on nucleosomes in vitro (Fig. 2c)66. In most cell types, including 

various cancer cell lines, NSD2 is responsible for generating the bulk of H3K36me212. In 

specific cellular contexts NSD1 replaces NSD2 as the enzyme required to generate global 

H3K36me267. ASH1L does not globally regulate cellular H3K36me2 levels; instead, its 

activity is localized to specific genes68. The physiological role of NSD3 is not clear.

In contrast to SETD2 and its role as a tumor suppressor, all four of the H3K36me2-specific 

KMTs are thought to promote oncogenesis (Fig. 3). One clear example is the role of NSD2 

in the pathogenesis of multiple myeloma (MM)69. MM is an incurable blood malignancy 

that effects hundreds of thousands of people throughout the world70,71. Among patients with 

MM, 15–20% carry a t(4;14) translocation, which places the transcription of NSD2 under 

the control of a strong IgH intronic enhancer and leads to aberrant, massive upregulation of 

NSD2 that is thought to drive cancer development72–74. Consistent with this, NSD2 

expression in MM cells drives xenograft tumor formation and tumor invasion in mice in a 

manner that depends on the catalytic activity of NSD239. Beyond MM, NSD2 

overexpression is broadly found in diverse cancers39 and drives metastatic progression in 

prostate cancer75. Consistent with this expression profile, NSD2 depletion in multiple cancer 

cell lines results in decreased cellular proliferation12,76.
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In addition to the t(4;14) translocation and general overexpression of NSD2, a recurrent 

heterozygous gain-of-function NSD2 (E1099K) variant is found in ~10% of cases of 

childhood ALL with a precursor-B phenotype77,78. ALL is the most common cancer 

diagnosed in children, representing more than a quarter of all pediatric neoplasms79. E1099 

is found within the catalytic SET domain of NSD2, and the E1099K substitution confers a 

roughly 1.5-fold increase in NSD2 catalytic efficiency through a mechanism that is presently 

unknown. Expression of NSD2-E1099K in cells leads to elevated H3K36me2 levels, which 

causes a decrease in H3K27me3 levels due to the direct inhibition of EZH2 by 

H3K36me270,71,80. In this context, the ability of NSD2-E1099K to drive pediatric ALL is 

postulated to be mediated in part via depletion of H3K27 methylation, which in turn leads to 

defects in epigenetic gene silencing and oncogenic reprograming (Fig. 4).

Notably, beyond pediatric ALL, the NSD2 E1099K mutation is found in other neoplasms, 

including several types of solid tumors, such as LUAC, colon cancer and thyroid 

tumors71,73,81. Together, the many links between NSD2 alterations and different cancers 

indicate that the NSD2–H3K36me2 axis has a broad role in promoting tumorigenesis. 

However, it remains unclear whether H3K36me2 has direct effect on chromatin and gene 

regulation beyond the suppression of H3K27me3. That said, depletion of NSD2 and 

H3K36me2 in HT1080 cancer cells impairs cell proliferation, and this phenotype is 

independent of H3K27me3, because it is not rescued by EZH2 inhibition82. Moreover, the 

PWWP domain on NSD2 itself preferentially binds to H3K36me2, and it is postulated to be 

important for the propagation of NSD2-mediated H3K36me2 domains83. This might 

indicate that other yet-to-be-discovered H3K36me2-specific reader domains exist that link 

this modification to cancer pathways.

Like NSD2, the proteins NSD1, NSD3 and ASH1L are linked to oncogenesis. In AML, the 

t(5;11) fusion of NUP98, a member of the nuclear pore complex, to NSD1 (NUP98–NSD1), 

is found in about 5% of AML cases and is associated with poor prognosis39. In mouse 

adaptive-transfer experiments, Wang et al. showed that bone marrow progenitor cells 

ectopically expressing NUP98–NSD1 rapidly developed AML84. Mechanistically, this 

transformation activity is mediated by the activation of HOX genes, important 

developmental genes that are frequently dysregulated in cancer, via H3K36 methylation and 

antagonism of EHZ2-mediated repression84. Beyond the NUP98–NSD1 fusion, the role of 

NSD1 in cancer is complex. Nonsense mutations in NSD1 are observed in ~10% of distinct 

populations of patients with squamous cell carcinoma of the head and neck (SCCHN)67 and 

with lower frequency in several other cancers85. This suggests that loss of functional NSD1 

promotes oncogenesis. On the other hand, patients with SCCHN who harbor NSD1 
mutations have a favorable outcome and show a better response to chemotherapy. Thus, the 

role of NSD1 in cancer might be dependent on the tissue and etiological context as well as 

the mutational landscape of the disease.

