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   Introduction 

 Neurodegenerative diseases are often correlated with 
the activation of the innate immune response in humans 
but the causes or consequences of this complex relation-
ship remain to be determined in detail  [1–3] . The fly  Dro-
sophila melanogaster  is an eminent model organism for 
the study of the innate immune response, of which many 
aspects are shared by other organisms, including humans 
 [4, 5] , as well as for the study of cellular and molecular 
mechanisms responsible for neurodegeneration  [6–8] . 
Compared to mammals,  Drosophila  has better genetic 
tools, less complex nervous and immune systems and no 
blood capillaries or chronic inflammation. Hence, the 
primary conditions responsible for nervous tissue dete-
rioration should be more easily distinguished from sec-
ondary processes. Genetic links between neurodegenera-
tion and the innate immune response have recently been 
established in  Drosophila , opening the perspective for 
rapid advances in this field of biological and medical rel-
evance.
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 Abstract 

 A profound debate exists on the relationship between neu-
rodegeneration and the innate immune response in hu-
mans. Although it is clear that such a relation exists, the 
causes and consequences of this complex association re-
main to be determined in detail.  Drosophila  is being used to 
investigate the mechanisms involved in neurodegeneration, 
and all genomic studies on this issue have generated gene 
catalogues enriched in genes of the innate immune re-
sponse. We review the data reported in these publications 
and propose that the abundance of immune genes in stud-
ies of neurodegeneration reflects at least two phenomena: 
(i) some proteins have functions in both immune and ner-
vous systems, and (ii) immune genes might also be of neu-
roprotective value in  Drosophila . This review opens this de-
bate in  Drosophila , which could thus be used as an instru-
mental model to elucidate this question. 
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  Genes of the Immune Response Are Experimentally 

Associated with Neurodegeneration 

 Genes known to function in  Drosophila  innate im-
mune response have been experimentally assigned a 
causative role in neurodegenerative processes  [9–13] . In 
a review of these studies, Petersen and Wassarman  [14]  
propose that activation of the immune response pro-
motes neurodegeneration and two subsequent publica-
tions reinforce this view  [12, 13] .

  Flies in which human Aβ42 is expressed in the retina 
suffer from a type of retinal degeneration that is dimin-
ished or even suppressed by mutations in genes that en-
code proteins of fundamental importance for the activa-
tion of immune response along the Toll pathway, includ-
ing the receptors Toll, Tube and Pelle and the transcription 
factors homologues of human NF-κB, Dif and Dorsal  [9] . 
However, the data also indicate that in this case degen-
eration is not mediated by the canonical Toll pathway. 
The two principal discrepancies are, perhaps, that muta-
tions in the genes that encode Spatzle, a ligand of Toll, or 
Cactus (homologue of human I-κB), an important inhib-
itor of the Toll pathway, have no consequences for the 
retinal phenotype  [9] . However,  cactus  seems to be up-
regulated in these flies, as is also the case in flies infected 
with pathogens  [15, 16] . Furthermore, the operation of 
the Toll pathway during the immune response is based on 
the nuclear accumulation of the transcription factors Dif 
and Dorsal  [17] , but whether this happens in Aβ42-
expressing flies is not known.

  An association has been also established between neu-
rodegenerative phenotypes and genes from the Imd path-
way, the other main signaling pathway in the fly’s im-
mune response. The key transcription factor for the ac-
tivation of this pathway is Relish, a homologue of 
mammalian NF-κB  [5, 18] . Flies with mutations in  dnr1 , 
a gene that encodes a repressor of  Relish,  exhibit a neuro-
degenerative phenotype associated with increased tran-
scripts of  Relish  target genes encoding Cecropin A1, Dip-
tericin B, Attacin A and other antibacterial peptides  [13] . 
Transgenic overexpression in nervous tissue of some (but 
not all of those tested) antibacterial peptides also causes 
neurodegeneration as does the introduction of bacteria in 
the brain using a fine needle  [13] . However, it is not 
known whether  Relish  itself is upregulated in these flies 
and whether the Relish protein accumulates in the nuclei 
of brain cells as expected for an activation of the immune 
response via Relish  [18, 19] .

