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gands are critical for monocyte egress and migration to in-
flammatory foci. These data highlight a critical role for IRF8 
in inflammatory monocyte differentiation and migration 
during WNV infection.  © 2014 S. Karger AG, Basel 

 Introduction 

 Inflammatory monocytes, identified in mice by high 
expression of Ly6C and the chemokine receptor CCR2, 
are recruited to most organs in response to infection or 
tissue damage, including the central nervous system 
(CNS), where they differentiate into proinflammatory 
macrophage and dendritic cell (DC) subsets  [1–7] . On the 
other hand, Ly6C– CX 3 CR 1 + monocytes are thought to 
be important for patrolling vessels and serve as a source 
of tissue macrophages and DC during homeostasis  [8] . 
Although these phenotypically and functionally distinct 
subsets are well described, the developmental relation-
ship between Ly6C+ and Ly6C– monocytes remains un-
clear  [9, 10] . Furthermore, the molecular pathways that 
control the development of these populations from their 
common progenitors are not well defined  [11] , but are of 
increasing interest. For example, Hanna et al.  [12]  have 
recently shown that the transcription factor NR4A1 
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 Abstract 

 IRF8 (interferon-regulatory factor-8) plays a critical role in 
regulating myeloid cell differentiation. However, the role of 
this transcription factor in the development of Ly6C+ inflam-
matory monocytes and their migration to the infected brain 
has not been examined. We have previously shown that 
West Nile virus (WNV) infection of wild-type (WT) mice trig-
gers a significant increase in numbers of Ly6C+ monocytes 
in the bone marrow. These cells traffic via the blood to the 
infected brain, where they give rise to proinflammatory mac-
rophages. Here, we show that WNV-infected IRF8-deficient 
(IRF8–/–) mice had significantly reduced numbers of Ly6C+ 
monocytes in the periphery, with few of these cells found in 
the blood. Furthermore, low numbers of inflammatory 
monocyte-derived macrophages were observed in the 
brains of IRF8–/– mice throughout infection. Adoptive trans-
fer of IRF8–/– Ly6C+ monocytes demonstrated that these 
cells were intrinsically unable to traffic to the inflamed brain. 
Low expression of the chemokine receptor CCR2 and integ-
rin VLA-4 by IRF8–/– monocytes likely contributed to this de-
fect, as the interactions between these proteins and their li-
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(Nur77) is critical for the differentiation of Ly6C– mono-
cytes from their Ly6C+ precursors. Understanding these 
pathways is clearly an important step in resolving the di-
chotomy between Ly6C+ and Ly6C– monocytes, as well 
as for informing therapeutic interventions that target 
monocytes in inflammation, autoimmunity and myeloid 
leukemia  [1–7] .

  Recent studies have examined the role of the interferon-
γ-stimulated transcription factor IRF8 (interferon regu-
latory factor-8) in monocyte development. Also known as 
ICSBP (interferon consensus sequence-binding protein), 
IRF8 is critical for the normal development of myeloid 
lineage cells. Hambleton et al.  [13]  recently showed that 
a patient with several loss-of-function mutations in the 
IRF8 gene completely lacked circulating monocytes and 
DC. In mice, IRF8 is upregulated during the differentia-
tion of common myeloid progenitors and granulocyte-
macrophage progenitors from hematopoietic stem cells 
and promotes monocyte development at the expense of 
neutrophils  [14, 15] . IRF8-deficient (IRF8–/–) mice show 
significant accumulation of granulocyte-macrophage 
progenitors and neutrophil expansion  [16–18] . Also, 
IRF8–/– monocytes exhibit enhanced proliferation, resis-
tance to apoptosis and defective differentiation into mac-
rophage and DC subsets  [17–21] . Recently, Becker et al. 
 [18]  reported that IRF8–/– mice lacked a significant pop-
ulation of Ly6C+ inflammatory monocytes in the blood. 
Kurotaki et al.  [22]  also showed that IRF8 is critical for 
Ly6C+ monocyte development, with reduced numbers of 
these cells in the blood, bone marrow (BM) and spleen of 
IRF8–/– mice. However, neither of these studies has ad-
dressed the role of IRF8 in monocyte development or mi-
gration during infection. 

