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Objectives.To describe and compare 3 garbage code (GC) redistributionmodels: naı̈ve

Bayes classifier (NB), coarsened exact matching (CEM), and multinomial logistic re-

gression (MLR).

Methods. We analyzed Taiwan Vital Registration data (2008–2016) using a 2-step

approach. First, we used non-GC death records to evaluate 3 different predictionmodels

(NB, CEM, and MLR), incorporating individual-level information on multiple causes of

death (MCDs) and demographic characteristics. Second, we applied the best-performing

model to GC death records to predict the underlying causes of death. We conducted

additional simulation analyses for evaluating the predictive performance of models.

Results. When we did not account for MCDs, all 3 models presented high average

misclassification rates in GC assignment (NB, 81%; CEM, 86%;MLR, 81%). In the presence

of MCD information, NB and MLR exhibited significant improvement in assignment

accuracy (19% and 17%misclassification rate, respectively). Furthermore, CEMwithout a

variable selection procedure resulted in a substantially higher misclassification rate

(40%).

Conclusions. Comparing potential GC redistribution approaches provides guidance for

obtaining better estimates of cause-of-death distribution and highlights the significance

of MCD information for vital registration system reform. (Am J Public Health. 2020;110:

222–229. doi:10.2105/AJPH.2019.305439)

Information on causes of death at the na-
tional level provides critical inputs for the

development of national health policies and
evaluation of population health. However,
problematic assignment of the underlying
cause of death (UCD) frequently occurs be-
cause of the complicated assignment process
of the cause-of-death classification system and
inconsistent practice procedure in completing
death certificates.1 According to the World
Health Organization (WHO), the definition
of UCD is as follows: “the disease or injury
which initiated the chain of morbid events
leading directly to death, or the circumstances
of the accident or violence which produced
the fatal injury.”2(p34) Because of uncertainty
regarding the UCD or lack of knowledge and
practice of the correct procedures for com-
pleting a death certificate, the certifying
physicians sometimes mistakenly assign in-
termediate cause of death (e.g., cardiac arrest,

heart failure), ill-defined conditions or
symptoms (e.g., dyspnea), or unspecified
codes within larger groups of causes (e.g.,
ill-defined sites of cancer) as the UCD. These
so-called garbage codes (GCs) provide useless
information for public health analysis; therefore,
they should not be designated as the UCD.3

Algorithm-based approaches have been
used to reassign GCs to informative UCDs
with the aim of improving the quality and
utility of mortality statistics.4,5 Thesemethods

have frequently been applied to secondary
mortality data (at the aggregated level), but
they suffer from the drawback of not con-
sidering the heterogeneity of GCs across
countries and health care systems. For the
purpose of redistribution, alternative ap-
proaches, including multinomial logistic re-
gression6 (MLR) and coarsened exact
matching7 (CEM), have used individual-level
information embedded within mortality data.
The shortcoming of MLR is that it requires
assumptions about howvariables are related to
the outcome, whereas CEM assumes the
underlying probability structure that enforces
complete interdependencies of predictors.
However, the empirical performance and
scalability of the 2 data-driven approaches
have not been well assessed.8

In addition to the MLR and CEM ap-
proaches, we explored a new nonparametric
method—the naı̈ve Bayes classifier (NB),
which has the advantage of fast imple-
mentation and low risk of overfitting. We
evaluated and compared the classification
performance and scalability of 3 data-driven
approaches (NB, CEM, and MLR) using
empirical data sets in Taiwan and simulated
data sets under diverse scenarios.

METHODS
All deaths in Taiwan are required by law to

be registered, and death registry data sets
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provide timely and complete information
regarding the cause of death. Nonetheless,
GCs accounted for more than 15% of regis-
tered deaths in 2016, higher than any other
single cause of death.9 We obtained vital
registration data at the individual level, in-
cluding age, sex, residence, and marital status
as well as date, manner, and place of death.
We obtained data for multiple causes of death
(MCDs) from the Multiple Causes of Death
data set. These data have been collected by the
Department of Statistics, Ministry of Health
and Welfare since 2008, with cause of death
coded according to the International Statistical
Classification of Diseases and Related Health
Problems (ICD)-10.10