  Flies with mutations in  ATM   (telomere fusion, tefu) , a 
gene associated with the neurodegenerative disease atax-

ia-telangiectasia in humans, show significantly reduced 
ATM kinase activity and elevated levels of gene transcripts 
encoding antimicrobial peptides  [11]  but not of  spatzle , 
 Toll ,  Dorsal ,  Dif ,  Relish, imd  and other genes important for 
the activation of immune responses induced in  Drosophi-
la  by bacterial or fungal pathogens  [15, 16] . The neurode-
generative process caused by mutated  ATM  is inhibited by 
loss-of-function mutations in  Relish , but not in  imd , dem-
onstrating that  Relish  is necessary for the development of 
this pathology although not acting through the canonical 
Imd pathway. A similar relationship was observed in flies 
with light-dependent retinal degeneration caused by mu-
tations in  norpA   [10] . This phenotype is associated with 
an increment in the antimicrobial peptide Diptericin, en-
coded by one of the genes activated by the Imd pathway 
during a response to pathogens. Both Diptericin upregu-
lation and retinal degeneration are blocked by mutations 
in two elements central for the Imd pathway ( dredd  and 
 Relish ) but not by the equally important gene  imd .

  In summary, functional relationships between genes 
of the innate immune response and neurodegeneration 
have been firmly demonstrated in  Drosophila , but the 
data indicate that they are not mediated via activation of 
canonical immune response pathways. It may well be that 
the discrepancies reflect tissue-specific differences in im-
mune response pathways or that in the brain some im-
mune response genes have nonimmune functions.

  Regulation of Immune Response Genes Is a 

General Feature across Genomic Studies of 

Neurodegeneration 

 Genes annotated as integral to the immune response 
are also associated with neurodegeneration because they 
have abnormally high or low transcripts in genome-wide 
studies in several neurodegenerative models  [14, 20–26]  
( table 1 ). The gene catalogues generated by these studies 
are clearly enriched in genes from the immune response 
and, in at least 2 cases, the immune response genes consti-
tuted the predominant functional group  [11, 20] . Also, the 
catalogues published in other studies appear enriched in 
immune response genes, although this was not explicitly 
recognized in the corresponding publications  [27, 28]  ( ta-
ble 1 ). When considering the disproportionate presence 
of immune response genes among the hits of genomic 
studies of flies with neurodegeneration, it is important to 
notice that the majority of the genes annotated as part of 
the immune response in  Drosophila  do so because they 
exhibited abnormally high or low transcripts in microar-
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 Table 1.  Genes related to the innate immune response in Drosophila misregulated during neurodegeneration

Reference Type of assay Genes 
identified, 
total n

Genes related to 
immune responsea, 
n (%)

Genesb

Ferreiro et al. [24], 
2012

spalt homozygous 
mutant vs. wild type at 
stages 16 and 17 of 
embryogenesis

482 48 (9.9) CG10912, CG11842, CG13323, CG1358, CG14219, CG15784, CG16772, 
CG17107, CG18067, CG18179, CG18180, CG18301, CG30080, CG5778, 
CG5791, CG6639, CG7296, CG8562, CG9360, CG9468, CG9649, CG9989, 
Cpr49Ae, Ctr1B, deltaTry, Drsl5, Ect3, Hf, Hsp70Bc, IM1, IM10, IM14, 
IM2, IM23, IM3, IM4, Jon25Bi, Jon25Bii, Jon25Biii, Jon44E, Jon65Ai, 
Jon99Ci, Jon99Fi, Listericin, LysX, PebIII, Tg, Tsf1