The NSD3 gene is commonly amplified in breast cancer, lung squamous cell carcinoma and 

squamous cell carcinoma of the head and neck81. In addition, NSD3 is involved in rare 

translocations in patients suffering from acute myeloid leukemia (AML), with the fusion 

including the NSD3 SET domain86. Furthermore, a rare fusion lacking the SET domain but 

including the BET-interaction domain of NSD3 is found in midline carcinoma84,87. Despite 
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the links between NSD3 and cancer, the physiological role of the catalytic activity of NSD3 

and its relationship to tumorigenesis remains unclear.

Like NSD3, the gene ASH1L is amplified in various cancers including breast, uterine and 

pancreas81. Moreover, the H3K36 dimethylation activity of ASH1L promotes MLL-

dependent leukemogenesis in both mouse models and human MLL-rearranged leukemic 

cells through the regulation of transcription at key leukemia-associated gene68. Taken 

together, these data indicate that whereas the SETD2–H3K36me3 axis plays a role in 

suppressing tumorigenesis, the dimethyl state at H3K36 is generally associated with 

promoting oncogenesis.

Although either dimethylation or trimethylation at H3K36 antagonizes EZH2 and prevents 

H3K27 methylation, the distribution patterns of H3K36me2 and H3K36me3 across the 

genome are distinct. H3K36me2 is far more abundant than H3K36me3 and is both present in 

intergenic regions and enriched proximal to the transcriptional start sites of actively 

transcribed genes12. In contrast, H3K36me3 is found largely within the bodies of actively 

transcribed genes, reaching its highest levels at the 3’ end. Overall, it is likely that their 

different chromatin distributions coupled with state-specific reader domains explain why 

H3K36me2 and H3K36me3 have divergent roles in cancer. Furthermore, because of the 

wider distribution of H3K36me2 across the genome and its overall greater abundance, 

H3K36me2 will naturally have a larger impact in antagonizing EZH2 than does SETD2-

catalyzed H3K36me3. It appears contradictory that although EZH2 itself has oncogenic 

properties, counteracting its activity promotes H3K36me2-driven cancers. This, however, 

highlights an important concept in epigenetic mis-regulation: either gains or losses of 

histone methylation marks in a cell-context-dependent manner can select for gene 

expression programs that provide a fitness advantage or prevent differentiation, locking cells 

into a proliferative state that exists only transiently in normal development (Fig. 4).

Histone KMTs and developmental disorders

Haploinsufficiency of histone KMTs manifest in numerous developmental disorders (Table 

2). Notably, there is striking similarity in the developmental phenotypes of patients with 

deficiencies in the main H3K27 methyltransferase complex and those with deficiencies in 

H3K36 methyltransferases (Table 2). Both Sotos syndrome and Weaver syndrome, largely 

characterized by mutations in NSD1 and EZH2, respectively, present with overgrowth and 

intellectual disability88,89. Although these conditions are categorized under different names, 

a subset of patients with Weaver syndrome possess NSD1 mutations rather than EZH2 
mutations90. Furthermore, patients diagnosed with Sotos syndrome but lacking mutations in 

NSD1 have been found to have mutations in SETD2 and DNMT3A91. The remarkable 

phenotypic convergence observed in these patients may reflect underlying molecular 

relationships among the methylation of H3K27, H3K36 and DNA.

Non-canonical histone methylation sites in disease

Beyond the canonical sites, many other methylation events on histones (for example, 

H3K14me3, H3K56me1, H3K64me3, H4K12me1 and several others) have been identified 
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by various methods, including mass spectrometry4,7 (Fig. 1c). Interestingly, H3K14me3 is 

not normally found in human chromatin but is generated by the bacterial effector protein 

RomA in cells infected with Legionella pneumophila92. This mark is hypothesized to repress 

the expression of host genes encoding components of the innate immune system, which 

helps promote intracellular replication of the mycobacterium. Thus, a RomA inhibitor could 

function as an antibiotic to selectively treat legionella pneumonia92.