Garbage Code and Underlying
Cause of Death

We categorized the GCs for cause of death
into 9 groups; septicemia, volume depletion,
ill-defined cancer site, heart failure, ill-
defined cardiovascular diseases, renal failure,
ill-defined injury, ill-defined conditions, and
other ill-defined codes (GC01–GC09; Table
A, available as a supplement to the online
version of this article at http://www.ajph.
org).11 Because of the practical difficulty of
assigning each GC to a specific UCD, we
constructed a condensed classification system
of mutually exclusive and collectively ex-
haustive groups of crucial cause of death
(Table A), consistent with the guidelines of
WHO and those reported in previous stud-
ies.12–14 Nonetheless, our model can be
generalized to any grouping system.Users can
choose an appropriate grouping system based
on the required level of detail in mortality
information and sample size considerations
(limiting the model complexity without
overfitting). We further matched the groups
of mapping lists to corresponding GCs
according to physiological mechanisms and
domain knowledge (Table B, available as a
supplement to the online version of this article
at http://www.ajph.org).2,13

Redistribution Models
To probabilistically redistribute theGCs to

target UCDs, we defined the analysis as
solving a classification problem, given indi-
vidual characteristics and MCDs. We
implemented 2-step analyses for model
construction and application. First, we used

non-GC death records to construct 3 types of
prediction model (NB, CEM, and MLR),
incorporating individual-level information
such as demographics and MCDs as the
predictors. For each type of predictionmodel,
we carried out variable selection using fivefold
cross-validation. We selected and retrained the
best-performing models using the complete
non-GC records. Second, we applied the best-
performing model constructed in the previous
step to GC records, which were redistributed
probabilistically to their potential UCDs. We
conducted model construction and GC re-
distribution separately for each year.

Sex, age (5-year groups), marital status,
urbanization level of residence,15 month of
death,manner of death, and the level of health
care facility that issued the death certificate
constituted the full set of predictor variables.
In addition to using each full model that
included all available predictor variables, we
applied a selection procedure to exclude re-
dundant covariates (excess variables that did
harm to the predictive ability). The 3 types of
prediction model are briefly described in the
following paragraphs, and detailed de-
scriptions are provided in the supplemental
material.

NB classifier, a generative approach that
estimates the conditional probability of target
UCDs using Bayes’ theorem, is written as:

p Ujx 1ð Þ;...;x kð Þ;fv 1ð Þ;...;v mð Þg
� �

} p Uð Þp x 1ð Þ;...;x kð Þ;fv 1ð Þ;...;v mð ÞgjU
� �(1)

where U is an r-length vector corresponding
to r target UCD categories. Together, k
predictors (x) and m contributing MCDs (v)
are used to infer the probabilities of potential
UCDs. Notably, m varies among individuals,
so we consider MCDs as a set for each in-
dividual. NB further invokes conditional
independence assumptions among predictors;
therefore:

p x 1ð Þ;...;x kð Þ;fv 1ð Þ;...;v mð ÞgjU
� �

¼
Yk
a

p xðaÞjUCDÞp fv 1ð Þ;...;v mð ÞgjU
� ��

(2)

We calculated the maximum likelihood es-
timates of the constituent probabilities on the
right-hand side directly from the data. To
assess the effect of interdependencies among
predictor variables, we added tree- and

forest-augmented naı̈ve Bayes classifiers
(TANB and FANB), as well as joining op-
erations in the variable selection procedure
for NB, as the sensitivity analysis (sections 1–3
of the Appendix, available as a supplement to
the online version of this article at http://
www.ajph.org).

CEM comprises the following procedures:
(1) matching the individuals according to
predictor variables and (2) proportionally
redistributing the individual according
to the target UCD distribution in the
matched group. Although CEM is often
depicted algorithmically, it can be formulated
as a special case of the NB classifier that
joins all predictor variables used (Appendix,
section 4).

MLR is a discriminative approach that has
parameterization of target probabilities that
are distinct from NB and CEM. It is for-
mulated as r � 1 independent binary logistic
regression models:

log
pðU ¼ uð jÞÞ
pðU ¼ uð1ÞÞ ¼ bjX; for j ¼ 2; . . . ; r;(3)

where a total of r target UCD categories
(uð1Þ; . . . ; uðrÞ) are present, and uð1Þ is set as the
reference category. bjX is the linear pre-
dictor, including predictor variables and in-
dicator variables of contributing MCDs
(Appendix, section 5).