Greene et al. [20], 
2005

parkin homozygous 
mutant vs. 
heterozygous in
1-day-old adults

26 8 (30.8) AttA, CG11459, CG12505, CG3604, Dpt, IM4, LysE, LysS

Kumimoto
et al. [25],
2013

Expression of mutated 
human SOD1

124c 34 (27.4) AttA, AttC, AttD, CecC, CG10912, CG13947, CG14500, CG15043, 
CG15263, CG15282, CG15829, CG18179, CG33109, CG4269, CG4757, 
CG9080, CG9463, CG9733, Def, DptB, Drs, Drsl3, Drsl4, fit, Jon65Ai, 
Jon99Fi, LysP, Mtk, Obp99b, PGRP-SB1, PGRP-SC1b, PGRP-SD, pirk, 
Prx2540-1

Nelson et al. [28],
2005

Overexpression of a 
polyQ repeat in the 
eye using GMR-GAL4

49 4 (8.2) CG10641, crq, mus209, puc

Palgi et al. [23],
2012

Manf homozygous 
mutant embryos and 
larvae vs. wild type

1,243d 65 (5.2) AGO2, AttA, cactin, Cec2, CecA1, CecA2, CecB, CG11159, CG13422, 
CG1887, CG9733, Drs, Drsl1, Drsl2, Drsl3, Drsl5, GNBP1, GNBP2, 
GNBP3, He, Hml, ik2, IM1, IM10, IM23, IM3, IM4, kay, key, LysX, lz, Mtk, 
os, PGRP-LA, PGRP-LB, PGRP-LC, PGRP-LF, PGRP-SA, PGRP-SD, 
Phk-3, pirk, Pli, pll, psh, Pvr, Rab11, Rala, Rel, Sp7, SPE, spirit, spz, Sr-CI, 
Sr-CII, Tep1, Tep3, Tep4, Tollo, TotA, TotC, TotX, Tsf3, upd3, vir-1, zfh1

Petersen et al.
[11], 2012

Overexpression of 
human TBP protein 
with an expanded 
polyQ tract in the eye 
using GMR-GAL4

163 51 (31.3) AttA, AttB, AttC, Cdc6, CecA1, CecA2, CecB, CecC, CG11459, CG13422, 
CG16978, CG17107, CG17760, CG33109, CG3699, CG4269, CG42807, 
CG6639, CG6788, CG7738, CG9616, CG9733, Cyp316a1, Cyp6g1, Def, 
Dpt, DptB, Drs, Drsl4, GADD45, grass, GstD5, IM10, IM23, Lsp1beta, 
Lsp2, LysE, LysP, mthl2, Mtk, PGRP-SA, PGRP-SB1, PGRP-SC2, PGRP-
SD, pirk, Spn88Eb, Sr-CIV, Tep1, TotM, Tsf3, yellow-f

Ren et al. [22],
2011

Overexpression of 
human TBP protein 
with an expanded 
polyQ tract in the eye 
using GMR-GAL4

352 31 (8.8) Cbs, CecB, CG10467, CG10514, CG10621, CG11891, CG11892, CG13641, 
CG15282, CG15784, CG16718, CG34370, CG3604, CG3699, CG42351, 
CG4269, CG4757, CG8129, Cyp28d1, deltaTry, kn, Lsp1beta, mus209, 
PGRP-LC, PGRP-SD, Phk-3, Prat2, smp-30, Toll-6, Tsf1, Vago

Scherzer et al. [27],
2003

Overexpression of 
human α-synuclein in 
neurons using
elav-GAL4

94 20 (21.3) Acp1, CG10383, CG15065, CG4019, CG5778, CG7203, Cyp4e2, Cyp6g1, 
Glt, Got2, Irc, Obp99b, PGRP-SC1a, PGRP-SC1b, Prat2, Rfabg, Spat, 
Spn88Eb, Thor, vkg