  In this study, we directly examined the role of IRF8 in 
the development and migration of Ly6C+ monocytes un-
der homeostatic and inflammatory conditions. We show 
that IRF8–/– mice have significantly reduced inflamma-
tory monocyte precursors in the BM, with the recently 
described splenic reservoir  [23–25]  also markedly dimin-
ished. Furthermore, these cells failed to traffic in high 
numbers to the West Nile virus (WNV)-infected brain. 
Adoptive transfer of equal numbers of BM-derived wild-
type (WT) and IRF8–/– monocytes confirmed that 
 IRF8–/– monocytes were intrinsically unable to migrate 
to the inflamed CNS. The inability to migrate was poten-
tially the result of low CCR2 expression on IRF8–/– 
monocytes, the chemokine receptor pivotal for Ly6C+ 
monocyte recruitment to sites of inflammation  [3, 26–
28] . Furthermore, IRF8–/– inflammatory monocytes 
failed to significantly increase expression of activated 

VLA-4 (very late antigen-4), the adhesion molecule criti-
cal for the migration of Ly6C+ monocytes to the WNV-
infected CNS  [6] . Together this work highlights the exis-
tence of a dynamic role for IRF8 in the differentiation of 
inflammatory monocytes, including the expression of key 
chemokine receptors and activation of adhesion mole-
cules needed for cellular migration.

  Materials and Methods 

 Mice and Infection 
 The Animal Ethics Committee of Sydney University approved 

all animal procedures (L02/1-2011/3/5466). WT or IRF8–/– mice 
 [17]  were used in this study. C57BL/6-7.2fms-EGFP mice  [29]  
were intercrossed with C57BL/6 WT or IRF8–/– mice  [17]  to gen-
erate animals with eGFP+ myeloid lineage cells, which were used 
as donors in adoptive transfer studies. Mice were housed in HEPA 
filter-top cages under class II biohazard conditions, with food and 
water provided ad libitum. Female 8-week-old mice were infected 
intranasally with 6 × 10 4  plaque forming units (PFU) WNV 
(Sarafend), as described previously  [3, 30] . 

  Plaque Assays 
 Plaque assays were performed as described previously  [3, 30] . 

Briefly, 10-fold dilutions of brain homogenates were used to in-
fect confluent baby hamster kidney cells for 1 h. Wells were over-
laid with 1.5% (w/v) low-gelling agarose II (Amresco) in 2× min-
imum essential medium (Gibco). Cells were incubated for 3 days 
and then fixed with 10% formalin (Fronine) for 2 h prior to plug 
removal. A 3% crystal violet (Hopkins and Williams) dye solu-
tion in 20% methanol (Fronine) was used to stain fixed cells. 
Plaques were counted and the final PFU per gram/tissue was de-
termined.

  Leukocyte Isolation and Flow Cytometry 
 Leukocytes were isolated from BM, blood, spleens and brains 

on day (D) 0 to D7 post-infection (p.i.) and processed for flow cy-
tometry, as described previously  [3, 30] . Antibodies against CD45, 
CD11b, Ly6C, Ly6G, CD115, F4/80, CD11c, MHC-II, CD16/32, 
CD3 and NK1.1 were obtained from Biolegend. Antibody against 
CD29 (VLA-4 β1 chain activation epitope, clone 9EG7) was pur-
chased from BD Biosciences and CCR2 from R&D Systems. Sam-
ples were acquired on the FACS LSR-II (BD Biosciences) and ana-
lyzed using FlowJo (TreeStar). 

  Ly6C Blockade 
 To block Ly6C function in vivo, WNV-infected mice were in-

jected with 100 μg i.v. of purified anti-Ly6C antibody (clone 1G7.
G10; Miltenyi Biotec) or rat IgG2a isotype control on D5 and D6 
p.i. Brains were isolated on D7 p.i. and processed for flow cytom-
etry.

  Adoptive Transfer 
 For adoptive transfer studies, Ly6C+ WT and IRF8–/– mono-

cytes were isolated and sorted from the BM, as described previ-
ously  [3] . Cells were labeled with PKH26 (Sigma) and 2.0 × 10 6  
cells were injected intravenously into mock-infected and WNV-
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infected recipients on D6 p.i., as described previously  [3] . Organs 
were isolated from recipients on D7 p.i., and leukocytes were iso-
lated and processed for flow cytometry. 

  Immunohistology 
 Immunohistology was performed on 8 μ M  frozen brain sec-

tions as described previously  [3, 30] . Lectin (from  Bandeiraea sim-
plicifolia ) was purchased from Sigma. Antibodies against intercel-
lular adhesion molecule-1, vascular cell adhesion molecule 
(VCAM)-1, CD11b, CCL2, CD45 and Gr-1 (Ly6C and Ly6G) were 
purchased from Biolegend. The WNV anti-non-structural protein 
1 was a kind gift of Roy Hall (University of Queensland). Images 
were acquired on a fluorescent microscope (BX-51; Olympus), us-
ing DP manager 2.2.1 software (Olympus).