Variable Selection and Model
Evaluation

We used backward sequential elimination
(BSE) and backward sequential elimination
joining (BSEJ) algorithms to search for the
most parsimonious model and to improve
predictive ability.16 The procedure com-
prised the following steps: (1) evaluating
submodels generated by the elimination
or joining operation, (2) testing the reduction
in prediction error, and (3) proceeding to
the next iteration, or reporting the current
model (Appendix, section 6).

We evaluated each model on the basis
of its out-of-sample average classifica-
tion error, obtained from fivefold cross-
validation. We randomly partitioned
non-GC death records into 5 groups; we
selected one at a time as the validation set,
and the rest formed the training set. Because
we used 0/1 loss function as the error
measure (erri), we interpreted the average
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classification error as the misclassification
rate:

Average classification error ¼ 1
N

XN
i

erri

¼ 1
N

XN
i

I U

ˇ

i 6¼ Ui

� �
;

(4)

where Ið�Þ is an indicator function that
returns 1 when the condition is true and 0
when it is false (Appendix, section 7). In
addition, we performed a simulation analysis
to evaluate the potential effects of missing
data, sample size, and number of redundant
covariates on the predictive performance of 3
models (Appendix, section 8). In summary,
we compared 6 models, which were 3 full
models (NB, CEM,MLR) and 3models with
variable selection procedures (NB_BSEJ,
CEM_BSE, and MLR_BSE).

Garbage Code Redistribution
The type of GC can also inform mean-

ingful target UCD groups. For example, ill-
defined cancers should be redistributed
exclusively to cancer-related UCD groups,
and heart failure should be reassigned to
noncommunicable diseases apart from cancers
and mental and neurological conditions. This
GC–UCD mapping list comes with the
cause-of-death classification system and is
based on physiological mechanisms and do-
main knowledge (Table B).2,13 We applied
thismapping list in thefinal prediction step for
all models to prevent the prediction of im-
plausible UCD categories. For each GC re-
cord, we ignored the predicted probabilities
of implausible UCD categories and renor-
malized the remaining distribution (Appen-
dix, section 9). We conducted data
management using SAS 9.3 (SAS Institute,
Cary, NC) and performed all statistical ana-
lyses and predictions using R 3.6.1 (http://
www.r-project.org).

RESULTS
Table 1 presents the frequency of GCs by

key covariates in Taiwan from 2008 to 2016.
The proportion of GC deaths accounted for
13.1% of total deaths and was higher among
women (14.7%) than men (12.7%). Of the 9
groups of GC deaths, ill-defined condition

(33.5%), ill-defined cardiovascular disease
(CVD; 25.8%), septicemia (17.4%), and heart
failure (16.6%) were the major groups, ac-
counting for 93.6% of all GCs. The distri-
bution of GC pattern varied by covariates; for
example, the GC deaths among people aged
15 to 65 years were more likely to be des-
ignated as ill-defined CVD than those in other
age groups, and GC deaths that occurred in
hospitals exhibited a higher proportion of
septicemia than did other places of death.

The misclassification rate for each model is
shown in Figure 1 (see Tables C and D,
available as a supplement to the online version
of this article at http://www.ajph.org, for
model contents). Redistribution models
without MCD information had mis-
classification rates of approximately 80%, and
all methods performed similarly throughout
the years (Figure 1, left panel). Variable se-
lection made a distinction only between
CEM and CEM_BSE, suggesting the vul-
nerability of CEM regarding redundant
covariates. Frequently dropped redundant
variables included urbanization level and
month of death (Table C). By contrast, NB
and MLR were less sensitive to redundant
covariates as they tended to retain all variables
after the selection procedure. Depending on
the year, NB_BSEJ had selected joined var-
iables, such as sex–age and place–manner of
death, implying an interactive effect of these
variables. However, the performance levels of
NB, NB_BSEJ, TANB, and FANB were
indistinguishable (Figure A, available as a
supplement to the online version of this article
at http://www.ajph.org).