Shieh and 
Bonini [21],
2011

Overexpression of 
CAG repeat in 
neurons using
elav-GAL4

152 11 (7.2) AttA, CG11413, CG13325, CG42351, CG5493, CG9119, CG9837, CG9935, 
Idgf3, IM2, Mtk

Vanden Broeck
et al. [26], 2013

Loss of function and 
overexpression of 
TDP-43

100e 10 (10.0) Acp1, CG15021, CG15293, CG18179, CG7778, Cpr49Ab, Cpr49Ae, Drsl2, 
Jon65Ai, Jon65aiv

 a Percentage of immune genes versus total number of genes is shown in parenthesis.
b Genes in bold appear in more than one study. Underlined genes have human homologues.
c 124 genes upregulated at 5 or 45 days (from table 1 in Kumimoto et al. [25]). 
d Only upregulated genes are considered. 
e The 100 genes listed in figure 4 in Vanden Broeck et al. [26] (the top 50 down- and top 50 upregulated in both LOF and GOF conditions).
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ray studies of flies challenged with pathogens  [15, 16, 29] , 
but whether they are all relevant for mounting an efficient 
immune response is not yet tested experimentally.

  The data produced by the genome-wide studies of flies 
with neurodegenerative pathologies give rise to five in-
triguing observations: (i) none of the studies detected up-
regulation of  imd ,  Dif ,  dorsal  and other genes of great rel-
evance for the immune response elicited by pathogens; 
(ii) at least some of the genes known to be upregulated 
during the activation of an immune response were indeed 
downregulated in flies with neurodegeneration; (iii) some 
immune response genes were upregulated in heterozy-
gous mutants which do not develop a neurodegenerative 
pathology  [24] ; (iv) there is little overlap among the im-
mune response genes detected across studies, and (v) the 
overrepresentation of immune response genes appears to 
be universal rather than associated with particular types 
of neurodegeneration.

  These observations take us to reconsider the interpre-
tation that the activation of the immune response is caus-
ative of neurodegeneration in all cases.

  Immune Response Genes Are Overrepresented 

during the Responses to a Variety of Adverse 

Conditions 

 The immune response is a particular class of defense 
response. We were intrigued about whether immune re-
sponse genes are also overrepresented in responses to ad-

verse conditions other than neurodegeneration. Our re-
view of published results led us to conclude that they are 
indeed overrepresented among the genes responding to 
oxidative stress  [30, 31] , mechanical stress  [32] , endoplas-
mic reticulum (ER) stress  [33, 34] , starvation  [35–37] , hy-
poxia  [38] , osmotic stress  [39] , wing disk regeneration 
 [40] , ionizing irradiation  [41]  or UV irradiation-mediat-
ed DNA damage  [42]  ( table 2 ).

  Each stress condition elicits a transcriptional response 
comprising the regulation of genes specific for the exper-
imental protocol (for instance, genes of the Redox group 
are regulated when oxidative stress is induced in  Dro-
sophila  flies by dietary administration of hydrogen perox-
ide or paraquat, or by exposing them to hyperoxia) and 
of genes that are also regulated by other challenges, show-
ing that some genes respond to a variety of noxious stim-
uli. For example, the humoral factor Turandot,  TotA , is 
induced by exposure to bacteria, heat stress, oxidative 
stress, mechanical stress, UV radiation and dehydration 
 [43] . Among 449 genes with abnormally high transcripts 
in the head of flies exposed to hyperoxia, 68 are also up-
regulated in flies challenged by dietary administration of 
hydrogen peroxide or other protocols that cause oxida-
tive stress  [31] . Tens of genes are regulated by oxidative 
stress (regardless of whether this condition is caused by 
hyperoxia or hydrogen peroxide) and also by heat stress 
or ionizing radiation  [44] . Some genes are regulated both 
by tunicamycin (which induces a form of ER stress) and 
by oxidative stress caused either by hydrogen peroxide or 
paraquat  [33] . At least for some of the genes regulated 