  Multiplex ELISA 
 Multiplex plate ELISA (Quansys Biosciences) was per-

formed as previously described  [3] , using the Quansys Q-plex 
mouse cytokine screen IR 16-plex and visualized on the Li-Cor 

Odyssey IR Imaging System (Li-Cor Biotechnology). Images 
were analyzed using Quansys Q-view software (Quansys Bio-
sciences).

  Statistics 
 Graphs were made using Prism (GraphPad), with statistical 

analyses performed using InStat (GraphPad). An unpaired two-
tailed Student’s t test or one-way ANOVA with a Tukey-Kramer 
post hoc test was performed. p  ≤  0.05 was considered significant 
( *  p  ≤  0.05,  *  *  p  ≤  0.005,  *  *  *  p  ≤  0.001).

  Results 

 IRF8–/– Mice Lack Circulating Ly6C+ Monocytes  
 Our previous studies have shown that WNV infection 

of WT mice promotes Ly6C+ inflammatory monocyte 
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  Fig. 1.  IRF8–/– mice have significantly lower numbers of Ly6C+ 
monocytes in peripheral organs. BM, spleen and blood from D0, D3, 
D5 and D7 WNV-infected WT and IRF8–/– mice were processed 
for flow-cytometric analysis. Inflammatory monocytes were gated 
as CD45+ CD115+ CD11b+ Ly6G– Ly6C+ cells ( a ) in the BM ( b ), 
spleen ( d ) and blood ( f ). Total numbers of Ly6C+ monocytes in the 
BM ( c ), spleen ( e ) and blood ( g ) were calculated using flow-cyto-
metric percentages and absolute live cells counts for each organ. 
Flow-cytometric data shown are means ± SD and represent 3 sepa-

rate experiments with 4 mice/group. Statistical analysis was con-
ducted using one-way ANOVA and the Tukey-Kramer post hoc test. 
 *  *  *  p  ≤  0.001 comparing the numbers of WT and IRF8–/– Ly6C+ 
monocytes at all time points (not shown).  *  *  p  ≤  0.01,  *  *  *  p  ≤  0.001 
comparing numbers of WT Ly6C+ monocytes in the BM, spleen and 
blood on D7 p.i. to all other days.  *  p  ≤  0.05 comparing numbers of 
WT Ly6C+ monocytes in the spleen on D5 p.i. to all other days.  #  p  ≤  
0.05 IRF8–/– Ly6C+ monocytes on D7 p.i. to all other days. 

(For figure 1d–g see next page.)
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hematopoiesis in the BM, egress into the circulation and 
recruitment to the CNS  [3, 6] . To determine if IRF8 is 
critical for the development and migration of these cells 
under homeostatic and inflammatory conditions, we uti-
lized a well-characterized and robust model of WNV en-
cephalitis  [3, 6] . Following infection with 6 × 10 4  PFU, 
both WT and IRF8–/– mice succumbed by D7 p.i. with 
similar disease kinetics. At a 10-fold lower virus dose, i.e. 
6 × 10 3  PFU, 50% of WT mice survived infection with 
sterilizing immunity, while all IRF8–/– succumbed to dis-
ease. Terminal viral titers in WT and IRF8–/– brains were 
similar following high- and low-dose infection. Striking-
ly, very few infiltrating myeloid cells were observed at ei-
ther dose in the brains of IRF8–/– mice at these time 
points (online suppl. fig. 1A–C; for all online suppl. mate-
rial, see www.karger.com/doi/10.1159/000365972).

  To investigate why IRF8–/– mice showed a significant 
decrease in the infiltration of these cells into the inflamed 
CNS, the BM, blood, spleens and brains of WNV-infect-
ed WT and IRF8–/– mice were processed for flow cytom-
etry at D0, D3, D5 and D7 p.i., and inflammatory mono-
cytes were gated as CD45+ CD11b+ CD115+ Ly6G– 
Ly6C+ cells ( fig.  1 a). There were no significant 
differences in the expression of CD11b, CD115, F4/80, 
CD62L, Ly6G or CD11c by WT and IRF8–/– Ly6C+ 
monocytes in the BM, spleen, or blood (online suppl. 
fig. 2A). However, in the BM, only 50% of the numbers 
of Ly6C+ inflammatory monocytes were observed in 
IRF8–/– mice compared to the WT at all time points 
throughout infection ( fig. 1 b, c). Similar to previous ob-
servations, WNV infection significantly increased the 
numbers of WT Ly6C+ monocytes in the BM on D7 p.i. 
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 [3] ; this increase was greater than that observed in the 
BM of IRF8–/– animals ( fig. 1 b, c).