Incorporating MCD information sub-
stantially reduced the misclassification rate
and improved the relative performance of all
assessed models (Figure 1, right panel). MLR
(15%–17% misclassification) consistently
exhibited higher performance than all other
models over the years, whereas MLR_BSE
showed nonsignificant additional improve-
ment. The models with the next-highest
performance were NB_BSEJ, CEM _BSE,
and NB (18%–21% misclassification); the full
CEMmodel had theworst performance,with
almost 40% misclassification. Again, CEM
was considerably more sensitive to the vari-
able selection procedure than was NB,
whereas MLR was almost unaffected. No-
tably, CEM_BSE and NB_BSE dropped
many of the variables from the complete set

(Table D), suggesting that MCD information
dominates in the inference of potential
UCDs. Accordingly, we selected the best
performance model that we found in the first
stage of the analyses (MLR_BSE with MCD
information) to redistribute GC records.
Because the variable selection procedure
resulted in different variable sets in each year,
and cross-year predictions increased the
classification error (Table E, available as a
supplement to the online version of this article
at http://www.ajph.org), we retrained the
model and predicted GC deaths separately
by year.

Throughout the study period, the pro-
portion of GCs in the general population
remained comparable (Figure B, available as a
supplement to the online version of this article
at http://www.ajph.org). Approximately
28% of GC-registered deaths were redis-
tributed to other cardiovascular causes, fol-
lowed by other noncommunicable diseases
(10.4%), chronic respiratory diseases (10.3%),
and mental and neurological diseases (8.6%).
Overall, we observed no significant changes
in the relative frequency of UCDs. However,
when we considered specific subgroups, the
impact of GC redistribution may have been
enough to alter the ranking of the top causes
of death. For example, the rankings of re-
spiratory infections, other cancer, other
noncommunicable diseases, other cardiovas-
cular diseases, and mental or neurological
conditions increased in the male population
(Table 2). Other causes of death declined after
GC reassignment, resulting in substantial
reshuffling of the rankings. A higher number
of attainable GCs resulted in an increased
potential for change in the rankings or pro-
portion of target UCDs. For instance, the
proportion of other cardiovascular diseases
was increased by the large number of heart
failure and ill-defined cardiovascular disease
registrations, which accounted for 45.7% of
all the GCs. Conversely, the proportion and
ranking of all cancers declined because of the
infrequent occurrence of ill-defined cancer
GCs (2.6%).

We performed simulation analyses for 9
different scenarios that varied with the quality
of data (as percentage of missing values, PNA)
and modeling procedure (as number of re-
dundant covariates, r). In the optimistic sce-
nario of no missing data (Figure 2), MLR had
the best performance among all 3 methods
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regardless of redundant variables or sample
size. The performance of MLR, nonetheless,
was sensitive to the quality of data andnumber
of redundant covariates included. In more
challenging scenarios, the performance of
MLRwas tied with or even surpassed by both
CEM and NB with the growing amount of
missing information and redundant cova-
riates. In the worst case, where there are more
redundant covariates than effective ones, the
misclassification rate for NB was significantly

better than those for CEM andMLR (by ~6%).
Furthermore, CEM and MLR were found
sensitive to relative sample size in challenging
scenarios, whereas NB was able to perform
comparably well even with a small data set.

DISCUSSION
The redistribution of GCs to appropriate

underlying causes had a significant effect on

cause of death at the population level—
particularly throughout the past decade,
when the proportion of GCs in the Taiwan
vital registry system remained high. In this
study, we compared 2 redistribution models
(CEM andMLR) with a newly proposed NB
model. If MCDs were not considered, all 3
models performed poorly, but in the presence
of MCD information, the MLR model
outperformed the other models. Therefore,
the MLR model, combined with variable

TABLE 1—Frequency Distribution of Garbage Codes by Key Covariates: Taiwan, 2008–2016

GC Type Validation, No. (%)

Covariate GC,% Septicemia Volume Depletion
Ill-Defined
Cancer Heart Failure

Ill-Defined
CVD

Undetermined
Intent Ill-Defined Condition

Ill-Defined
Infectious

Sex

Male 12.7 18 712 (17.4) 1 345 (1.3) 2 954 (2.8) 15 425 (14.4) 28 591 (26.7) 3 170 (3.0) 36 922 (34.4) 135 (0.1)

Female 14.7 13 882 (17.3) 1 288 (1.6) 2 061 (2.6) 15 617 (19.5) 19 724 (24.6) 1 574 (2.0) 25 966 (32.4) 95 (0.1)

Age, y

Birth–14 10.1 161 (11.8) 30 (2.2) 12 (0.9) 40 (2.9) 154 (11.3) 119 (8.7) 838 (61.3) 14 (1.0)