 Table 2.  Innate immune genes are overrepresented among genes regulated during defense responses to various challenges

Reference Stress condition Stimulus Percentage of innate
immune response genesa

Gruenewald et al. [31], 2009 Hyperoxia 2 days on 99.5% oxygen 1.80
Azad et al. [38], 2009 Hypoxia 2.5 h on 1.5% oxygen 12.90
Stergiopoulos et al. [39], 2009 Osmotic stress 4 h on 4% NaCl 34b

Zimmerman et al. [32], 2006 Mechanical stress 4 h mechanical stimulation 50
Boltz and Carney [34], 2008 ER stress Mutation in the p24 gene loj 20.40
Zinke et al. [35], 2002 Starvation, larva 4 h on PBS 8.80c

Fujikawa et al. [37], 2009 Starvation, adult 24 h on water only 18.60
Blanco et al. [40], 2010 Tissue regeneration Wing disk fragmentation n.s.
Seong et al. [41], 2011 Low-dose irradiation Gamma irradiation of eggs 0.8 Gy/min 10.80
Karpac et al. [42], 2011 DNA damage UV radiation 23.80

 a Innate immune response group overrepresentation was reported by the authors, except for Zinke et al. [35], 2002.
b Calculated for the 100 top genes in supplementary table 1 from Stergioupoulos et al. [39], 2009.
c Calculated from 34 genes in figure 2 from Zinke et al. [35], 2002. 
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upon a variety of challenges it is reasonably well estab-
lished that their regulation confers tolerance or protec-
tion against the experimental challenge  [31, 33, 43, 44] .

  Hence, enrichment in immune response genes is a 
general feature in the gene catalogues generated by stud-
ies of the organism’s transcriptional response to adverse 
conditions. The transcriptional activation of some im-
mune genes is perhaps triggered by signals emanating 
from damaged or distressed cells, as proposed by the  dan-
ger  model  [45] . This may have several explanations. One 
will be that the regulation of immune response genes con-
fers protection against deterioration of cells and tissues 
regardless of whether it starts through mechanical dam-
age, pathogen-induced alterations, heat shock, oxidative 
stress or other causes. The immune response gene 
GADD45, for example, is upregulated by experimental 
brain damage in the rat  [46] , by wounding in both flies 
and mice  [47]  and by tissue regeneration  [40]  or ER stress 
 [34]  in flies. Upregulation of GADD45 in the nervous sys-
tem extends the life span of flies, pointing to a protective 
action  [48] . Hence, its upregulation in flies suffering from 
neurodegeneration caused by a mutation in ATM  [11]  
could reflect a neuroprotective rather than a neurotoxic 
action.

  Another option could be that some immune response 
genes have additional functions and their regulation dur-
ing neurodegenerative pathologies might contribute to a 
defense response in brain tissue via nonimmunogenic 
pathways. Genes of the Toll pathway, for instance, are in-
volved in the development and maintenance of axons and 
neuronal synapses. Loss of function of  dorsal  protects 
against the pathology caused by transgenic expression of 
human Aβ42  [9] , but is deleterious for the integrity of ax-
ons and neuromuscular synapses  [49–51] , and  dorsal  ac-
tivation is necessary for nervous tissue recovery from in-
jury, promoting glial proliferation  [52] . Thus, the regula-
tion of  dorsal  and other genes from the Toll pathway 
might have functional relevance for both neurodegenera-
tion and neuroprotection independently of immune re-
sponse pathways. Still, some immune response genes that 
appear in genomic studies of neurodegeneration may 
simply do so as a result of misregulation because of fail-
ures in signaling pathways caused by tissue deterioration.

  A further option is the relationship between pleiotropy 
and the history of gene annotation, because genes that 
were first annotated as important for the immune re-
sponse still might have completely different functions, in-
cluding protection of nervous tissue integrity. An exciting 
example of this possibility (although with the opposite 
chronology in the discovery of a second, unexpected 

function) is  parkin , a gene for which mutations were first 
associated with Parkinson’s disease long before it was dis-
covered that it also has an immune function, mediating 
protection against intracellular bacteria in humans  [53] .