  In the spleen, there were also half the numbers of 
Ly6C+ monocytes in IRF8–/– mice compared to the WT 
at all time points investigated ( fig. 1 d, e). WNV infection 
resulted in a significant increase in numbers of WT Ly6C+ 
monocytes in the spleen on D5 p.i., with a significant de-
crease observed by D7 p.i. In comparison, numbers of 
Ly6C+ monocytes in the IRF8–/– spleen did not signifi-
cantly change throughout the course of infection ( fig. 1 d, 
e). Compared to the BM and spleen, in the blood very few 
circulating Ly6C+ monocytes were observed in IRF8–/– 
animals compared to the WT at all time points ( fig. 1 f, g). 
On D7 p.i., similar to the spleen, significantly reduced 
numbers of circulating Ly6C+ monocytes were observed 
in the blood of WT mice ( fig. 1 f, g). Interestingly, in the 
BM, blood and spleen, IRF8–/– Ly6C+ monocytes ex-
pressed significantly lower levels of Ly6C than WT mono-
cytes ( fig. 1 b, d, f; online suppl. fig. 2B–D).

  IRF8–/– Ly6C+ Monocytes Are Intrinsically Unable to 
Traffic to the Virus-Infected Brain 
 WNV infection of WT mice recruits large numbers of 

inflammatory monocytes to the brain from D5 p.i., which 
give rise to CD45+ CD115+ CD11b+ Ly6G– Ly6C+ in-
flammatory macrophage populations ( fig. 2 a, b)  [6] . As 
expected, large numbers of Ly6C+ macrophages were ob-
served in the WT WNV-infected brain from D5 to D7 p.i. 
In alignment with our histological findings (online suppl. 
fig. 1C), very few of these cells were observed in the WNV-
infected IRF8–/– brain, although at D7 p.i. there was a 
significant increase compared to all other days investi-
gated ( fig. 2 b, c). These findings were supported by im-
munohistology, in which only a small myeloid infiltrate 
could be observed in the WNV-infected IRF8–/– brain 
relative to the WT on D7 p.i. ( fig. 2 d–o). Significantly re-
duced expression of Ly6C by IRF8–/– inflammatory 
monocytes in the periphery likely contributed to im-

paired trafficking to the CNS ( fig. 1 b, d, f; online suppl. 
fig. 2B–D). Intravenous injection of WT mice with Ly6C-
blocking antibody on D5 and D6 p.i. reduced the num-
bers of inflammatory monocytes in the D7 p.i. WNV-in-
fected brain by approximately 66% (online suppl. fig. 2E).

  The regulation of monocyte migration occurs both at 
the site of inflammation and within the BM  [3, 26] . To test 
whether impaired recruitment of IRF8–/– monocytes 
was a result of the inability to exit the BM effectively, 
eGFP+ (CD115+) Ly6C+ WT or IRF8–/– monocytes 
were sorted from the BM ( fig. 3 a). These cells were also 
labeled with the membrane dye PKH26 to confirm the 
identity of the transferred cells and to make certain that 
eGFP (CD115) expression was neither lost nor downreg-
ulated after transfer. 2.0 × 10 6  WT or IRF8–/– monocytes 
were transferred into matched mock-infected or WNV-
infected recipients on D6 p.i. Substantial numbers of 
transferred Ly6C+ WT monocytes trafficked into the 
WNV-infected WT brain on D7 p.i. and gave rise to 
Ly6C+ macrophages ( fig. 3 b, c). However, the number of 
transferred Ly6C+ WT monocytes recruited to the WNV-
infected IRF8–/– brain on D7 p.i. was only two thirds of 
that recruited to the WT brain. In comparison, low num-
bers of transferred Ly6C+ IRF8–/– monocytes were found 
in the D7 WT or IRF8–/– infected brain, although there 
was a very small increase in recruitment to the WT brain 
( fig. 3 b, c). These data indicate that impaired migration 
of IRF8–/– inflammatory monocytes to the CNS is prin-
cipally due to a monocyte-intrinsic defect, but additional 
factors may also contribute to reduced recruitment in 
IRF8–/– mice, such as the reduced proinflammatory en-
vironment generated in the WNV-infected IRF8–/– CNS 
compared to the WT (online suppl. fig. 3A–F). Consistent 
with reduced trafficking of IRF8–/– Ly6C+ monocytes to 
the CNS, there was significant accumulation of these cells 
in the BM and spleen of WNV-infected WT and IRF8–/– 
recipients following transfer, compared to transferred 
WT Ly6C+ monocytes ( fig. 3 d, e).