15–64 10.5 5 570 (12.7) 538 (1.2) 1 949 (4.4) 3 643 (8.3) 13 392 (30.6) 3 504 (8.0) 15 141 (34.6) 64 (0.1)

‡ 65 14.8 26 863 (18.9) 2 065 (1.5) 3 054 (2.1) 27 359 (19.2) 34 769 (24.4) 1 121 (0.8) 46 909 (33.0) 152 (0.1)

Urbanizationa

1 14.1 7 732 (18.9) 535 (1.3) 1 236 (3.0) 6 391 (15.6) 11 254 (27.5) 1 031 (2.5) 12 649 (30.9) 63 (0.2)

2 13.5 5 566 (17.9) 441 (1.4) 941 (3.0) 4 860 (15.7) 7 864 (25.3) 849 (2.7) 10 485 (33.8) 38 (0.1)

3 13.5 8 018 (15.9) 731 (1.4) 1 329 (2.6) 7 903 (15.6) 13 597 (26.9) 1 422 (2.8) 17 507 (34.6) 65 (0.1)

4 13.1 5 566 (17.0) 462 (1.4) 779 (2.4) 5 894 (18.0) 7 538 (23.1) 820 (2.5) 11 581 (35.4) 29 (0.1)

5 13.8 2 448 (16.4) 207 (1.4) 335 (2.2) 2 653 (17.8) 3 637 (24.4) 288 (1.9) 5 346 (35.8) 15 (0.1)

6 12.7 2 822 (18.5) 231 (1.5) 356 (2.3) 2 993 (19.6) 3 837 (25.1) 267 (1.7) 4 757 (31.1) 17 (0.1)

7 11.9 442 (21.3) 26 (1.3) 39 (1.9) 348 (16.8) 588 (28.3) 67 (3.2) 563 (27.1) 3 (0.1)

Month of death

1–4 14.3 11 426 (16.6) 964 (1.4) 1 601 (2.3) 11 665 (16.9) 18 173 (26.4) 1 553 (2.3) 23 442 (34.0) 90 (0.1)

5–8 13.1 10 616 (18.2) 814 (1.4) 1 695 (2.9) 9 689 (16.6) 14 684 (25.1) 1 666 (2.8) 19 237 (32.9) 66 (0.1)

9–12 13.4 10 552 (17.6) 855 (1.4) 1 719 (2.9) 9 688 (16.1) 15 458 (25.7) 1 525 (2.5) 20 209 (33.6) 74 (0.1)

Married

Yes 16.0 17 129 (15.9) 1 558 (1.4) 2 092 (1.9) 17 912 (16.6) 26 954 (25.0) 2 990 (2.8) 38 842 (36.1) 143 (0.1)

No 11.2 15 465 (19.4) 1 075 (1.3) 2 923 (3.7) 13 130 (16.4) 21 361 (26.8) 1 754 (2.2) 24 046 (30.1) 87 (0.1)

Place of death

Hospital 10.5 20 938 (31.5) 1 732 (2.6) 3 066 (4.6) 16 772 (25.2) 11 000 (16.5) 1 087 (1.6) 11 750 (17.7) 126 (0.2)

Clinic 10.6 10 (5.4) 1 (0.5) 2 (1.1) 32 (17.2) 51 (27.4) 4 (2.2) 85 (45.7) 1 (0.5)

Care facility 13.9 60 (4.2) 1 (0.1) 11 (0.8) 214 (15.1) 546 (38.5) 11 (0.8) 572 (40.3) 3 (0.2)

Residence 14.4 11 044 (12.6) 768 (0.9) 1 770 (2.0) 12 568 (14.3) 25 488 (29.1) 557 (0.6) 35 456 (40.4) 60 (0.1)

Other 23.4 542 (1.7) 131 (0.4) 166 (0.5) 1 456 (4.6) 11 230 (35.5) 3 085 (9.7) 15 025 (47.4) 40 (0.1)

Manner of death

Natural 13.7 32 588 (18.6) 2 632 (1.5) 5 015 (2.9) 31 036 (17.7) 48 305 (27.6) 1 (0) 55 367 (31.6) 230 (0.1)

Accident 0.0 6 (20.7) 1 (3.4) 0 6 (20.7) 9 (31.0) 2 (6.9) 5 (17.2) 0

Unknown 99.5 0 0 0 0 1 (0.0) 4 741 (38.7) 7 516 (61.3) 0

Total 13.5 32 594 (17.4) 2 633 (1.4) 5 015 (2.7) 31 042 (16.6) 48 315 (25.8) 4 744 (2.5) 62 888 (33.5) 230 (0.1)