  These options can also be considered from an evolu-
tionary perspective. Living organisms often confront ad-
verse conditions in their external and internal environ-
ment in the form of sudden changes in temperature, nu-
trient and oxygen supplies, osmotic stress, DNA damage, 
pathogens or other challenges. Mounting defense re-
sponses specific for each of these situations should be of 
high adaptive value already for unicellular organisms ear-
ly during evolution. Later on, during the evolution of 
multicellularity, some elements of unicellular defense re-
sponses were perhaps incorporated into new gene net-
works acting in specific cells or tissues and responding to 
more specific stimuli and some will serve more than one 
function.

  Regulation of Immune Response Genes Might 

Reflect a Neuroprotective Response upon 

Neurodegeneration 

 Here, we hypothesize that the development of a neu-
rodegenerative process in the fly can be regarded as a par-
ticular type of adverse condition and that it elicits a de-
fense response. By analogy with the defense responses 
cited above, a neuroprotective response will share genes 
with other defense responses. This would explain, to 
some degree, why practically all genome-wide studies of 
gene expression in flies with neurodegeneration result in 
catalogues enriched with immune response genes. There-
fore, some immune response genes would be associated 
with a response of the animal to combat the degeneration 
of nervous tissue rather than being causative of degenera-
tion. At this point, it deserves to be mentioned that there 
is a dynamic functional relationship at several levels be-
tween neurodegeneration, the immune, endocrine and 
nervous systems and general metabolism  [54] . Hence, the 
activation of some immune genes might reflect their con-
tribution to the development and regulation of a neuro-
protective response through genetic mechanisms acting 
not only in nervous tissue.

  The participation in neuroprotection of genes normal-
ly activated during various defense responses is relatively 
well documented. For example, genes responding to heat 
shock ( Hsp70Bc  and other  Hsp  genes)  [31, 55, 56]  or oxi-
dative challenge ( Sod )  [31, 57, 58]  have neuroprotective 
function. Among 126 genes for which RNA interference 
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either suppresses or enhances the neurodegenerative 
phenotype associated with Huntingtin aggregates, 8 genes 
(6.3%) belong to the immune response group  [59] . Im-
mune response genes are also well represented among 
genes for which down- or upregulation suppresses or en-
hances a variety of neurodegenerative traits  [59–63]  ( ta-
ble 3 ). Hence, elevated or decreased transcripts of some 
immune response genes could have neuroprotective 
function in some cases.

  An important question is whether a neuroprotective 
response can be defined and studied with a genomic ap-
proach. Changes in the transcriptome caused by an im-
mune challenge were defined by infecting flies with 
known pathogens and analyzing gene expression at dif-
ferent time points thereafter, usually at intervals of a few 
hours  [15, 16, 29] . It is also relatively simple to define 
changes triggered in the transcriptome by oxidative stress, 
starvation, hyperoxia or other adverse conditions by 
switching the flies from standard to experimental condi-
tions and comparing thereafter gene expression after a 
few hours ( table 2 ).

  The characterization of a neuroprotective response 
through genome-wide studies confronts a particular dif-
ficulty because neurodegenerative phenotypes develop 
often slowly, over intervals of days or even weeks, and we 
know relatively little about the temporal dynamics for the 
development of key pathological processes responsible 
for the final symptoms. Only in a few studies, samples 