  Fig. 2.  IRF8–/– mice show significantly reduced Ly6C+ macro-
phage infiltration into the WNV-infected brain. Brains from D0, 
D3, D5 and D7 WNV-infected WT and IRF8–/– mice were pro-
cessed for flow-cytometric analysis. CD45+ CD115+ CD11b+ 
Ly6G– Ly6C+ inflammatory monocyte-derived macrophages 
were gated in the brain ( a ,  b ). Total Ly6C+ macrophage numbers 
were calculated using flow-cytometric percentages and absolute 
live cells counts for each brain ( c ). Immunohistology was also per-
formed on brain sections from D0 and D7 WNV-infected WT and 
IRF8–/– mice on D7 p.i. Sections were stained with CD45 (red; 
 d–g ), CD11b (red;  h–k ) or Ly6C cells (red;  l–o ) and counterstained 

with DAPI (blue) and lectin (green). Flow-cytometric data shown 
are means ± SD and represent 3 separate experiments with 4 mice/
group. Statistical analysis was conducted using one-way ANOVA 
and the Tukey-Kramer post hoc test.  *  *  *  p  ≤  0.001 comparing the 
numbers of WT and IRF8–/– Ly6C+ macrophages on D5 and D7 
(not shown).  *  *  *   p  ≤  0.001 in comparing the numbers of WT 
Ly6C+ macrophages on D5 or D7 p.i. to all other days.  #  p  ≤  0.05 
comparing the numbers of IRF8–/– Ly6C+ macrophages on D7 
p.i. to all other days. Immunohistology was performed on 3 entire 
sagittal brain sections from a minimum of 3 mice/group, conduct-
ed twice. 

(For figure see next page.)
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  IRF8–/– Ly6C+ Monocytes Express Low Levels of 
CCR2  
 To investigate why IRF8–/– monocytes showed im-

paired migration to the infected brain, the CCL2/CCR2 
chemokine/chemokine receptor axis was investigated. 
CCL2, produced by WNV-infected neurons, is critical 

for the egress of Ly6C+ monocytes from the BM and re-
cruitment from the circulation into the brain  [3] . CCL2 
was produced at similar levels in D7 WNV-infected WT 
and IRF8–/– brains ( fig. 4 a–q). In comparison, IRF8–/– 
Ly6C+ monocytes expressed significantly lower levels of 
the CCL2 receptor, CCR2, than their WT counterparts 
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  Fig. 3.  IRF8–/– monocytes are intrinsically unable to migrate to the 
WNV-infected brain. C57BL/6–7.2fms-EGFP mice  [29]  were in-
tercrossed with C57BL/6 WT or IRF8–/– mice  [17]  to generate 
animals with eGFP+ myeloid lineage cells, which were used as do-
nors in adoptive transfer studies. Flow cytometry was used to con-
firm that BM-derived CD45+ CD115+ CD11b+ Ly6G– Ly6C+ 
monocytes were GFP+ ( a ). BM-derived GFP+ Ly6C+ monocytes 
from mock-infected and WNV-infected WT and IRF8–/– donors 
were sorted on D6 p.i. and labeled with PKH26. 2.0 × 10                           6  cells were 
injected intravenously into mock-infected or WNV-infected WT 

or IRF8–/– recipients on D6 p.i. On D7 p.i., the brains, BM and 
spleens of recipient animals were processed for flow-cytometric 
analysis and transferred GFP+ PKH26+ cells were gated ( b ). Total 
numbers of transferred Ly6C+ WT and IRF8–/– monocytes in the 
brain ( b ,  c ), BM ( d ) and spleen ( e ) were calculated using flow-
cytometric percentages and absolute live cells counts for each or-
gan. Flow-cytometric data shown are means ± SD and represent 3 
separate experiments with 4 mice/group. Statistical analysis was 
conducted using one-way ANOVA and the Tukey-Kramer post 
hoc test.  *  p  ≤  0.05,  *  *  p  ≤  0.01,  *  *  *  p  ≤  0.001. 
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  Fig. 4.  IRF8–/– monocytes express low levels of the chemokine re-
ceptor CCR2. Brains from D0 and D7 WNV-infected WT and 
IRF8–/– mice were collected and processed into sections for fluo-
rescent immunohistology (     a–p ). Sections were stained with WNV 
NS-1 (green), CCL2 (red) and counterstained with DAPI (blue). 
Brains from D0 and D7 WNV-infected WT and IRF8–/– mice 
were also collected and processed for CCL2 ELISA ( q ). BM, blood 
and spleens of D0 and D7 WNV-infected WT and IRF8–/– mice 
were also isolated and processed for flow-cytometric analysis. 