Note. CVD= cardiovascular diseases; GC=garbage code.
aLevel of urbanicity is as follows: 1 = high, 2 =medium, 3 = new township, 4 = normal township, 5 = aging township, 6 = agriculture township, and 7= remote
township.
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selection and MCD information, is suggested
for GC redistribution in Taiwan. We also
found that the CEMmodel had a high risk of
overfitting and high sensitivity to redundant
covariates, contradictory to the general
preferences of nonparametric methods. Apart
from the established mapping list for appro-
priate pairs of GCs and UCDs, these procedures
were made verifiable, data driven,12–14 and
adaptive to MCD information. Our results
showed that most GC deaths were redistributed
to other cardiovascular diseases (28%), other
noncommunicable disease (10.4%), and chronic
respiratory diseases (10.3%). Adjustment for
GCs can alter the rankings of UCDs, particu-
larly in some subgroups; therefore, it is necessary
that the government urgently prioritize policies
relevant to these diseases and that public
awareness of these diseases be increased.

Correcting or adjusting the systematic bias
in health data is critical for epidemiological
studies or burden-of-disease estimates at the
national and subnational levels. For example,
comparedwith cancer, a systematically higher
percentage of GCs for cardiovascular diseases

were reassigned by the redistribution pro-
cedure, leading to a reshuffling of the most
crucial causes of death in Taiwan. We reas-
signed each GC death to 1 of several fractions
of UCDs, which may compensate for the
shortage of current cause-of-death designat-
ing rules. Current ICD rules use a categorical
or classified system for designating UCDs and
assign only 1 cause for each death.2 However,
in some cases—for example, heart failure
deaths or ill-defined causes of death—several
diseases lead to a given death, and the death
may have been prevented or postponed by
removing any 1 of the contributing disease
factors. For public health purposes, under-
standing the entire chain of diseases that
contribute to a given death, particularly
for those registered as a GC, is critical for
developing a death prevention program.
Therefore, assigning each GC multiple UCDs
not only conserves the uncertainty about the
true underlying cause but also benefits future
health policymaking.

The classification performance is highly
affected by MCD information. In the absence

of MCDs, the most effective model was only
approximately 20% accurate, implying that
these predictors are limited to the use of in-
ferring potential UCDs. Nonetheless, there
was a 16% increase in accuracy, compared
with randomly guessing (4% accuracy). In-
corporating MCD information boosted the
performance of all models by large margins,
with MLR having the highest accuracy (83%–
85%), followed by NB with a variable se-
lection procedure (81%–82% accuracy) and
CEM with a variable selection procedure
(81%–82% accuracy). Such findings suggest
that collecting contributing MCDs should be
a necessary step to improving the quality of
mortality statistics, regardless of any redistri-
bution model. Notably, by contrast with the
absence of MCDs, the model selection pro-
cess of NB and CEM dropped most predictor
variables (TableD). In otherwords, theMCD
information contributed most to the learned
models andmademost variables redundant or
even harmful. We analyzed the information
gained by predictors in the NB model and
found that MCDs accounted for 33.8% of
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FIGURE 1—Model Performance for Multinomial Logistic Regression (MLR), Coarsened Exact Matching (CEM), and Naı̈ve Bayes Classifier (NB),
(a) Without and (b) With Multiple Causes of Death Data: Taiwan, 2008–2016
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information gained in the redistribution
model (Table F, available as a supplement to
the online version of this article at http://
www.ajph.org).

One previous study claimed a stronger
preference for the nonparametric method
(CEM) over the parametric method (MLR)
for fast implementation and weaker as-
sumption.7 However, in the present study,
we found that MLR was optimal and less
affected by redundant covariates (high ro-
bustness). We also found that CEMwithout a
model selection process performed worse
than other models by a large margin, sug-
gesting a reappraisal of these redistributing
methods. Previously, the major opposition to
MLR was that it enforces strong assumptions
about how variables are related to the out-
come (as a linear predictor). However, CEM
also invokes its own assumptions about the
underlying probability structure, which is the
complete interdependencies among predictors.
Such assumptions increase the model com-
plexity of CEM, hence the risk of overfitting
(TableG, available as a supplement to the online
version of this article at http://www.ajph.org),
especially when the data do not feature such
ubiquitous correlative structures.