Recently, KMT9, a heterodimeric complex consisting of two 7βS enzymes (C21orf127, also 

known as HEMK2, N6AMT1 or PrmC; and TRMT112), was shown to monomethylate 

H4K12 in vitro on nucleosomes, and depletion of KMT9 in prostate cancer cells results in 

decreased endogenous H4K12me1 levels93. Beyond DOT1L, KMT9 represents the only 

other 7βS enzyme known to date to have histone lysine methylation activity. In cells, 

H4K12me1 modification localizes to gene promoters, and depletion of this mark by 

knockdown of KMT9 reduces the expression of genes marked with H4K12me1, suggestive 

of a role for the KMT9–H4K12me1 axis in transcription initiation93. Notably, the levels of 

KMT9 and H4K12me1 are specifically elevated in malignant prostate cancer. Furthermore, 

depletion of KMT9 impairs cell proliferation and xenograft tumor growth of androgen-

independent prostate cancer, but not the growth of several other cell types. Interestingly, the 

heterodimeric KMT9 complex also functions as a protein gluta-mine methyltransferase, but 

Metzger et al. have identified KMT9 mutants that separate the two enzymatic functions to 

demonstrate H4K12me1 synthesis as the relevant activity in prostate cancer93. This study 

suggests that targeting of a non-canonical histone mark, H4K12me1—through inhibition of 

KMT9—may offer a new strategy for the treatment of lethal castration-resistant prostate 

cancer.

Outlook

Over the last several decades, fueled by discoveries based on the integration of diverse 

methods, the scientific community has developed an understanding of the fundamental role 

of histone lysine methylation in the regulation of chromatin biology and of how this 

complex signaling system affects human disease. Drugs targeting EZH2, the main H3K27 

KMT, are being tested as precision medicines that will hopefully soon be available in 

clinical settings to help patients. Over the next several years, we anticipate that new ways to 

chemically or biologically modulate other histone KMTs, such as NSD2, will be realized 

and may offer therapeutic benefit in the treatment of cancers and other human pathologies.
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Fig. 1 |. Main sites of lysine methylation on mammalian histones and chromatin functions.
a, Chemical structures of methylated derivatives of lysine. Lysine residues can be 

monomethylated, dimethylated or trimethylated. b,c, Canonical (b) and non-canonical (c) 

lysine methylation marks on core nucleosomal histone H3 and H4 and their basic functions. 

Numbers adjacent to ‘K’ indicate the positions of the methylated lysines on histone H3 or 

histone H4. DNA is shown as black lines wrapped around blue histones. Key (right), 

chromatin-related functions associated with the methylation at left.
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Fig. 2 |. Histone KMTs in the human proteome.
a, Human histone KMTs categorized by their established substrate specificity. b, Top: 

Examples of additional histone KMT activities. Bottom: Methylation is also detected at the 

non-canonical H3K18, K23, K56 and K64 sites, but the enzymes catalyzing these events are 

not known. c, Top two rows: generation of H3K36 trimethylation is not dependent on 

existing dimethylation. Bottom row: generation of H4K20me2 and H4K20me3 is dependent 

upon SETD8-generated H4K20me1.
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Fig. 3 |. Spectrum of cancers associated with H3K36 methyltransferases.
The potential tumor-suppressive functions listed are informed by the identification of 

recurrent deletions, frameshifts, or truncating or damaging missense mutations, and by 

biological studies, including mouse models. Potential oncogenic functions are informed by 

overexpression, focal amplifications, gain of function or identification of a fusion oncogene, 

and by biological studies, including mouse models. CNS, central nervous system; HSTL, 

hepatosplenic T cell lymphoma; EATL-II, enteropathy-associated T cell lymphoma, type II; 

LSCC, lung squamous-cell carcinoma.
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Fig. 4 |. Model for crosstalk between methylation at H3K27 and H3K36 in oncogenic 
programming.
Deregulation of the dynamic interplay between methylation at H3K27 and that at H3K36 

leads to pathological transcriptional activation or repression and thereby promotes oncogenic 

reprogramming.
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Table 1 |

Putative KMTs reported in the literature to be specific histone-modifying enzymes compared to their actual 

activity on histones and other substrates

Putative KMT Histone physiological substrate Physiological substrate(s)

SETDB221 ? ?

SETMAR19,26 ?/–* ?

SETD310,30 –* Actin-H73

SETD522,24 ? ?

MLL522 – –

SMYD128 ? ?

SMYD227,94 –* p53, MAPKAP3,

SMYD320,95,96 H4K5me MAP3K2, VEGFR1

SMYD529 H4K20me3? ?

PRDM131 H3K9me? ?

PRDM231 H3K9me? ?

PRDM397 H3K9me? ?

PRDM831 – ?

PRDM1697,98 H3K4me?, H3K9me? ?

?
, unknown;

–
, no methylation activity;

*
, no histone methylation activity on nucleosomes; histone site followed by “?”, more evidence required to determine whether the reported activity 

is reproducible.
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