CD45+ CD115+ CD11b+ Ly6G– Ly6C+ monocytes were gated 
and expression of the chemokine receptor CCR2 was compared 
( r ). Flow-cytometric data shown are means ± SD and represent 3 
separate experiments with 4 mice/group. Statistical analysis was 
conducted using one-way ANOVA and the Tukey-Kramer post 
hoc test.  *  *  p    ≤  0.01. Immunohistology was performed on 3 entire 
sagittal brain sections from a minimum of 3 mice/group, conduct-
ed twice. CCL2 ELISA data shown are means ± SD and were per-
formed twice with a minimum of 4 mice/group.               
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in the BM, blood and spleen ( fig. 4 r; online suppl. fig. 4A–
C). Studies using CCR2–/– or CCL2-neutralized mice 
highlight the importance of the CCL/CCR2 axis for 
Ly6C+ monocyte migration. In these mice, Ly6C+ mono-
cytes accumulate in the BM during homeostasis and in-
fection, unable to traffic to sites of inflammation  [3, 26–
28] . Thus, low levels of CCR2 expression by Ly6C+ 
IRF8–/– monocytes likely contributed to their inability 
to accumulate in the blood or traffic to the WNV-infect-
ed brain.

  Next, adhesion molecule expression was examined. 
Ly6C+ monocyte migration to the CNS is dependent on 
the expression of the integrin VLA-4, which binds to the 
adhesion molecule VCAM-1, expressed by endothelium 
perfusing the inflamed brain  [6] . We found that VCAM-
1 expression was upregulated to similar levels in the D7 
WT and IRF8–/– WNV-infected brain ( fig. 4 a–d). To de-
termine if the expression of activated VLA-4 differed be-
tween WT and IRF8–/– inflammatory monocytes, we 
stained these cells with an antibody that recognizes an 
activation epitope of this integrin. While WNV infection 
significantly upregulated the expression of active VLA-4 
on WT monocytes in the BM, spleen and blood, IRF8–/– 
cells failed to increase expression of this key integrin mol-

ecule to a similar extent, particularly in the blood ( fig. 5 e; 
online suppl. fig.  4D–F). These data indicate that im-
paired migration of IRF8–/– monocytes is also likely con-
tributed to by an inability to sufficiently activate VLA-4 
in response to inflammatory stimuli. 

  Discussion 

 In this study, we investigated the role of the transcrip-
tion factor, IRF8, in the development and migration of 
Ly6C+ monocytes during homeostasis and WNV infec-
tion of the CNS. Our data indicate that IRF8 is important 
for the development of Ly6C+ inflammatory monocytes. 
IRF8–/– mice showed a 50% reduction in the numbers of 
these cells in the BM, as well as the spleen, which has re-
cently been identified as a hematopoietic source of undif-
ferentiated monocytes  [23–25] . These data are consistent 
with recent studies which show that IRF8 plays an impor-
tant role in the differentiation of both Ly6C+ and Ly6C– 
monocytes  [18, 22] . Importantly, the lack of IRF8 was as-
sociated with increased mortality following WNV infec-
tion, consistent with previous findings that macrophages 
are important in virus clearance  [31] . 
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  Fig. 5.  IRF8–/– monocytes express low levels of the integrin VLA-
4. Mock-infected and WNV-infected WT and IRF8–/– brain sec-
tions were processed for immunohistology and stained for VCAM-
1 (red;      a–d ). Slides were also stained with DAPI (blue) and lectin 
(green). The BM, blood and spleens of mock-infected and WNV-
infected WT and IRF8–/– mice were processed for flow-cytomet-

ric analysis on D7 p.i. Ly6C+ monocytes were gated and the ex-
pression levels of the activated integrin VLA-4 ( e ) were compared. 
Immunohistology was performed on 3 entire sagittal brain sec-
tions from a minimum of 3 mice/group, conducted twice. Flow-
cytometric data shown are representative of 3 separate experi-
ments with 4 mice/group. 
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