A naı̈ve Bayes model, retaining the ad-
vantage of fast implementation yet opposing

the assumption of CEM, is therefore pro-
posed. The optimal nonparametric model
likely lies within the spectrum of NB (ac-
counting for no interdependencies) andCEM
(accounting for all interdependencies). To be
sure, we investigated the interdependencies
among predictors by calculating their con-
ditional mutual information, of which no
strong correlation was found (Table H,
available as a supplement to the online version
of this article at http://www.ajph.org). We
also implemented a “joining”operation in the
variable selection procedure, as well as aug-
mented NB models. We found that aug-
mented NB models (TANB, FANB)
performed slightly worse than NB, implying
that the benefits of accounting for in-
terdependency structures did not outweigh
the additional complexity created by aug-
mented models. Likewise, joined variables
were rarely included in the variable selection
of NB_BSEJ; therefore, we believe that the
interdependencies among the predictors in
our data are inconsequential.

Although we selectedMLR as the optimal
model to redistribute GC-coded records,
such a decision could change from data set to
data set, with varying natures like the level of
interdependencies among predictors, per-
centage of missing information, and size. In

particular, our data set is untainted by missing
values, but it offers only a few predictors with
minor interdependencies. Notably, NB and
CEM can conveniently handle missing values
by treating them as a distinct category,
whereas MLR would, by default, omit the
whole observation unless an imputation al-
gorithm was applied. In fact, our supple-
mental simulation experiment revealed that
the performance of MLR deteriorated as the
missing information grew, hence leaving NB
as the optimal model. Alternatively, if the
predictors were correlated, models account-
ing for variable interdependencies (e.g., CEM
and augmented NB models) would be ex-
pected to perform better. Also, the size of the
data set could affect the optimal performance
of these models. Generative methods (e.g.,
NB and CEM) converge faster to their as-
ymptotic error, which is, however, usually
higher than the asymptotic error of the dis-
criminative approach (MLR).17 In brief, there
is hardly a universally optimal method for
redistributing GCs in every situation. We
suggest that users be aware of the nature of the
data set and pilot different methods before
full-scale implementation.

Several limitations need to be considered.
First, we have no reference (gold standard) for
the true UCD among individuals registered
with a GC. Therefore, the validation analysis
used only those with a non-GC UCD as the
validation reference. Additional chart review
or linking of National Health Insurance data
are required for model validation. Also, we
used an a priori conceptual target list that
satisfied pathophysiological plausibility for
GC reassignment. However, there is no
available evidence that physicians exclusively
miscode GC deaths from pathophysiologi-
cally related underlying causes.

Vital statistics constitute the basic reference
for health policy development. In particular,
the mortality rankings provide a general
picture for the development of health policies
and priority setting. However, without ad-
justment for GC, the vital statistics are in-
applicable for public health purposes, leading
to biased vital statistics. Our analysis provides
quantitative guidance for a future GC reas-
signment procedure. This study highlights the
potential use ofmultiple cause of death data to
improve the quality of vital data. Our finding
deserves attention for vital registration system
reform. The attempt to apply a machine

TABLE 2—Changes in Ranking and Proportion of Top Causes of Death Among Males Before
and After Redistribution of Garbage Codes: Taiwan, 2016

Rank

Underlying Cause of Death Before After Change Change in Proportion,a %

Digestive cancer 1 3 ▼ 2 –0.92

Respiratory infections 2 1 : 1 –0.20

Other cancer 3 2 : 1 –0.54

Stroke 4 6 ▼ 2 –0.27

Chronic respiratory diseases 5 5 . . . +0.18

Ischemic heart disease 6 8 ▼ 2 –0.30

Lung cancer 7 9 ▼ 2 –0.84

Other noncommunicable diseases 8 7 : 1 +0.26

Liver cancer 9 10 ▼ 1 –0.76

Diabetes mellitus 10 11 ▼ 1 +0.13

Cirrhosis 11 13 ▼ 2 –0.36

Other cardiovascular 12 4 : 8 +3.55

Mental and neurological conditions 13 12 : 1 +0.76

aProportion of underlying cause of death (UCD) after redistribution minus the proportion of
UCD before redistribution.
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learning approach to public health practices
also provides insights into the interdisciplinary
applicationof innovativecomputer science.
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