were taken at two or three time points, including pres-
ymptomatic stages  [22, 25, 27] , and it seems that more 
time points are necessary to provide enough temporal 
resolution. A complementary way to obtain a better sepa-
ration between neurodegenerative and neuroprotective 
traits will be to study changes in the transcriptome of flies 
in which a neurodegenerative process is attenuated or 
blocked by expression of a transgene (‘rescue experi-
ments’). Another option will be to include in the study 
heterozygous animals when they do not develop a neuro-
degenerative phenotype. This might have several poten-
tial benefits. It could increment the confidence of the hits 
identified in the homozygous mutant when heterozygos-
ity correlates with intermediate levels of the neurodegen-
erative phenotype and gene transcripts  [12, 24] . At the 
same time, when only homozygous mutants develop the 
neurodegenerative phenotype, the transcriptome of het-
erozygotes might provide information about genes that 
are regulated as part of a neuroprotective response. For 
instance, loss-of-function mutations in the genes of the 
 spalt  family of transcription factors cause neurodegen-
eration only in homozygosity  [64] . However, heterozy-
gous mutants also show regulation of immune response 
genes, suggesting that at least in this case the abnormal 
transcript levels of some immune response genes are 
probably rather associated with neuroprotection than 
with neurodegeneration  [24] .

 Table 3.  Innate immune genes defined as suppressors or enhancers of neurodegeneration

Reference Gene symbol Gene effect Protein function Signaling vs. effectors

Ambegaokar and Jackson[65], 2011 mei-9 Suppressor Protein binding Unknown
Ambegaokar and Jackson [65], 2011 Meek1 Enhancer Kinase Signaling
Ambegaokar and Jackson [65], 2011 Nrg Suppressor Calcium ion binding Effector
Ambegaokar and Jackson [65], 2011 RpS21 Enhancer Ribosome binding Unknown
Blard et al. [62], 2007 Myd88 Enhancer Protein binding Signaling
Blard et al. [62], 2007 E(bx) Enhancer DNA binding Unknown
Blard et al. [62], 2007 Sodh-1 Enhancer Enzyme Unknown
Chan et al. [66], 2002;
Zhang et al. [59], 2010 Uba2 Enhancer SUMO activating enzyme Signaling
Kaltenbach et al. [63], 2007 Eip75B Suppressor DNA binding Signaling
Shulman and Feany [60], 2003 par-1 Suppressor Protein kinase Unknown
Zhang et al. [59], 2010 Hop Suppressor Protein binding Signaling
Zhang et al. [59], 2010 brm Enhancer Protein binding Signaling
Zhang et al. [59], 2010 lwr Enhancer Protein binding, SUMO ligase Signaling
Zhang et al. [59], 2010 Rab11 Enhancer Protein binding, GTPase Signaling
Zhang et al. [59], 2010 Jra Suppressor Protein binding, DNA binding Signaling
Zhang et al. [59], 2010 lic Enhancer Protein kinase Signaling
Zhang et al. [59], 2010 Slu7 Enhancer Zinc anion binding, nucleic acid 

binding
Unknown
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  Concluding Remarks 

 Although the debate on the relationship between neu-
rodegeneration and the innate immune response is rela-
tively poorly defined because the cause or consequence of 
this complex association is often not known, it has been 
clear for some years that elements of the innate immune 
response might mediate neuroprotection in humans  [1, 
3] .  Drosophila  could be used as an instrumental model to 
elucidate this question. The recognition that misregula-
tion of immune response genes causes or aggravates neu-
rodegenerative conditions in  Drosophila  is indubitably 
supported by experimental evidence  [14] . However, it 
seems also probable that the transcriptional regulation of 
some immune response genes might reflect, instead, a 
contribution to a protective response. To distinguish be-
tween the two possibilities is not trivial. The idea that reg-

ulation of some immune response genes might have a 
neuroprotective function can be tested experimentally 
using the formidable tool kit offered by  Drosophila  genet-
ics. Along this line of work, genome-wide studies of neu-
rodegenerative processes in the fly will gain from denser 
temporal data series, the study of heterozygotes when 
they do not develop a neurodegenerative phenotype and 
the potential connection between NF-kB pathway activa-
tion and tissue homeostasis.
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